1
|
El-Kattan N, Ibrahim MA, Emam AN, Metwally K, Youssef FS, Nassar NA, Mansour AS. Evaluation of the antimicrobial activity of chitosan- and curcumin-capped copper oxide nanostructures against multi-drug-resistant microorganisms. NANOSCALE ADVANCES 2025:d4na00955j. [PMID: 40182310 PMCID: PMC11962744 DOI: 10.1039/d4na00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The emergence of multi-drug-resistant microorganisms presents a serious threat to infection control, for which new antimicrobial strategies are urgently needed. Herein, the antimicrobial activities of copper oxide nanoparticles capped with curcumin (Cur-CuO NPs) and copper oxide nanoparticles capped with chitosan (CS-CuO NPs) were investigated. They were prepared via the co-precipitation method. A total of 180 clinical ICU patients were found to have 70% Gram-negative and 30% Gram-positive isolates. Antimicrobial susceptibility testing indicated resistance of these isolates to 14 among the 21 tested antibiotics. Physicochemical properties of the curcumin-capped (Cur-CuO NPs) and chitosan-capped (CS-CuO NPs) copper oxide nanoparticles were identified using UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta-potential (ζ), and Fourier transform infrared (FT-IR) spectroscopy. Cur-CuO- and CS-CuO-NPs exhibited potent antimicrobial efficacy, wherein CS-CuO NPs were found to possess a lower minimum inhibitory concentration (MIC) (3.9-15.6 μg mL-1) than Cur-CuO NPs (14.5-31.2 μg mL-1). Biocompatibility assay showed that Cur-CuO NPs were safer with an IC50 dose of 74.17 μg mL-1 than CS-CuO NPs with an IC50 dose of 41.01 μg mL-1. Results revealed that the Cur-CuO- and CS-CuO-NPs have the potential to be safely used as effective antimicrobial agents in clinical applications at low concentrations (6.25-12.5 μg mL-1).
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
| | - Khaled Metwally
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University 12211 Giza Egypt
| | | | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| |
Collapse
|
2
|
Yun CI, Yang HJ, Lee J, Kim YJ. Validation, measurement uncertainty, and application of sesquiterpenoids and curcuminoids in turmeric ( Curcuma longa L.) using HPLC-DAD and UHPLC-ESI-MS/MS. Food Sci Biotechnol 2025; 34:611-620. [PMID: 39958178 PMCID: PMC11822183 DOI: 10.1007/s10068-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 02/18/2025] Open
Abstract
Liquid chromatography-diode array detection (HPLC-DAD) and ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization tandem mass spectrometry (ESI-MS/MS) methods were investigated for the simultaneous determination of five bioactive compounds in the rhizome and tuberous root of Curcuma longa L. (turmeric). These belonging to the two chemical groups: three curcuminoids (curcumin, bisdemethoxycurcumin, and demethoxycurcumin) and two sesquiterpenoids (ar-turmerone and bisacurone). The established analytical method was validated based on AOAC guidelines for specificity, linearity, accuracy, and precision. Additionally, the system suitability test and measurement uncertainty were also estimated. The validated method was successfully applied to evaluate the quality of 25 commercial turmeric samples. This proposed method can be applied in practice for the quality control indicator of turmeric, such as its functionality and stability. Therefore, the development of this analytical method represents a significant advancement in the quality assessment of turmeric, offering a valuable tool for food industries reliant on this particular spice and ingredient. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01677-y.
Collapse
Affiliation(s)
- Choong-In Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419 Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Hyo-Jin Yang
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419 Korea
| | - Young-Jun Kim
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| |
Collapse
|
3
|
Zhao B, Li J, Zhou L, Liu W, Geng S, Zhao Y, Hou Z, Zhao R, Liu Y, Dong J. Validamycin A Inhibited FB 1 Biosynthesis by the Target FvNth in Fusarium verticillioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15487-15497. [PMID: 38917402 DOI: 10.1021/acs.jafc.4c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Validamycin A (VMA) is an antifungal antibiotic derived from Streptomyces hygroscopicus commonly used in plant disease management. Surprisingly, VMA was discovered to impede the production of fumonisin B1 (FB1) in agricultural settings. However, the specific target of VMA in Fusarium verticillioides remained unclear. To unravel the molecular mechanism of VMA, ultrastructural observations unveiled damage to mitochondrial membranes. Trehalase (FvNth) was pinpointed as the target of VMA by utilizing a 3D-printed surface plasmon resonance sensor. Molecular docking identified Trp285, Arg447, Asp452, and Phe665 as the binding sites between VMA and FvNth. A ΔFvnth mutant lacking amino acids 250-670 was engineered through homologous recombination. Transcriptome analysis indicated that samples treated with VMA and ΔFvnth displayed similar expression patterns, particularly in the suppression of the FUM gene cluster. VMA treatment resulted in reduced trehalase and ATPase activity as well as diminished production of glucose, pyruvic acid, and acetyl-CoA. Conversely, these effects were absent in samples treated with ΔFvnth. This research proposes that VMA hinders acetyl-CoA synthesis by trehalase, thereby suppressing the FB1 biosynthesis. These findings present a novel target for the development of mycotoxin control agents.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Jiaqi Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Luqi Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Wei Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Shan Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Yuwei Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Zhihan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - RuiXue Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Yingchao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R. China
| |
Collapse
|
4
|
Ismail AM, Raza MH, Zahra N, Ahmad R, Sajjad Y, Khan SA. Aflatoxins in Wheat Grains: Detection and Detoxification through Chemical, Physical, and Biological Means. Life (Basel) 2024; 14:535. [PMID: 38672805 PMCID: PMC11050897 DOI: 10.3390/life14040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Wheat (Triticum aestivum L.) is an essential food crop in terms of consumption as well as production. Aflatoxin exposure has a widespread public health impact in economically developing nations, so there is a need to establish preventive techniques for these high-risk populations. Pre-harvest and post-harvest practices are the two strategies used to control aflatoxin contamination, which include the use of genetically modified crops that show resistance against Aspergillus infection, the use of pesticides, changing the planting and harvesting time of crops, and physical, chemical, and biological methods. In this research, aflatoxin detection and quantification were performed in different wheat varieties to determine quantitative differences in comparison to the European Commission's limit of 4 ppb aflatoxins in wheat. TLC for qualitative and the ELISA kit method for quantitative analysis of aflatoxins were used. Out of 56 samples, 35 were found contaminated with aflatoxins, while the remaining 21 samples did not show any presence of aflatoxins. Out of the 35 contaminated samples, 20 samples showed aflatoxin contamination within the permissible limit, while the remaining 15 samples showed aflatoxin concentration beyond the permissible level, ranging from 0.49 to 20.56 ppb. After quantification, the nine highly contaminated wheat samples were detoxified using physical, chemical, and biological methods. The efficiency of these methods was assessed, and they showed a significant reduction in aflatoxins of 53-72%, 79-88%, and 80-88%, respectively. In conclusion, the difference in aflatoxin concentration in different wheat varieties could be due to genetic variations. Furthermore, biological treatment could be the method of choice for detoxification of aflatoxins in wheat as it greatly reduced the aflatoxin concentration with no harmful effect on the quality of the grains.
