1
|
Fernández-López J, Viuda-Martos M, Botella-Martínez C, Muñoz-Bas C, Bermúdez-Gómez P, Lucas-González R, Pérez-Álvarez JÁ. The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products. Foods 2025; 14:977. [PMID: 40232024 PMCID: PMC11941134 DOI: 10.3390/foods14060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
This study reviews the feasibility of using cultivated mushrooms in the development of salt-reduced meat products. For this purpose, it is important to know the role of salt in meat products in order to develop viable strategies for its substitution. In addition, mushroom types and properties (composition, nutritional value, umami content, etc.) and examples of successful application as salt substitutes in meat products are addressed. Salt has important roles in meat product processing, mainly affecting its technological, antimicrobial, and sensory properties. Therefore, the different strategies that have been studied (meat product reformulation and technological advances) with the aim of reducing its content have to address these effects. The application of mushrooms as a salt substitute shows several advantages mainly related to the fact that mushrooms are a natural ingredient with a very healthy nutritional composition (rich in protein and dietary fiber but low in fat and sodium) and, from an economic and sustainable cultivation perspective, aligns well with current trends in food production and consumption. Salt substitutions of 50% have been achieved, mainly in fresh meat products (hamburgers) and heat-treated meat products (sausages, pâté, roast meat, etc.), with minimal physicochemical and sensory modifications of the final product. The meat industry could benefit from incorporating cultivated mushrooms as a salt-reducing ingredient, especially in the development of reduced salt meat products with a quality comparable to or superior to traditional products. The optimization of processes for their integration in the formulation of meat products should be the trend to ensure their viability.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Clara Muñoz-Bas
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - Patricia Bermúdez-Gómez
- Mushroom Technological Research Center of La Rioja (CTICH), Carretera Calahorra, km 4, 26560 Autol, La Rioja, Spain;
| | - Raquel Lucas-González
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Alicante, Spain; (M.V.-M.); (C.B.-M.); (C.M.-B.); (R.L.-G.); (J.Á.P.-Á.)
| |
Collapse
|
2
|
Mounir S, Mohamed R, Sunooj KV, El-Saidy S, Farid E. Assessing the effects of partially substituting chicken breast meat with oyster mushroom stalk powder on the quality attributes of mushroom-chicken burgers. Sci Rep 2025; 15:4361. [PMID: 39910073 PMCID: PMC11799463 DOI: 10.1038/s41598-025-86127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
This study aimed to evaluate the effect of a partial substitution of chicken breast meat with oyster mushroom stalk powder on the quality attributes of mushroom-chicken burgers. Chicken breast meat was substituted with oyster mushroom stalk powder at different levels ranging from 2.5 to 10%, with an interval increase of 2.5%. The substitution level had a significant effect on the different characteristics studied. A decrease in both crude protein and crude lipid was observed as the substitution level increased from 2.5 to 10%. However, a contradictory trend was observed for crude fiber, ash, carbohydrates, antioxidant properties, water-binding capacity, and browning index. The cooking loss and shrinkage were reduced by about 81.6% and 72.6%, respectively, for the formulation prepared with 10% compared to the control sample. The formulation prepared with 2.5% showed the lowest hardness, chewiness, and shear force, which increased as the substitution level increased to 10%. The oyster mushroom stalk powder can be used at a level ranging from 2.5 to 5% to substitute chicken breast meat in the preparation of healthier and more functional chicken burgers.
Collapse
Affiliation(s)
- Sabah Mounir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Randa Mohamed
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - K V Sunooj
- Department of Food Science and Technology, Pondicherry University, Pondicherry, India
| | - Sohier El-Saidy
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Farid
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024; 13:1464. [PMID: 38790763 PMCID: PMC11120248 DOI: 10.3390/foods13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry.