Collapse
Affiliation(s)
- Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Muhammad Hassan Raza
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600, Pakistan;
| | - Naseem Zahra
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600, Pakistan;
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| |
Collapse
|
5
|
Shahrajabian MH, Sun W. The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins. Curr Org Synth 2024; 21:665-683. [PMID: 37287298 DOI: 10.2174/1570179420666230607124949] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin. METHODS The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone. RESULTS The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders. DISCUSSION Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease. CONCLUSION The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Pandey AK, Sanches Silva A, Chávez-González ML, Singh P. Recent advances in delivering free or nanoencapsulated Curcuma by-products as antimicrobial food additives. Crit Rev Biotechnol 2023; 43:1257-1283. [PMID: 36130809 DOI: 10.1080/07388551.2022.2110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Food commodities are often contaminated by microbial pathogens in transit or during storage. Hence, mitigation of these pathogens is necessary to ensure the safety of food commodities. Globally, researchers used botanicals as natural additives to preserve food commodities from bio-deterioration, and advances were made to meet users' acceptance in this domain, as synthetic preservatives are associated with harmful effects to both consumers and environments. Over the last century, the genus Curcuma has been used in traditional medicine, and its crude and nanoencapsulated essential oils (EOs) and curcuminoids were used to combat harmful pathogens that deteriorate stored foods. Today, more research is needed for solving the problem of pathogen resistance in food commodities and to meet consumer demands. Therefore, Curcuma-based botanicals may provide a source of natural preservatives for food commodities that satisfy the needs both of the food industry and the consumers. Hence, this article discusses the antimicrobial and antioxidant properties of EOs and curcuminoids derived from the genus Curcuma. Further, the action modes of Curcuma-based botanicals are explained, and the latest advances in nanoencapsulation of these compounds in food systems are discussed alongside knowledge gaps and safety assessment where the focus of future research should be placed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Mónica L Chávez-González
- Food Research Departments, School of Chemistry, Autonomous University of Coahuila, Saltillo, México
| | - Pooja Singh
- Bacteriology and Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, India
| |
Collapse
|
7
|
Niu A, Tan L, Tan S, Wang G, Qiu W. The Temporal Dynamics of Sensitivity, Aflatoxin Production, and Oxidative Stress of Aspergillus flavus in Response to Cinnamaldehyde Vapor. Foods 2023; 12:4311. [PMID: 38231749 DOI: 10.3390/foods12234311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Cinnamaldehyde (CA), a natural plant extract, possesses notable antimicrobial properties and the ability to inhibit mycotoxin synthesis. This study investigated the effects of different concentrations of gaseous CA on A. flavus and found that higher concentrations exhibited fungicidal effects, while lower concentrations exerted fungistatic effects. Although all A. flavus strains exhibited similar responses to CA vapor, the degree of response varied among them. Notably, A. flavus strains HN-1, JX-3, JX-4, and HN-8 displayed higher sensitivity. Exposure to CA vapor led to slight damage to A. flavus, induced oxidative stress, and inhibited aflatoxin B1 (AFB1) production. Upon removal of the CA vapor, the damaged A. flavus resumed growth, the oxidative stress weakened, and AFB1 production sharply increased in aflatoxin-producing strains. In the whole process, no aflatoxin was detected in aflatoxin-non-producing A. flavus. Moreover, the qRT-PCR results suggest that the recovery of A. flavus and the subsequent surge of AFB1 content following CA removal were regulated by a drug efflux pump and velvet complex proteins. In summary, these findings emphasize the significance of optimizing the targeted concentrations of antifungal EOs and provide valuable insight for their accurate application.
Collapse
Affiliation(s)
- Ajuan Niu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Leilei Tan
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Song Tan
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weifen Qiu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Joint Laboratory for International Cooperation in Grain Circulation and Security, Nanjing 210023, China
| |
Collapse
|
8
|
Chen L, Li X, Wang Y, Guo Z, Wang G, Zhang Y. The performance of plant essential oils against lactic acid bacteria and adverse microorganisms in silage production. FRONTIERS IN PLANT SCIENCE 2023; 14:1285722. [PMID: 38023889 PMCID: PMC10667483 DOI: 10.3389/fpls.2023.1285722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Plant essential oils have played an important role in the field of antibiotic alternatives because of their efficient bacteriostatic and fungistatic activity. As plant essential oils are widely used, their activity to improve the quality of plant silage has also been explored. This review expounds on the active ingredients of essential oils, their bacteriostatic and fungistatic activity, and mechanisms, as well as discusses the application of plant essential oils in plant silage fermentation, to provide a reference for the development and application of plant essential oils as silage additives in plant silage fermentation feed.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zelin Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guoming Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Sindhu M, Rajkumar V, Annapoorani CA, Gunasekaran C, Kannan M. Functionalized nanoencapsulated Curcuma longa essential oil in chitosan nanopolymer and their application for antioxidant and antimicrobial efficacy. Int J Biol Macromol 2023; 251:126387. [PMID: 37595727 DOI: 10.1016/j.ijbiomac.2023.126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The present study reports on the encapsulation of Curcuma longa (L.) essential oil (CLEO) in chitosan nanopolymer as a novel nanotechnology preservative for enhancing its antibacterial, antifungal, and mycotoxin inhibitory efficacy. GC-MS analysis of CLEO showed the presence of α-turmerone (42.6 %) and β- turmerone (14.0 %) as the major components. CLEO-CSNPs were prepared through the ionic-gelation technique and confirmed by TEM micrograph, DLS, XRD, and FTIR. In vitro, bactericidal activity of CLEO-CSNPs at a concentration of 100 μg/mL showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, which mostly rely on ROS production and depend on its penetration and interaction with bacterial cells. Furthermore, the CLEO-CSNPs during in vitro investigation against F. graminearum completely inhibited the growth and zearalenone and deoxynivalenol production at 0.75 μL/mL, respectively. Further, CLEO-CSNPs enhanced antioxidant activity against DPPH• and ABTS•+ with IC50 values 0.95 and 0.66 μL/mL, respectively, and without any negative impacts on germinating seeds were observed during the phytotoxicity investigation. Overall, experiments concluded that encapsulated CLEO enhances antimicrobial inhibitory efficiency against stored foodborne pathogens.
Collapse
Affiliation(s)
- Murugesan Sindhu
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Coimbatore Alagubrahmam Annapoorani
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India..
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Malaichamy Kannan
- Centre for Agricultural nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Boniek D, Batista Dos Santos AF, de Resende Stoianoff MA. Detection of Cladosporium spinulosum on an engraving by Rembrandt and susceptibility profile to eco-friendly antifungal treatments. J Basic Microbiol 2023; 63:1085-1094. [PMID: 37551023 DOI: 10.1002/jobm.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Interdisciplinary studies on cultural heritage artworks provide efficient solutions to control fungal growth and the negative effects of biodeterioration. In this study, we aimed to identify the population of filamentous fungi colonizing an engraving by the Dutch painter Rembrandt, whose conservation status was compromised and showed visible stains of biodeterioration. Microbiological techniques, such as cultivation-dependent approaches and molecular biology, have been used to identify fungal populations. In addition, the anaerobic atmosphere technique and eco-friendly antifungal agents, such as essential oils (EOs) of Curcuma longa, Thymus vulgaris, and Melaleuca alternifolia, were tested against the metabolically active fungal population Cladoposporium spinulosum. Furthermore, in vitro assays revealed that the interaction between the fungal strains and EO was positive, inhibiting the growth of these fungi, and the EOs from T. vulgaris and M. alternifolia showed low minimum inhibitory concentration values. Exposure to anaerobic conditions for 35 days was effective in the total elimination of isolated fungal strains. In conclusion, this study demonstrated the effectiveness of a nondestructive technique for artwork on engraving colonized by fungal strains and using EO as an alternative to toxic antifungals used in conventional treatments in artworks. Thus, this interdisciplinary study involving applied microbiology and botanical and preventive conservation presents a tool to control microbial growth while maintaining artwork integrity.
Collapse
Affiliation(s)
- Douglas Boniek
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Horizonte, Minas Gerais, Brazil
| | - Antônio Fernando Batista Dos Santos
- Faculty of Engineering and Architecture, Education and Culture Foundation of Minas Gerais, FUMEC University, Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Visakh NU, Pathrose B, Chellappan M, Ranjith MT, Sindhu PV, Mathew D. Extraction and chemical characterisation of agro-waste from turmeric leaves as a source of bioactive essential oils with insecticidal and antioxidant activities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:1-10. [PMID: 37384969 DOI: 10.1016/j.wasman.2023.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Turmeric (Curcuma longa L.) is a significant crop that has historically been used worldwide as a medicinal plant, spice, food colouring agent, and a significant ingredient in cosmetic industries. After harvesting rhizomes, leaves are considered waste material. This research study aims to extract and chemically characterise the essential oil from the leaves waste of turmeric with an evaluation of different insecticidal, antioxidant, and phytotoxic activities. Subsequently, the contact toxicity, fumigant toxicity, and repellent activity were evaluated against two key stored grain insect species. The gas chromatography-mass spectrometry (GC-MS) characterisation revealed that α-phellandrene (28.95%), 2-carene (16.51%), eucalyptol (10.54%) and terpinolene (10.24%) were the major chemical constituents. The study's findings on the insecticidal effects of essential oils extracted from turmeric leaves revealed noteworthy repellent, contact (at 24 h, LC50 = 6.51 mg/cm2 for Tribolium castaneum and LC50 = 4.74 mg/cm2 for Rhyzopertha dominica) and fumigant toxicities (at 24 h, LC50 = 2.57 mg/L air for T. castaneum and LC50 = 2.83 mg/L air for R. dominica), against two key stored grain insects. In addition, turmeric leaf essential oil showed notable antioxidant activity (IC50 = 10.04 ± 0.03 µg/mL for DPPH assay; IC50 = 14.12 ± 0.21 µg/mL for ABTS assay. Furthermore, a phytotoxicity study was carried out on stored paddy seeds and no toxic effects were found on germination rate and seedling growth. So, it might be expected that the essential oils extracted from the turmeric leaf waste could be valorised and demonstrate their potential as safe botanical insecticides against stored-product insects, with noble antioxidant properties.
Collapse
Affiliation(s)
- Naduvilthara U Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India.
| | - Mani Chellappan
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - M T Ranjith
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - P V Sindhu
- Department of Agronomy, AICRP on Medicinal, Aromatic Plants and Betelvine, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| |
Collapse
|
12
|
Paul-Traversaz M, Umehara K, Watanabe K, Rachidi W, Sève M, Souard F. Kampo herbal ointments for skin wound healing. Front Pharmacol 2023; 14:1116260. [PMID: 36860294 PMCID: PMC9969195 DOI: 10.3389/fphar.2023.1116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
The management of skin wound healing problems is a public health issue in which traditional herbal medicines could play a determining role. Kampo medicine, with three traditionally used ointments, provides interesting solutions for these dermatological issues. These ointments named Shiunkō, Chuōkō, and Shinsen taitsukō all have in common a lipophilic base of sesame oil and beeswax from which herbal crude drugs are extracted according to several possible manufacturing protocols. This review article brings together existing data on metabolites involved in the complex wound healing process. Among them are representatives of the botanical genera Angelica, Lithospermum, Curcuma, Phellodendron, Paeonia, Rheum, Rehmannia, Scrophularia, or Cinnamomum. Kampo provides numerous metabolites of interest, whose content in crude drugs is very sensitive to different biotic and abiotic factors and to the different extraction protocols used for these ointments. If Kampo medicine is known for its singular standardization, ointments are not well known, and research on these lipophilic formulas has not been developed due to the analytical difficulties encountered in biological and metabolomic analysis. Further research considering the complexities of these unique herbal ointments could contribute to a rationalization of Kampo's therapeutic uses for wound healing.
Collapse
Affiliation(s)
- Manon Paul-Traversaz
- Univ. Grenoble Alpes, CNRS, TIMC UMR 5525, EPSP, Grenoble, France,Yokohama University of Pharmacy, Kampo Natural Product Chemistry Laboratory, Yokohama, Japan,Yokohama University of Pharmacy, Yokohama, Japan,Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France,*Correspondence: Manon Paul-Traversaz,
| | - Kaoru Umehara
- Yokohama University of Pharmacy, Kampo Natural Product Chemistry Laboratory, Yokohama, Japan,Yokohama University of Pharmacy, Yokohama, Japan
| | | | - Walid Rachidi
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France
| | - Michel Sève
- Univ. Grenoble Alpes, CNRS, TIMC UMR 5525, EPSP, Grenoble, France
| | - Florence Souard
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, Grenoble, France,Univ. libre de Bruxelles, Department of Pharmacotherapy and Pharmaceutics, Faculty of Pharmacy, Brussels, Belgium
| |
Collapse
|
13
|
Guerrini A, Tacchini M, Chiocchio I, Grandini A, Radice M, Maresca I, Paganetto G, Sacchetti G. A Comparative Study on Chemical Compositions and Biological Activities of Four Amazonian Ecuador Essential Oils: Curcuma longa L. (Zingiberaceae), Cymbopogon citratus (DC.) Stapf, (Poaceae), Ocimum campechianum Mill. (Lamiaceae), and Zingiber officinale Roscoe (Zingiberaceae). Antibiotics (Basel) 2023; 12:antibiotics12010177. [PMID: 36671378 PMCID: PMC9855031 DOI: 10.3390/antibiotics12010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Essential oils (EOs) and their vapour phase of Curcuma longa (Zingiberaceae), Cymbopogon citratus (Poaceae), Ocimum campechianum (Lamiaceae), and Zingiber officinale (Zingiberaceae) of cultivated plants grown in an Amazonian Ecuador area were chemically characterised by Gas Chromatography-Flame Ionization Detector (GC-FID), Gas Chromatography-Mass Spectrometry (GC-MS), and Head Space-Gas Chromatograph-Flame Ionization Detector-Mass Spectrometry (HS-GC-FID-MS).figure The EOs analyses led to the identification of 25 compounds for C. longa (99.46% of the total; ar-turmerone: 23.35%), 18 compounds for C. citratus (99.59% of the total; geraniol: 39.43%), 19 compounds for O. campechianum (96.24% of the total; eugenol: 50.97%), and 28 for Z. officinale (98.04% of the total; α-Zingiberene: 15.45%). The Head Space fractions (HS) revealed C. longa mainly characterised by limonene and 1,8-cineole (37.35%) and α-phellandrene (32.33%); Z. officinale and C. citratus showed camphene (50.39%) and cis-Isocitral (15.27%) as the most abundant compounds, respectively. O. campechianum EO revealed a higher amount of sesquiterpenes (10.08%), mainly characterised by E-caryophyllene (4.95%), but monoterpene fraction remained the most abundant (89.94%). The EOs were tested for antioxidant, antimicrobial, and mutagen-protective properties and compared to the Thymus vulgaris EO as a positive reference. O. campechianum EO was the most effective in all the bioactivities checked. Similar results emerged from assaying the bioactivity of the vapour phase of O. campechianum EO. The antioxidant and antimicrobial activity evaluation of O. campechianum EO were repeated through HP-TLC bioautography assay, pointing out eugenol as the lead compound for bioactivity. The mutagen-protective evaluation checked through Ames's test properly modified evidenced a better capacity of O. campechianum EO compared with the other EOs, reducing the induced mutagenicity at 0.1 mg/plate. However, even with differences in efficacy, the overall results suggest important perspectives for the functional use of the four studied EOs.