Collapse
Affiliation(s)
- Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando J. Lidon
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Molina JRG, Frías-Celayeta JM, Bolton DJ, Botinestean C. A Comprehensive Review of Cured Meat Products in the Irish Market: Opportunities for Reformulation and Processing. Foods 2024; 13:746. [PMID: 38472858 DOI: 10.3390/foods13050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cured meat products constitute one of the meat categories commonly consumed in Ireland and has been part of the Irish cuisine and diet for many years. Ham, gammon, and bacon are some of the products that involve curing as part of the traditional processing methods. Common among these products are high levels of salt and the addition of nitrites. These products undergo processing treatments to create variety, preserve shelf-life, and develop their unique quality and safety characteristics. However, consumers are becoming more conscious of the level of processing involved in these products, and the effects of some components and ingredients might be perceived as unhealthy. Meat product developers have been exploring ways to reduce the amount of ingredients such as salt, saturated fat, and chemical preservatives (e.g., nitrites), which are linked to health concerns. This is a challenging task as these ingredients play an important techno-functional role in the products' quality, safety, and identity. While innovative processing techniques are being introduced and progress has been made in reformulation and packaging technologies, much is still unknown, especially regarding the applicability of many of the proposed interventions to a wide range of meat products and their sustainability at the industrial scale.
Collapse
Affiliation(s)
- Jan Roland G Molina
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Jesús M Frías-Celayeta
- Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| | - Cristina Botinestean
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
5
|
Baptista F, Campos J, Costa-Silva V, Pinto AR, Saavedra MJ, Ferreira LM, Rodrigues M, Barros AN. Nutraceutical Potential of Lentinula edodes' Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects. J Fungi (Basel) 2023; 9:1200. [PMID: 38132800 PMCID: PMC10744564 DOI: 10.3390/jof9121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Lentinula edodes, commonly known as shiitake mushroom, is renowned for its potential health advantages. This research delves into the often-overlooked by-product of shiitake cultivation, namely spent mushroom substrate (SMS), to explore its nutraceutical properties. The SMS samples were collected and subjected to different extraction methods, namely short or long agitation, and ultrasound-assisted extractions using different temperatures and distilled water or a 50% (v/v) ethanol as solvents. The extracts were tested for phenolic content (total phenols, ortho-diphenols, and flavonoids), antioxidant capacity (DPPH, 2,2-diphenyl-1 picrylhydrazyl; ABTS, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; and FRAP, ferric reducing antioxidant power), and antibacterial activity. The different extraction methods revealed substantial variations (p < 0.05) in phenolic composition and antioxidant capacity. The highest phenolic content and antioxidant capacity were achieved using 24 h extraction, agitation, 50 °C, and ethanol as the solvent. Furthermore, the extracted compounds displayed antibacterial activity in specific tested bacterial strains. This study highlights the nutraceutical potential of L. edodes' SMS, positioning it as a valuable dietary supplement for animal nutrition, with emphasis on its prebiotic properties. Hence, this research unveils the promising health benefits of SMS in both human and animal nutrition.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Joana Campos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Valéria Costa-Silva
- CECAV—Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Ana Rita Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Luis Mendes Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Miguel Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.C.); (A.R.P.); (M.J.S.); (L.M.F.); (M.R.)
| |
Collapse
|
6
|
Yang Y, Zhang Y, Zhang B, Bao Y, Xu S, Tang X, Zhao Q, Li J, Li R. In vitro antioxidative activity of Fritillaria cirrhosa D. Don straw ethanolic extract and its effect on lipid, protein oxidation, and quality of Chinese-style sausage. J Food Sci 2023; 88:4745-4772. [PMID: 37751083 DOI: 10.1111/1750-3841.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
Fritillaria cirrhosa D. Don, which can be used for medicine and food, contains a variety of chemicals including polyphenols, alkaloids, terpenoid, and others that have beneficial biological properties like antihypertension, bacteriostasis, and anti-inflammatory. The ethanolic extract of Fritillaria straw was obtained for this study using ultrasonic-aided extraction, and the amounts of total phenols and total flavonoids were 26.56 ± 1.36 mg GAE/g dw and 18.75 ± 0.80 mg RE/g dw, respectively. Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry technology was utilized to identify 50 major chemicals in the Fritillaria straw extract (FSE). Meanwhile, the antioxidative activities of FSE were evaluated by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Ferric reducing antioxidant power assays in vitro, which pointed out the antioxidative potential of FSE. Additionally, 0.1%, 0.5%, and 1% of FSE and 0.02% butylated hydroxyanisole (BHA) + butylated hydroxytoluene (BHT) (1:1) were separately added to Chinese-style sausage to study their effects on the lipid oxidation, protein oxidation, and quality of the sausage at different storage times. The study found that the effect of adding 1% FSE on carbonyl content, total volatile basic nitrogen, and TVC of sausage could achieve the effect of the 0.02% BHA + BHT (1:1) group on the 35th day, and the thiobarbituric acid reactive substances value and peroxide value of sausage were significantly lower than the control group. Therefore, as one of the candidates to replace synthetic antioxidants, the FSE can be used in the production of Chinese sausages, which has a positive effect on improving the product's quality and extending the shelf life. PRACTICAL APPLICATION: The antioxidative activities of 50 main compounds were identified after the ethanolic extraction of Fritillaria straw. This Fritillaria straw extract was added to Chinese sausage, effectively inhibiting the oxidation of lipids and proteins as well as the decomposition of proteins. Obviously, the Fritillaria straw extract, one of the choices to replace synthetic antioxidants, may be useful for future meat processing, because of its positive impact on the product's quality and shelf life.
Collapse
Affiliation(s)
- Yixi Yang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Vincent Mary School of Science and Technology, Assumption University, Bangkok, Thailand
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuxuan Zhang
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bowen Zhang
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ying Bao
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaotang Xu
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xue Tang
- Chengdu Analytical Applications Center, Shimadzu (China) Co Ltd., Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
7
|
Xi L, Sun Y, Jiang S, Wen C, Ding W. Evaluation of effects of ultrasound-assisted curing on the flavor of Chinese bacon. ULTRASONICS SONOCHEMISTRY 2023; 96:106424. [PMID: 37156160 DOI: 10.1016/j.ultsonch.2023.106424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The curing stage is of great importance in flavor formation during Chinese bacon processing. Ultrasound-assisted curing plays an essential role in the Lipid oxidation of meat products. In this study, GC-MS and electronic nose were used to analyze the influence of different power ultrasonic-assisted curing on the flavor formation of Chinese bacon. Through the analysis of phospholipid and lipase, the fundamental precursors of ultrasonic on the flavor of Chinese bacon were determined. It was found that there were differences in the flavor contour description of Chinese bacon between the ultrasonic treatment group, mainly due to the change in the W1W sensor. A total of 28 volatile compounds were detected by GC-MS, and the aldehyde content increased with ultrasonic power. PC and PE are the main flavor precursors in the curing process. This study provides a theoretical basis for improving the curing technology of Chinese bacon.
Collapse
Affiliation(s)
- Linjie Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yanan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chunlu Wen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Norouzi Fard M, Nouri M. New formulation of fermented sausages towards healthier and quality rectification by adding <em>Ferulago angulata</em> essential oil. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The demand is improved for ready-to-eat meals by lifestyle changes and fermented sausages are popular meat products because of their flavor. Natural compositions are considered as substitutes of synthetic preservatives in products, which have been extensively employed. The aim of present research is to investigate the impact of Ferulago Angulata Essential Oil (FAEO) as an antimicrobial and antioxidant factor for preserving of dry fermented sausages throughout storage. Initially, FAEO was extracted using microwave assisted hydrodistillation and its components were identified by gas chromatography-mass spectroscopy. Fermented sausages were treated by starter culture (Biobak K) and FAEO at various concentrations (0, 400, 800 and 1000 ppm). Afterwards, tests such as pH, moisture, thiobarbituric acid, texture, microbial growth, electron microscope images, and sensory evaluation were conducted during storage (28 d). The high levels of bioactive compositions such as limonene (30.71%) and α-pinene (19.02%) were indicated in FAEO. The results illustrated that pH and moisture of all fermented sausages were within the standard range during storage. At different concentrations, FAEO significantly decreased thiobarbituric acid of treated samples compared to control (p<0.05). Furthermore, FAEO was able to improve cohesiveness and elasticity of fermented sausages, which were also visible in electron microscope images. Antimicrobial feature of FAEO was distinguished by evaluating microbial attributes (total viable count, lactic acid bacteria and yeast) in fermented sausages. Ultimately, FAEO at 800 ppm concentration was detected as a promising and appropriate natural preservative during storage in fermented sausages.