Collapse
Affiliation(s)
- Alessandra Guerrini
- Pharmaceutical Biology Lab., Research Unit 7, Terra&Acqua Tech. Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Luciano Chiappini 2, 44123 Ferrara, Italy
| | - Massimo Tacchini
- Pharmaceutical Biology Lab., Research Unit 7, Terra&Acqua Tech. Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Luciano Chiappini 2, 44123 Ferrara, Italy
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Alessandro Grandini
- Pharmaceutical Biology Lab., Research Unit 7, Terra&Acqua Tech. Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Luciano Chiappini 2, 44123 Ferrara, Italy
| | - Matteo Radice
- Faculty of Earth Sciences, Dep. Ciencia de la Tierra, Universidad Estatal Amazónica, Km 2 ½ Via Puyo-Tena, Puyo 160150, Ecuador
| | - Immacolata Maresca
- Pharmaceutical Biology Lab., Research Unit 7, Terra&Acqua Tech. Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Luciano Chiappini 2, 44123 Ferrara, Italy
| | - Guglielmo Paganetto
- Pharmaceutical Biology Lab., Research Unit 7, Terra&Acqua Tech. Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Luciano Chiappini 2, 44123 Ferrara, Italy
| | - Gianni Sacchetti
- Pharmaceutical Biology Lab., Research Unit 7, Terra&Acqua Tech. Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Luciano Chiappini 2, 44123 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-293774 or +39-0532-974636
| |
Collapse
|
14
|
New insights into the persistent effect of transient cinnamaldehyde vapor treatment on the growth and aflatoxin synthesis of Aspergillus flavus. Food Res Int 2023; 163:112300. [PMID: 36596201 DOI: 10.1016/j.foodres.2022.112300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The antimicrobial effects of continuous treatment with essential oils (EOs) in both liquid and gaseous phases have been intensively studied. Due to their rapid volatility, the effects of EOs on microorganisms after transient treatment are also worth exploring. In this work, the persistent effects of cinnamaldehyde (CA) vapor on Aspergillus flavus were detected by a series of biochemical analyses. Transcriptome analysis was also conducted to study the gene expression changes between recovered and normal A. flavus. When CA vapor was removed, biochemical analyses showed that the oxidative stress induced by the antimicrobial atmosphere was alleviated, and almost all the damaged functions were restored apart from mitochondrial function. Remarkably, the suppressed aflatoxin production intensified, which was confirmed by the up-regulation of most genes in the aflatoxin synthetic gene cluster, the velvet-related gene FluG and the aflatoxin precursor acetyl-CoA. Transcriptomic analysis also demonstrated significant changes in secondary metabolism, energy metabolism, oxidative stress, and amino acid metabolism in the recovery group. Taken together, these findings provide new insights into the mechanisms underlying the response of A. flavus to CA vapor treatment and will guide the rational application of EOs.
Collapse
|
15
|
Ling L, Pang M, Luo H, Cheng W, Jiang K, Wang Y. Antifungal activity of diacetyl, a volatile organic compound, on Trichoderma lixii F2 isolated from postharvest Lanzhou lily bulbs. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Bhowmik S, Agyei D, Ali A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Segneanu AE, Vlase G, Lukinich-Gruia AT, Herea DD, Grozescu I. Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants (Basel) 2022; 11:2261. [PMID: 36421447 PMCID: PMC9686783 DOI: 10.3390/antiox11112261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 08/26/2023] Open
Abstract
Curcuma is one of the most famous medicinal and tropical aromatic plants. Its health benefits have been appreciated and exploited in traditional Asian medicine since ancient times. Various studies have investigated its complex chemical composition and demonstrated the remarkable therapeutic properties of curcuma's phytoconstituents. Oxidative stress is a decisive driving factor triggering numerous pathologies (neurodegenerative, psychiatric and cardiovascular diseases; diabetes; tumors, etc.). Numerous recent studies have focused on the use of natural compounds and nanomaterials as innovative molecular targeting agents as effective therapeutic strategies. In this study, we report, for the first time, the development of a simple target phytocarrier system that capitalizes on the bioactive properties of curcuma and AgNPs. The complete metabolic profile of curcuma was determined based on gas chromatography-mass spectrometry (GC-MS) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). A total of 80 metabolites were identified under mass spectra (MS)-positive mode from 10 secondary metabolite categories: terpenoids, amino acids, diarylheptanoids, flavonoids, phenolic acids, steroids, fatty acids, coumarins, alkaloids and miscellaneous. In addition, the biological activity of each class of metabolites was discussed. A comprehensive characterization (FT-IR, UV-Vis, DLS, SEM, TEM, EDS, zeta potential and XRD) was performed to study the morphostructural properties of this new phytocarrier system. Antioxidant activity of the new phytocarrier system was evaluated using a combination of in vitro methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and cyclic voltammetric method (Trolox equivalent antioxidant capacity (TEAC) electrochemical assay)). Antioxidants assays showed that the phytocarrier system exhibits superior antioxidant properties to those of its components, i.e., curcuma or citrate-coated-AgNPs. These data confirm the potential to enhance relevant theoretical knowledge in the area of innovative antioxidant agents, with potential application in neurodegenerative therapeutic strategies.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania
- Res. Ctr. Thermal Anal Environm Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | | | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd, 700050 Iasi, Romania
| | - Ioan Grozescu
- CAICON Department, University Politehnica Timisoara, 2 P-ta Victoriei, 300006 Timisoara, Romania
| |
Collapse
|
18
|
Sharma N, Gupta N, Orfali R, Kumar V, Patel CN, Peng J, Perveen S. Evaluation of the Antifungal, Antioxidant, and Anti-Diabetic Potential of the Essential Oil of Curcuma longa Leaves from the North-Western Himalayas by In Vitro and In Silico Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227664. [PMID: 36431765 PMCID: PMC9695312 DOI: 10.3390/molecules27227664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Essential oils (EOs) have gained immense popularity due to considerable interest in the health, food, and pharmaceutical industries. The present study aimed to evaluate the antimicrobial and antioxidant activity and the anti-diabetic potential of Curcuma longa leaf (CLO) essential oil. Further, major phytocompounds of CLO were analyzed for their in-silico interactions with antifungal, antioxidant, and anti-diabetic proteins. CLO was found to have a strong antifungal activity against the tested Candida species with zone of inhibition (ZOI)-11.5 ± 0.71 mm to 13 ± 1.41 mm and minimum inhibitory concentration (MIC) was 0.63%. CLO also showed antioxidant activity, with IC50 values of 5.85 ± 1.61 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and 32.92 ± 0.64 µM using ferric reducing antioxidant power (FRAP) assay. CLO also showed anti-diabetic activity with an IC50 of 43.06 ± 1.24 µg/mL as compared to metformin (half maximal inhibitory concentration, IC50-16.503 ± 0.66 µg/mL). Gas chromatography-mass spectrometry (GC-MS) analysis of CLO showed the presence of (-)-zingiberene (17.84%); 3,7-cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-(15.31%); cyclohexene, 4-methyl-3-(1-methylethylidene) (12.47%); and (+)-4-Carene (11.89%) as major phytocompounds. Molecular docking of these compounds with antifungal proteins (cytochrome P450 14 alpha-sterol demethylase, PDB ID: 1EA1, and N-myristoyl transferase, PDB ID: 1IYL), antioxidant (human peroxiredoxin 5, PDB ID: 1HD2), and anti-diabetic proteins (human pancreatic alpha-amylase, PDB ID: 1HNY) showed strong binding of 3,7-cyclodecadien-1-one with all the selected protein targets. Furthermore, molecular dynamics (MD) simulations for a 100 ns time scale revealed that most of the key contacts of target proteins were retained throughout the simulation trajectories. Binding free energy calculations using molecular mechanics generalized born surface area (MM/GBSA), and drug-likeness and toxicity analysis also proved the potential for 3,7-cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene) to replace toxic synthetic drugs and act as natural antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Biotechnology, Chandigarh College of Technology, CGC, Landran, Mohali 140307, India
- Correspondence: (N.S.); (S.P.)
| | - Nidhi Gupta
- Department of Biotechnology, Chandigarh College of Technology, CGC, Landran, Mohali 140307, India
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics, and Climatic Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Jiangnan Peng
- Department of Medicinal, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Shagufta Perveen
- Department of Medicinal, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
- Correspondence: (N.S.); (S.P.)
| |
Collapse
|
19
|
Albaqami JJ, Hamdi H, Narayanankutty A, Visakh NU, Sasidharan A, Kuttithodi AM, Famurewa AC, Pathrose B. Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics (Basel) 2022; 11:1547. [PMID: 36358202 PMCID: PMC9686912 DOI: 10.3390/antibiotics11111547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 02/25/2024] Open
Abstract
Curcuma species are widely used as a food additive and also in various medicinal purposes. The plant is a rich source of essential oil and is predominantly extracted from the rhizomes. On the other hand, the leaves of the plants are usually considered as an agrowaste. The valorization of these Curcuma leaf wastes into essential oils is becoming accepted globally. In the present study, we aim to extract essential oils from the leaves of Curcuma longa (LEO), C. aromatica (REO), and C. anguistifolia (NEO). The chemical composition of these essential oils was analyzed by GC-MS. Free radical scavenging properties were evaluated against the radical sources, including DPPH, ABTS, and hydrogen peroxide. The antibacterial activity was assessed by the disc diffusion method and Minimum inhibitory concentration analysis against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica) bacteria. Results identified the compounds α-phellandrene, 2-carene, and eucalyptol as predominant in LEO. The REO was predominated by camphor, 2-bornanone, and curdione. The main components detected in NEO were eucalyptol, curzerenone, α-lemenone, longiverbenone, and α-curcumene. Antioxidant properties were higher in the LEO with IC50 values of 8.62 ± 0.18, 9.21 ± 0.29, and 4.35 ± 0.16 µg/mL, against DPPH, ABTS, and hydrogen peroxide radicals. The cytotoxic activity was also evident against breast cancer cell lines MCF-7 and MDA-MB-231 cells; the LEO was found to be the most active against these two cell lines (IC50 values of 40.74 ± 2.19 and 45.17 ± 2.36 µg/mL). Likewise, the results indicated a higher antibacterial activity for Curcuma longa essential oil with respective IC50 values (20.6 ± 0.3, 22.2 ± 0.3, 20.4 ± 0.2, and 17.6 ± 0.2 mm). Hence, the present study confirms the possible utility of leaf agrowastes of different Curcuma spp. as a possible source of essential oils with pharmacological potential.
Collapse
Affiliation(s)
- Jawaher J. Albaqami
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hamida Hamdi
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Naduvilthara U. Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
| | - Anju Sasidharan
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki 482131, Nigeria
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India
| |
Collapse
|
20
|
Sharma G, Sharma R, Rajni E, Saxena R. Synergistic, Antidermatophytic Activity and Chemical Composition of Essential Oils against Zoonotic Dermatophytosis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chaudhari AK, Singh VK, Das S, Kujur A, Deepika, Dubey NK. Unveiling the cellular and molecular mode of action of Melaleuca cajuputi Powell. essential oil against aflatoxigenic strains of Aspergillus flavus isolated from stored maize samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Uwineza PA, Urbaniak M, Bryła M, Stępień Ł, Modrzewska M, Waśkiewicz A. In Vitro Effects of Lemon Balm Extracts in Reducing the Growth and Mycotoxins Biosynthesis of Fusarium culmorum and F. proliferatum. Toxins (Basel) 2022; 14:355. [PMID: 35622601 PMCID: PMC9143328 DOI: 10.3390/toxins14050355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
The objectives of this research were to obtain the extracts of lemon balm (Melissa officinalis) using supercritical CO2 (SC-CO2) and methanol as co-solvent and evaluate the antifungal activity of those extracts against two selected strains of Fusarium species (Fusarium culmorum and Fusarium proliferatum). The extraction conditions were set at 40 and 60 °C and 250 bar. The obtained extracts were characterized in terms of antifungal activity on potato dextrose agar media (PDA). The results showed that the extraction parameters had different effects on mycelium growth and mycotoxins biosynthesis reduction. All studied lemon balm extracts (1, 2.5, 5, 7.5, and 10%) inhibited the growth of F. proliferatum and F. culmorum mycelia compared to the control. The lemon balm extracts significantly reduced ergosterol content and synthesized mycotoxins in both tested strains. These findings support the antifungal activity of lemon balm extracts against F. proliferatum and F. culmorum. However, more research on other Fusarium species is needed, as well as in vivo applications, before considering lemon balm extracts as a natural alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Monika Urbaniak
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.M.)
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.M.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
23
|
Yu X, Zhang H, Wang J, Wang J, Wang Z, Li J. Phytochemical Compositions and Antioxidant Activities of Essential Oils Extracted from the Flowers of Paeonia delavayi Using Supercritical Carbon Dioxide Fluid. Molecules 2022; 27:molecules27093000. [PMID: 35566350 PMCID: PMC9099896 DOI: 10.3390/molecules27093000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils were extracted from dark-purple, red and yellow petals of Paeonia delavayi using Supercritical Carbon Dioxide method. The compositions of essential oils were analyzed using gas chromatography-mass spectrometry (GC-MS). Antioxidant activity assays were carried out using DPPH, ABTS- and FRAP methods. Total polyphenols and total flavonoids were measured to evaluate the in vitro antioxidant activity in addition to the volatile compounds contained in the essential oils extracted from the flower petals of P. delavayi with the three flower colors. A total of 194 compounds were detected from essential oils of P. delavayi flowers, including 83 in dark-purple petals, 90 in red petals and 80 in yellow petals. These compounds mainly include alcohols, aldehydes, ketones, alkenes, alkanes, esters and polyphenols. The results showed that the volatile compounds accumulated differentially among the essential oils from the different colors of flower petals. Principal component analysis (PCA) indicated that essential oils derived from dark-purple and red petals were more closely clustered while the yellow petal essential oil was very different with both the purple-red and red. Antioxidant assays suggested that the radical scavenging activity and the iron reduction antioxidant activity in the essential oils were highly correlated with the flower petal colors. These results suggest P. delavayi flower petals are potentially good resources for high quality essential oils and natural antioxidants.