Collapse
|
9
|
Stavropoulou NA, Pavlidis VA, Giannakourou MC. Optimization of Osmotic Dehydration of White Mushrooms by Response Surface Methodology for Shelf-Life Extension and Quality Improvement of Frozen End-Products. Foods 2022; 11:2354. [PMID: 35954120 PMCID: PMC9367866 DOI: 10.3390/foods11152354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Button mushrooms (Agaricus bisporus), one of the most common edible mushroom species, are sensitive to damages because of the absence of a protective skin layer and have a limited shelf life. Osmotic dehydration (OD), mainly used as a pre-processing step of conventional preservation methods, has been proposed as an efficient, mild treatment to preserve mushroom superior quality. In this study, response surface methodology, coupled with a Box-Behnken design, was used to investigate the effect of glycerol concentration (30-50%), temperature (30-50 °C), and duration of osmosis (0-180 min) in order to optimize the process prior to a subsequent freezing step. For each response, including mass transfer and selected quality indices, a second-order polynomial model was developed, and all process factors were found to have a significant impact. Based on the desirability approach and pre-set criteria, optimum operating conditions were estimated, namely osmosis at 50 °C, for 120 min, with a 42% glycerol solution, and the corresponding validation experiments were performed. Based on the error estimated between experimental and predicted values, polynomial equations were found to adequately predict parameter values. Based on a shelf-life test under frozen storage, OD-treated samples retained better quality attributes compared to their untreated counterparts.
Collapse
Affiliation(s)
| | | | - Maria C. Giannakourou
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, 12243 Athens, Greece
| |
Collapse
|
10
|
Mei L, Pan D, Guo T, Ren H, Wang L. Role of Lactobacillus plantarum with antioxidation properties on Chinese sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Effects of Pleurotus ostreatus on Physicochemical Properties and Residual Nitrite of the Pork Sausage. COATINGS 2022. [DOI: 10.3390/coatings12040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a novel sausage incorporated with the Pleurotus ostreatus (PO) puree was successfully developed to reduce the residual nitrite and lipid oxidation during refrigerated storage (4 ± 1 °C) for 20 days. Five recipes with the supplement proportion of 0 wt.%, 10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.% PO were produced and their physicochemical properties, nitrite residue, and sensory characteristics were measured. The results show that the content of moisture and all the essential amino acids (especially lysine and leucine) and the non-essential amino acids (especially aspartic and glutamic), lightness, springiness, and water holding capacity of the sausages were increased. However, the content of protein, fat, ash, pH, redness, hardness, gumminess, and chewiness of the sausages was decreased. For the sensory evaluation, the sausage with 20 wt.% PO had better sensory performance including flavor, aroma, and acceptability compared with other experimental groups and the control group. Moreover, the sausages with PO reduced the residual nitrite and inhibited lipid oxidation during storage. All of these results indicate that adding PO puree into pork sausage is a realizable and effective way to obtain nutritional and healthy pork sausages.
Collapse
|
12
|
Kumar H, Bhardwaj K, Kuča K, Sahrifi‐Rad J, Verma R, Machado M, Kumar D, Cruz‐Martins N. Edible mushrooms enrichment in food and feed: A mini review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Kamil Kuča
- Department of Chemistry Faculty of Science University of Hradec Kralove 50003 Hradec Kralove Czech Republic
- Biomedical Research Center University Hospital in Hradec Kralove Sokolska 581 50005 Hradec Kralove Czech Republic
| | - Javad Sahrifi‐Rad
- Phytochemistry Research Center Shahid Beheshti University of Medical Sciences Tehran 11369 Iran
| | - Rachna Verma
- School of Biological and Environmental Sciences Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Marisa Machado
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU) Rua Central de Gandra 1317 4585‐116 Gandra PRD Portugal
- TOXRUN ‐ Toxicology Research Unit University Institute of Health Sciences CESPU CRL 4585‐116 Gandra Portugal
| | - Dinesh Kumar
- School of Bioengineering & Food Technology Shoolini University of Biotechnology and Management Sciences Solan 173229 India
| | - Natália Cruz‐Martins
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU) Rua Central de Gandra 1317 4585‐116 Gandra PRD Portugal
- TOXRUN ‐ Toxicology Research Unit University Institute of Health Sciences CESPU CRL 4585‐116 Gandra Portugal
- Faculty of Medicine University of Porto 4200‐319 Porto Portugal
- Institute for Research and Innovation in Health (i3S) University of Porto 4200‐135 Porto Portugal
| |
Collapse
|
13
|