Collapse
Affiliation(s)
- Xiao Yu
- Faculty of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China;
| | - Huaibi Zhang
- New Zealand Institute for Plant & Food Research Limited, Private Bag, Palmerston North 11600, New Zealand;
| | - Juan Wang
- Eco-Development Academy, Southwest Forestry University, Kunming 650224, China
- Correspondence:
| | - Junming Wang
- Faculty of Forestry, Southwest Forestry University, Kunming 650224, China;
| | - Zhenxing Wang
- Faculty of Life Science, Southwest Forestry University, Kunming 650224, China;
| | - Jinbo Li
- Dianxiangguose Agricultural Technology Company Limited of Yunnan Province, Kunming 652501, China;
| |
Collapse
|
24
|
Romoli JCZ, Silva MV, Pante GC, Hoeltgebaum D, Castro JC, Oliveira da Rocha GH, Capoci IRG, Nerilo SB, Mossini SAG, Micotti da Gloria E, Svidzinski TIE, Graton Mikcha JM, Machinski M. Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing Fusarium graminearum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:362-372. [PMID: 34854801 DOI: 10.1080/19440049.2021.1996636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/10/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to evaluate the antimycotoxigenic effect of essential oils (EOs) obtained from four different aromatic plants on the production of deoxynivalenol (DON) and zearalenone (ZEA) by Fusarium graminearum. The EOs from ginger (GEO), turmeric (TEO), thyme (ThEO) and rosemary (REO) were obtained by hydrodistillation and identified by gas chromatography/mass spectrometry (GC/MS). The major compounds found were mostly monoterpenes and sesquiterpenes. The minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were 11.25, 364, 366 and 11,580 µg mL-1 for ThEO, GEO, REO and TEO, respectively. The results evidenced that the assessed EOs inhibited DON and partially ZEA production by F. graminearum. ThEO and GEO were the EOs with most potent antimycotoxigenic action for DON and ZEA, respectively. These EOs have shown promising results in vitro regarding inhibition of mycotoxin production and might be used in the future as substitutes for synthetic fungicides.
Collapse
Affiliation(s)
| | - Milena Veronezi Silva
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Giseli Cristina Pante
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Danielle Hoeltgebaum
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Juliana Cristina Castro
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Gustavo Henrique Oliveira da Rocha
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Laboratory of Experimental Toxicology, University of São Paulo, Brazil
| | - Isis Regina Grenier Capoci
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Brazil
| | | | | | - Eduardo Micotti da Gloria
- Departament of Agri-Food, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Jane Martha Graton Mikcha
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Brazil
| | - Miguel Machinski
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| |
Collapse
|
25
|
Chang Y, Harmon PF, Treadwell DD, Carrillo D, Sarkhosh A, Brecht JK. Biocontrol Potential of Essential Oils in Organic Horticulture Systems: From Farm to Fork. Front Nutr 2022; 8:805138. [PMID: 35096947 PMCID: PMC8792766 DOI: 10.3389/fnut.2021.805138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
In recent decades, increasing attention has been paid to food safety and organic horticulture. Thus, people are looking for natural products to manage plant diseases, pests, and weeds. Essential oils (EOs) or EO-based products are potentially promising candidates for biocontrol agents due to their safe, bioactive, biodegradable, ecologically, and economically viable properties. Born of necessity or commercial interest to satisfy market demand for natural products, this emerging technology is highly anticipated, but its application has been limited without the benefit of a thorough analysis of the scientific evidence on efficacy, scope, and mechanism of action. This review covers the uses of EOs as broad-spectrum biocontrol agents in both preharvest and postharvest systems. The known functions of EOs in suppressing fungi, bacteria, viruses, pests, and weeds are briefly summarized. Related results and possible modes of action from recent research are listed. The weaknesses of applying EOs are also discussed, such as high volatility and low stability, low water solubility, strong influence on organoleptic properties, and phytotoxic effects. Therefore, EO formulations and methods of incorporation to enhance the strengths and compensate for the shortages are outlined. This review also concludes with research directions needed to better understand and fully evaluate EOs and provides an outlook on the prospects for future applications of EOs in organic horticulture production.
Collapse
Affiliation(s)
- Yuru Chang
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Philip F. Harmon
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Danielle D. Treadwell
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeffrey K. Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Proteomic analysis of Aspergillus flavus reveals the antifungal action of Perilla frutescens essential oil by interfering with energy metabolism and defense function. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Qu C, Li Z, Wang X. UHPLC-HRMS-Based Untargeted Lipidomics Reveal Mechanism of Antifungal Activity of Carvacrol against Aspergillus flavus. Foods 2021; 11:foods11010093. [PMID: 35010219 PMCID: PMC8750229 DOI: 10.3390/foods11010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/13/2023] Open
Abstract
Aspergillus flavus is a common contaminant in grain, oil and their products. Its metabolite aflatoxin B1 (AFB1) has been proved to be highly carcinogenic. Therefore, it is of great importance to find possible antifungal substances to inhibit the growth and toxin production of Aspergillus flavus. Carvacrol (CV) was reported as a potent antifungal monoterpene derived from plants. In this paper, the antifungal effects and mechanism of CV on Aspergillus flavus were investigated. CV was shown good inhibition on the growth of Aspergillus flavus and the production of AFB1. CV used in concentrations ranging from 0, 50, 100 and 200 μg/mL inhibited the germination of spores, mycelia growth and AFB1 production dose-dependently. To explore the antifungal mechanism of CV on Aspergillus flavus, we also detected the ergosterol content of Aspergillus flavus mycelia, employed Scanning Electron Microscopy (SEM) to observe mycelia morphology and utilized Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) to explore the lipidome profiles of Aspergillus flavus. The results showed that the production of ergosterol of mycelia was reduced as the CV treatment concentration increased. SEM photographs demonstrated a rough surface and a reduction in the thickness of hyphae in Aspergillus flavus treated with CV (200 µg/mL). In positive ion mode, 21 lipids of Aspergillus flavus mycelium were downregulated, and 11 lipids were upregulated after treatment with 200-µg/mL CV. In negative ion mode, nine lipids of Aspergillus flavus mycelium were downregulated, and seven lipids upregulated after treatment with 200-µg/mL CV. In addition, the analysis of different lipid metabolic pathways between the control and 200-µg/mL CV-treated groups demonstrated that glycerophospholipid metabolism was the most enriched pathway related to CV treatment.
Collapse
Affiliation(s)
- Chenling Qu
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| | - Zhuozhen Li
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| |
Collapse
|
28
|
Jaiswal SG, Naik SN. Turmeric Oil: Composition, Extraction, Potential Health Benefits and Other Useful Applications. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The turmeric essential oil of Curcuma species has extensively more useful properties due to its rich phytochemical profile. The concentration of volatile chemical constituents varies according to their type of applied plant part (i.e., root, rhizome, leaves, and flower) for extraction and type of the adopted extraction method. Novel extraction and purification methods, subcritical CO2 , supercritical CO2 , pressurized liquid extraction, and molecular distillation are found to be more efficient for good recovery of this volatile oil, along with increased concentrations of specified compounds. Not only have the curcuminoid compounds had a broad potential in the field of pharmacology but also the turmeric oil is found to have great applicability in treating several diseases and disorders. Turmeric oil possesses good antioxidant, antimicrobial, anticancer, anti-hyperlipidemic anti-inflammatory, anti-diabetic, and hepato-protective properties. Apart from medicinal fields, this oil has also a great future in the cosmetics, pesticide, and food industries due to its rich chemical profile. The present review focuses on providing information about turmeric oil in terms of its physicochemical properties, chemical composition, and available traditional extraction techniques, as well as available novel extraction options, actual health benefits, and other useful applications. It is hoped that the reported information is helpful for further discovery in the area of food, pharmaceutical, and cosmeceutical applications.
Collapse
Affiliation(s)
- Swapnil Ganesh Jaiswal
- Department of Agricultural Engineering, Maharashtra Institute of Technology Aurangabad, Maharashtra, India-431010
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Satya Narayan Naik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| |
Collapse
|
29
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
30
|
Qiang Y, Si R, Tan S, Wei H, Huang B, Wu M, Shi M, Fang L, Fu J, Zeng S. Spatial variation of volatile organic compounds and antioxidant activity of turmeric ( Curcuma longa L.) essential oils harvested from four provinces of China. Curr Res Food Sci 2021; 4:882-890. [PMID: 34917948 PMCID: PMC8646137 DOI: 10.1016/j.crfs.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate the spatial variation of volatile organic compounds and antioxidant activity of turmeric essential oils (TEOs) harvested from four provinces of China. The major chemical components of these TEOs were analyzed using headspace solid-phase micro-extraction gas chromatography-mass spectrometry. More than forty volatile organic compounds in TEOs were identified, which accounted for 82.09–93.64% of the oil components. The relative abundances of the main volatile organic compounds in TEOs at the genus level were visualized by a heat map. The antioxidant activity of the TEOs of five different origins was characterized by the DPPH free radical scavenging activity, in which the antioxidant activity of the TEOs from Guangxi was superior to those of other sources. Furthermore, the IC50 values of the antioxidants TEOs collected from Guangxi, Sichuan, Yunnan, Changting, and Liancheng were 33.30, 42.5, 35.22, 63.27, and 39.96 mg/mL, respectively, which indicated the excellent free radical scavenging activity of those TEOs. Therefore, the TEOs might be considered as a natural antioxidant with potential applications in food and pharmaceutical industries. Turmeric essential oils stemmed from four provinces of China were investigated. Multivariate analysis of volatile organic compounds in TEOs was performed. The major components of volatile organic compounds exhibited a spatial variation. Antioxidant activity of turmeric essential oils demonstrated a spatial variation. TEOs of Guangxi had a superior antioxidant activity to those of other origins.
Collapse
Affiliation(s)
- Yueyue Qiang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiru Si
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Suo Tan
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Biao Huang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Miaohong Wu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, China
| | - Mengzhu Shi
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
31
|
Loron A, Gardrat C, Tabary N, Martel B, Coma V. Tetrahydrocurcumin encapsulation in cyclodextrins for water solubility improvement: Synthesis, characterization and antifungal activity as a new biofungicide. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Mahomoodally MF, Jugreet BS, Zengin G, Lesetja LJ, Abdallah HH, Ezzat MO, Gallo M, Montesano D. Seven Compounds from Turmeric Essential Oil Inhibit Three Key Proteins Involved in SARS-CoV-2 Cell Entry and Replication in silico. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Turmeric rhizome (Cucurma longa L.) has showed great potential as a traditional drug in folk medicine of several countries. In light of the prominent use of turmeric rhizome in treating both respiratory and viral diseases, we aimed to dock major compounds from the essential oil of turmeric against three key proteins involved in COVID-19 cell entry and replication. Methods: The essential oil of turmeric rhizome was obtained using a hydrodistillation technique, and the chemical characterization of the oil was investigated using GC-MS/GC-FID. Then, main compounds were docked with the key proteins of COVID-19. Results: A total of 26 components were identified in the essential oil extracted from the rhizomes via GC-MS/GC-FID. Seven dominant compounds (turmerone (31.4%), ar-turmerone (16.1%), turmerol (14.6%), terpinolene (11.0%), [Formula: see text]-zingiberene (5.2%), [Formula: see text]-sesquiphellandrene (4.8%), and [Formula: see text]-caryophyllene (3.5%)) were docked against COVID-19 main protease, papain-like protease (PLpro), spike protein and 3C-like protease (3CLpro), and the best inhibitor was picked according to the calculated binding affinity and non-bonding interactions with the protein active site. [Formula: see text]-sesquiphellandrene and [Formula: see text]-zingiberene showed highest besides the same binding affinity towards COVID-19 virus ([Formula: see text] and [Formula: see text][Formula: see text]kcal/mol, respectively). [Formula: see text]-zingiberene was found to bind at the active site of the COVID-19 protein and interacted with different non-bonding interactions, while turmerol showed the highest affinity ([Formula: see text][Formula: see text]kcal/mol) against CLpro enzyme by binding with Met165, Leu141, Met49, Ser144, Cys145, and Glu166 residues. Conclusion: The essential oil of turmeric harbors a blend of potentially bioactive compounds that may be considered as a good target against COVID-19 virus and warrants further experimental studies.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Bibi Sharmeen Jugreet
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Legoabe J. Lesetja
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, 31001, Ramadi, Anbar, Iraq
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131, Naples, Italy
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 1, 06126 Perugia, Italy
| |
Collapse
|
33
|
Valizadeh M, Behnamian M, Dezhsetan S, Karimirad R. Controlled release of turmeric oil from chitosan nanoparticles extends shelf life of Agaricus bisporus and preserves its postharvest quality. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Ribeiro IATA, Sá JLF, Lima MV, Veras STS, Aguiar JCROF, Aires AL, Albuquerque MCPA, da Silva MV, Melo AMMA, Navarro DMAF, Correia MTS. Toxic effect of Croton rudolphianus leaf essential oil against Biomphalaria glabrata, Schistosoma mansoni cercariae and Artemia salina. Acta Trop 2021; 223:106102. [PMID: 34416188 DOI: 10.1016/j.actatropica.2021.106102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
This research investigated the effect of the Croton rudolphianus leaf essential oil (EO) on Biomphalaria glabrata embryos (at different development stages) and adults, Schistosoma mansoni cercariae, and Artemia salina (non-target organism). It was possible to identify 31 compounds in the C. rudolphianus EO through GC-MS analysis. The major compounds from this oil were (E)-caryophyllene (17.33%), an unknown compound (16.87%), bicyclogermacrene (7.1%), δ-cadinene (6.62%) and germacrene D (5.38%). After incubation for 24 h, the EO of C. rudolphianus induced the occurrence of non-viable embryos (dead and malformed), with an LC50 value of 126.54, 133.51, 143.53 and 161.95 µg/mL and an LC90 value of 202.61, 216.48, 232.98 and 271.16 µg/mL to blastula, gastrula, trochophore and veliger embryonic stages, respectively. The EO was more effective against B. glabrata adults (LC50 and LC90 = 47.89 and 78.86 µg/mL, respectively), and S. mansoni cercariae (LC50 and LC90 = 14.81 and 22.15 after 120 mins of exposure, respectively) than against B. glabrata embryos. Concerning the micronucleus assay, the mean frequency of apoptosis, binucleation and micronucleus were 45.33 ± 3.51, 19.33 ± 1.53 and 0.67 ± 0.58 per 1000 cells at 25 µg/mL, which is the highest concentration tested. The oil killed A. salina with LC50 and LC90 values (68.33 and 111.5 µg/mL, respectively) higher than those determined for adult snails and S. mansoni cercariae. In conclusion, C. rudolphianus EO had a toxic effect against B. glabrata adults and embryos, and S. mansoni cercariae. Furthermore, this oil showed to be cytotoxic to hemocytes of B. glabrata. Concerning the non-target organism assay, C. rudolphianus EO was less toxic to A. salina then to adult snails and S. mansoni cercariae. Due to this, the EO from C. rudolphianus leaves is a potential alternative for schistosomiasis control.