França F, Harada-Padermo SDS, Frasceto RA, Saldaña E, Lorenzo JM, Vieira TMFDS, Selani MM. Umami ingredient from shiitake (Lentinula edodes) by-products as a flavor enhancer in low-salt beef burgers: Effects on physicochemical and technological properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Rangel-Vargas E, Rodriguez JA, Domínguez R, Lorenzo JM, Sosa ME, Andrés SC, Rosmini M, Pérez-Alvarez JA, Teixeira A, Santos EM. Edible Mushrooms as a Natural Source of Food Ingredient/Additive Replacer. Foods 2021; 10:2687. [PMID: 34828969 PMCID: PMC8624290 DOI: 10.3390/foods10112687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Although mushrooms have been exploited since ancient times because of their particular taste and therapeutic properties, the interest in edible species as a source of ingredients and bioactive compounds is recent. Their valuable nutritional contents in protein, dietary fiber and bioactive compounds make them ideal candidates for use in foods in efforts to improve their nutritional profiles. This trend is in line with the consumer's growing demand for more plant-based foods. The present review paper explores different studies focused on the use of common edible mushrooms as an ingredient and additive replacer by using them in fresh, dried, or even extract forms, as meat, fat, flour, salt, phosphates, and antioxidant replacers. The replacement of meat, fat, flour, and salt by mushrooms from commercial species has been successful despite sensorial and textural parameters can be affected. Moderate concentrations of mushrooms, especially in powder form, should be considered, particularly in non-familiarized consumers. In the case of antioxidant and antimicrobial properties, results are variable, and more studies are necessary to determine the chemical aspects involved.
Collapse
Affiliation(s)
- Esmeralda Rangel-Vargas
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.R.-V.); (J.A.R.)
| | - Jose Antonio Rodriguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.R.-V.); (J.A.R.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Maria Elena Sosa
- Departamento de Alimentos, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex-Hacienda El Copal, Carretera Irapuato-Silao km 9, Irapuato 36500, Guanajuato, Mexico;
| | - Silvina Cecilia Andrés
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-CICPBA-UNLP), Facultad de Ciencias Exactas, UNLP, 47 y 116, La Plata 1900, Argentina;
| | - Marcelo Rosmini
- Department of Public Health, Faculty of Veterinary Science, National University of Litoral, Esperanza 3080, Argentina;
| | - José Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Orihuela Polytechnical High School, Environmental and Agrofood Research Centre for Research and Innovation (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Alicante, Spain;
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Eva María Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.R.-V.); (J.A.R.)
| |
Collapse
|
15
|
Hernández-Macias S, Ferrer-Bustins N, Comas-Basté O, Jofré A, Latorre-Moratalla M, Bover-Cid S, Vidal-Carou MDC. Revalorization of Cava Lees to Improve the Safety of Fermented Sausages. Foods 2021; 10:1916. [PMID: 34441693 PMCID: PMC8394411 DOI: 10.3390/foods10081916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023] Open
Abstract
The revalorization of food processing by-products not only reduces the environmental impact of their disposal, but also generates added economic value. Cava lees consist of inactive cells of Saccharomyces cerevisiae, and though regarded as a valueless winery by-product, they are rich in fiber and phenolic compounds. In this study, a challenge test was performed to assess the effect of cava lees and a phenolic extract (LPE) derived therefrom on the behaviour of technological microbiota (lactic acid bacteria used as a starter culture) and the foodborne pathogens Salmonella spp. and Listeria monocytogenes during the fermentation and ripening of pork sausages. Ten batches of fermented sausages were prepared with and without cava lees or the LPE, and with or without different strains of Latilactobacillus sakei (CTC494 or BAP110). The addition of cava lees reduced the pH values of the meat batter throughout the fermentation and ripening process. No growth-promoting effect on spontaneous lactic acid bacteria (LAB) or the starter culture was observed. In contrast, the presence of cava lees prevented the growth of the tested pathogens (Salmonella and L. monocytogenes), as did the starter culture, resulting in significantly lower counts compared to the control batch. In addition, the combination of cava lees with L. sakei CTC494 had a bactericidal effect on Salmonella. LPE supplementation did not affect the pH values or LAB counts but reduced the mean counts of Salmonella, which were 0.71 log10 lower than the control values at the end of the ripening. The LPE did not exert any additional effect to that of the starters applied alone. The revalorization of cava lees as a natural ingredient to improve the microbiological safety of fermented sausages is a feasible strategy that would promote a circular economy and benefit the environment.
Collapse
Affiliation(s)
- Salvador Hernández-Macias
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Núria Ferrer-Bustins
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (N.F.-B.); (A.J.); (S.B.-C.)
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Anna Jofré
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (N.F.-B.); (A.J.); (S.B.-C.)
| | - Mariluz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Sara Bover-Cid
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (N.F.-B.); (A.J.); (S.B.-C.)
| | - María del Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, Lim YC, Fazry S. Mutated Shiitake extracts inhibit melanin-producing neural crest-derived cells in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109033. [PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
Collapse
Affiliation(s)
- Ibrahim Mahmood
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azhar Mohamad
- Malaysian Nuclear Agency, Bangi 43000, Kajang, Selangor, Malaysia
| | - Othman B Airianah
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Douglas Law
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Herryawan Ryadi Eziwar Dyari
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Yi Chieh Lim
- Danish Cancer Society Research Centre, Strand boulevard 49, Copenhagen 2100, Denmark
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovative Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
17
|
Feki A, Sellem I, Hamzaoui A, Ben Amar W, Mellouli L, Zariat A, Nasri M, Ben Amara I. Effect of the incorporation of polysaccharide from Falkenbergia rufolanosa on beef sausages for quality and shelf life improvement. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Das AK, Nanda PK, Dandapat P, Bandyopadhyay S, Gullón P, Sivaraman GK, McClements DJ, Gullón B, Lorenzo JM. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021; 26:molecules26092463. [PMID: 33922630 PMCID: PMC8122938 DOI: 10.3390/molecules26092463] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Consumers are increasingly interested in nutritious, safe and healthy muscle food products with reduced salt and fat that benefit their well-being. Hence, food processors are constantly in search of natural bioactive ingredients that offer health benefits beyond their nutritive values without affecting the quality of the products. Mushrooms are considered as next-generation healthy food components. Owing to their low content of fat, high-quality proteins, dietary fibre and the presence of nutraceuticals, they are ideally preferred in formulation of low-caloric functional foods. There is a growing trend to fortify muscle food with edible mushrooms to harness their goodness in terms of nutritive, bioactive and therapeutic values. The incorporation of mushrooms in muscle foods assumes significance, as it is favourably accepted by consumers because of its fibrous structure that mimics the texture with meat analogues offering unique taste and umami flavour. This review outlines the current knowledge in the literature about the nutritional richness, functional bioactive compounds and medicinal values of mushrooms offering various health benefits. Furthermore, the effects of functional ingredients of mushrooms in improving the quality and sensory attributes of nutritionally superior and next-generation healthier muscle food products are also highlighted in this paper.
Collapse
Affiliation(s)
- Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
- Correspondence: (A.K.D.); (J.M.L.)
| | - Pramod K. Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Premanshu Dandapat
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain;
| | | | | | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, Campus Ourense, University of Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (A.K.D.); (J.M.L.)
| |
Collapse
|
19
|
Sage (Salvia officinalis L.) Essential Oil as a Potential Replacement for Sodium Nitrite in Dry Fermented Sausages. Processes (Basel) 2021. [DOI: 10.3390/pr9030424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study investigates the effects of sodium nitrite replacement by the sage essential oil (SEO), on the physico-chemical, microbiological and sensory quality of dry fermented sausages (DFS) during 225 days of storage. The SEO (0.00, 0.05 and 0.10 µL/g) was added in DFS batters formulated with different levels of pork back fat (15% and 25%) and sodium nitrite (0, 75 and 150 mg/kg). The inclusion of SEO had no negative impact on pH, color (instrumental and sensory) and texture parameters. Total plate counts were lower than 6 log CFU (colony forming units)/g in all samples throughout the storage. Furthermore, the addition of SEO at concentration of 0.05 µL/g provided acceptable TBARS (2-Thiobarbituric acid reactive substances) values (<0.3 mg MDA (malondialdehyde)/kg) in the samples produced with reduced levels of sodium nitrite (0 and 75 mg/kg) without negative alternations on sensory attributes of odor and flavor. Generally, our findings confirmed that the usage of SEO could be a good solution to produce healthier DFS with reduced levels of sodium nitrite.
Collapse
|
20
|
Qin L, Yu J, Zhu J, Kong B, Chen Q. Ultrasonic-assisted extraction of polyphenol from the seeds of Allium senescens L. and its antioxidative role in Harbin dry sausage. Meat Sci 2020; 172:108351. [PMID: 33120179 DOI: 10.1016/j.meatsci.2020.108351] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
The ultrasonic-assisted extraction of total polyphenol from Allium senescens L. (ASL) seeds was conducted, and the antioxidant efficacy of ASL seed extract (ASLSE) was assessed in Harbin dry sausages. ASLSE extracted with 1:30 g/mL water at 150 W for 15 min had the highest antioxidant capacities (P < 0.05). Subsequently, different addition levels (0, 2, 4, 6 and 8 g/kg) of freeze-dried ASLSE were applied in dry sausages during a twelve-day fermentation, and BHT treatment was the positive control. The lower pH values and carbonyl contents were detected in the treatments with 6 and 8 g/kg ASLSE than those in the other treatments at 12 d (P < 0.05). However, there was no difference in the water activity, lipid oxidation and color among the treatments with 6 and 8 g/kg ASLSE and 0.2 g/kg BHT (P > 0.05) at 12 d. These results indicated that 6 g/kg ASLSE could be effective in inhibiting lipid and protein oxidation and reducing color deterioration of dry sausages.
Collapse
Affiliation(s)
- Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Yu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiamin Zhu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
21
|
Novakovic S, Djekic I, Klaus A, Vunduk J, Đorđević V, Tomovic V, Koćić‐Tanackov S, Lorenzo JM, Barba FJ, Tomasevic I. Application of porcini mushroom (
Boletus edulis
) to improve the quality of frankfurters. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sasa Novakovic
- Department of Animal Source Food Technology, Faculty of Agriculture University of Belgrade Belgrade Serbia
| | - Ilija Djekic
- Department of Animal Source Food Technology, Faculty of Agriculture University of Belgrade Belgrade Serbia
| | - Anita Klaus
- Department of Animal Source Food Technology, Faculty of Agriculture University of Belgrade Belgrade Serbia
| | - Jovana Vunduk
- Department of Animal Source Food Technology, Faculty of Agriculture University of Belgrade Belgrade Serbia
| | - Vesna Đorđević
- Institute of Meat Hygiene and Technology Belgrade Serbia
| | - Vladimir Tomovic
- Department of Food Preservation Engineering, Faculty of Technology University of Novi Sad Novi Sad Serbia
| | - Sunčica Koćić‐Tanackov
- Department of Food Preservation Engineering, Faculty of Technology University of Novi Sad Novi Sad Serbia
| | | | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department Faculty of Pharmacy Universitat de València Burjassot Spain
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture University of Belgrade Belgrade Serbia
| |
Collapse
|
22
|
Lashgari SS, Noorolahi Z, Sahari MA, Ahmadi Gavlighi H. Improvement of oxidative stability and textural properties of fermented sausage via addition of pistachio hull extract. Food Sci Nutr 2020; 8:2920-2928. [PMID: 32566210 PMCID: PMC7300040 DOI: 10.1002/fsn3.1594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to evaluate the effectiveness of pistachio hull extract (PHE) as an antioxidant and antimicrobial agent for preservation of dry fermented sausages during fermentation and storage period. Sausages were prepared using starter culture (Biobak K) and treated with three levels of PHE (500, 750 and 1,000 ppm). The results showed that PHE at concentrations of 500 ppm and 750 ppm decreased significantly (p < .05) the TBARS content of the sausage samples compared to control (without PHE). Moreover, PHE increased L* and a* value of samples during fermentation period but did not affect the color of samples during storage period. The PHE was also able to improve the chewiness and gumminess of the fermented sausage. Evaluation of microbial properties (total viable count, yeast and molds, lactic acid bacteria, staphylococci and Enterobacteriaceae) also showed that antimicrobial activity of PHE in fermented sausage.
Collapse
Affiliation(s)
- Seyede Saba Lashgari
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Zohre Noorolahi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohamad Ali Sahari
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
23
|
Zhang M, Li Y, Wang W, Yang Y, Shi X, Sun M, Hao Y, Li Y. Comparison of physicochemical and rheology properties of Shiitake stipes-derived chitin nanocrystals and nanofibers. Carbohydr Polym 2020; 244:116468. [PMID: 32536392 DOI: 10.1016/j.carbpol.2020.116468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022]
Abstract
Chitin production from fungal sources has gained increased attention in recent years in terms of continuous supply and safety. In this study, we produced chitin from Shiitake stipes through deproteinization, depigmentation, demineralization and removal of glucans, and then prepared chitin nanocrystal (ChNC) and chitin nanofibers (ChNF) by acid hydrolysis or high-pressure homogenizers. Such obtained ChNFs have higher length than the ChNCs with a length of 142.4 ± 40.4 nm, with the similar diameter (9 nm). In addition, the purity of ChNC and ChNF were over 98 % measured by HPAEC. The zeta potential analysis showed that ChNC is stable in acid form, while ChNF is in the opposite. Finally, we evaluated the rheology properties of samples to find the impact of salt concentrations on nanoparticles interactions. Overall, the fungi-derived chitin nanomaterials with diversity of characters exhibit immense potential for applications in nutraceutical and food industry.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanhong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yiran Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoting Shi
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengjiao Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjie Hao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Li
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
24
|
Fernandez MV, Bengardino M, Jagus RJ, Agüero MV. Enrichment and preservation of a vegetable smoothie with an antioxidant and antimicrobial extract obtained from beet by-products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
The Effect of Cantharellus Cibarius Addition on Quality Characteristics of Frankfurter during Refrigerated Storage. Foods 2019; 8:foods8120635. [PMID: 31816984 PMCID: PMC6963641 DOI: 10.3390/foods8120635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
The antioxidant and antimicrobial properties of Cantharellus cibarius decoction and the effect of mushroom addition on the physicochemical and microbiological properties of frankfurters during refrigerated storage were studied. Mushroom addition significantly reduced (p < 0.05) the formation of total aerobic mesophilic bacteria during storage. Regarding the texture, there was no negative effect in frankfurters with the mushroom added, compared to the control group of sausages. Generally, C. cibarius can be used as a natural ingredient in order to prevent the growth of microorganisms in cooked pork sausages, causing an extension in shelf life during chilled storage.
Collapse
|
26
|
Xiang R, Cheng J, Zhu M, Liu X. Effect of mulberry (Morus alba) polyphenols as antioxidant on physiochemical properties, oxidation and bio-safety in Cantonese sausages. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Hamdi M, Nasri R, Dridi N, Moussa H, Ashour L, Nasri M. Improvement of the quality and the shelf life of reduced-nitrites turkey meat sausages incorporated with carotenoproteins from blue crabs shells. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Van Ba H, Seo HW, Cho SH, Kim YS, Kim JH, Ham JS, Park BY, Pil-Nam S. Effects of extraction methods of shiitake by-products on their antioxidant and antimicrobial activities in fermented sausages during storage. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
NAGY M, SEMENIUC CA, SOCACI SA, POP CR, ROTAR AM, SĂLĂGEAN CD, TOFANĂ M. Utilization of brewer’s spent grain and mushrooms in fortification of smoked sausages. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.23816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Melinda NAGY
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | | | - Sonia Ancuţa SOCACI
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Carmen Rodica POP
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Ancuţa Mihaela ROTAR
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Claudiu Dan SĂLĂGEAN
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Maria TOFANĂ
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| |
Collapse
|
30
|
Ba HV, Seo HW, Cho SH, Kim YS, Kim JH, Park BY, Kim HW, Ham JS, Seong PN. Utilisation possibility ofEnterococcus faecalisisolates from neonate's faeces for production of fermented sausages as starter cultures. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hoa Van Ba
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Hyun-Woo Seo
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Soo-Hyun Cho
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Yoon-Seok Kim
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Jin-Hyoung Kim
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Beom-Young Park
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Hyun-Wook Kim
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Jun-Sang Ham
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| | - Pil-Nam Seong
- Animal Products Development and Processing Division; National Institute of Animal Science; 1500 kongjwipatjwi-ro Iseo-Myeon Wanju-gun Jeollabuk-do 565-851 Korea
| |
Collapse
|