Collapse
Affiliation(s)
- Ingridd Ayslane T A Ribeiro
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - José Luiz F Sá
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Maíra V Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Shyrlane T S Veras
- Departamento de Engenharia Civil e Ambiental, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Júlio César R O F Aguiar
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - André L Aires
- Departamento de Medicina Tropical, Centro de Ciência da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Mônica C P A Albuquerque
- Departamento de Medicina Tropical, Centro de Ciência da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Maria M A Melo
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Daniela Maria A F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Maria Tereza S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
35
|
Narayanankutty A, Sasidharan A, Job JT, Rajagopal R, Alfarhan A, Kim YO, Kim HJ. Mango ginger (Curcuma amada Roxb.) rhizome essential oils as source of environmental friendly biocides: Comparison of the chemical composition, antibacterial, insecticidal and larvicidal properties of essential oils extracted by different methods. ENVIRONMENTAL RESEARCH 2021; 202:111718. [PMID: 34297936 DOI: 10.1016/j.envres.2021.111718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The essential oil isolated from plants is widely utilized as eco-friendly biocides and antibacterial agents. Curcuma amada, commonly known as mango ginger, is well-known for its applications in the food and aromatics industry for its significant mango-like aroma. The present study compared the different C. amada essential oils prepared by hydrodistillation (CHD), steam distillation (CSD), microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for their chemical composition, antibacterial, larvicidal and insecticidal properties. GC/MS analysis indicated the presence of compounds including α-pinene, β-myrcene, p-cymene, (Z)-β-ocimene, Camphor, linalyl acetate, safrole, ar-curcumene, and β-curcumene in the different C. amada essential oils. The antibacterial activity was observed against different strains of microbes, with a higher efficacy in the essential oils prepared by UAE and MAE methods. Apart from these, the MAE, UAE, CSD, and CHD were also shown to have significantly higher larvicidal activity against Aedes, Culex, and Armigeres species; however, no toxic effect was observed in non-targeted species like fishes and Allium cepa model of genotoxicity. Further, these essential oils were also found to have significant contact and fumigant toxicity as well as repellency against pests of stored grains (Sitophilus and Tribolium). Considering these results, the present study assumes that Curcuma amada essential oils may be a source of ecofriendly insecticides and antibacterial agents.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, India.
| | - Anju Sasidharan
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, India
| | - Joice Tom Job
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Young Ock Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
36
|
Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules 2021; 26:molecules26216488. [PMID: 34770893 PMCID: PMC8588391 DOI: 10.3390/molecules26216488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to determine the effectiveness of selected seven commercial essential oils (EsO) (grapefruit, lemongrass, tea tree (TTO), thyme, verbena, cajeput, and Litsea cubeba) on isolates of common Central European parasitic fungal species of Fusarium obtained from infected wheat kernels, and to evaluate the oils as potential natural fungicides. The study was conducted in 2 stages. At each stage, the fungicidal activity of EsO (with concentrations of 0.025; 0.05; 0.125; 0.25; 0.50; 1.0, and 2.0%) against Fusarium spp. was evaluated using the disc plate method and zones of growth inhibition were measured. At the first stage, the fungistatic activity of EsO was evaluated against four species of Fusarium from the Polish population (F. avenaceum FAPL, F. culmorum FCPL, F. graminearum FGPL and F. oxysporum FOPL). The correlation coefficient between the mycelial growth rate index (T) and the fungistatic activity (FA) was calculated. At the second stage, on the basis of the mycelium growth rate index, the effectiveness of the EsO in limiting the development of Fusarium isolates from the German population (F. culmorum FC1D, F. culmorum FC2D, F. graminearum FG1D, F. graminearum FG2D and F. poae FP0D) was assessed. The first and second stage results presented as a growth rate index were then used to indicate essential oils (as potential natural fungicides) effectively limiting the development of various common Central European parasitic species Fusarium spp. Finally, the sensitivity of four Fusarium isolates from the Polish population and five Fusarium isolates from the German population was compared. The data were compiled in STATISTICA 13.0 (StatSoft, Inc, CA, USA) at the significance level of 0.05. Fusarium isolates from the German population were generally more sensitive than those from the Polish population. The sensitivity of individual Fusarium species varied. Their vulnerability, regardless of the isolate origin, in order from the most to the least sensitive, is as follows: F. culmorum, F. graminearum, F. poae, F. avenaceum and F. oxysporum. The strongest fungicidal activity, similar to Funaben T, showed thyme oil (regardless of the concentration). Performance of citral oils (lemongrass and Litsea cubeba) was similar but at a concentration above 0.025%.
Collapse
|
37
|
Wang HH, Li MY, Dong ZY, Zhang TH, Yu QY. Preparation and Characterization of Ginger Essential Oil Microcapsule Composite Films. Foods 2021; 10:2268. [PMID: 34681317 PMCID: PMC8534594 DOI: 10.3390/foods10102268] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
New food packaging has shown research significance in the face of increasing demand for high-quality foods and growing attention paid to food safety. In this study, ginger essential oil microcapsule composite films were prepared by combining microcapsules prepared by a complex coacervation method with gelatin films, and the mechanical properties and active functions of the composite films were analyzed. Fourier-transform infrared spectroscopy and differential scanning calorimetry confirmed the successful encapsulation of ginger essential oil. The scanning electron microscopy of the composite films showed the microcapsules and gelatin film matrix were highly compatible. During the entire storage period, the antioxidant capacity of the ginger essential oil microcapsule films weakened more slowly than ginger essential oil microcapsules and could be maintained at a relatively high level for a long time. The microcapsule films had excellent inhibitory effects on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. Therefore, the direct addition of microcapsules to a film matrix can broaden the application range of microcapsules and increase the duration of the release of active ingredients. Ginger essential oil microcapsule films are potential biodegradable food packaging films with long-lasting activity.
Collapse
Affiliation(s)
- Hua-Hua Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Meng-Yao Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Zhou-Yong Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Tie-Hua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Qing-Yu Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130062, China;
| |
Collapse
|
38
|
Quispe C, Cruz-Martins N, Manca ML, Manconi M, Sytar O, Hudz N, Shanaida M, Kumar M, Taheri Y, Martorell M, Sharifi-Rad J, Pintus G, Cho WC. Nano-Derived Therapeutic Formulations with Curcumin in Inflammation-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3149223. [PMID: 34584616 PMCID: PMC8470924 DOI: 10.1155/2021/3149223] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers. The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel (colitis), neurodegenerative (Alzheimer's or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in the highlighted pathological conditions.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Kiev National University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Voli 1, Ternopil, Ukraine
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, UAE
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
39
|
Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules 2021; 11:biom11091267. [PMID: 34572479 PMCID: PMC8466708 DOI: 10.3390/biom11091267] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products.
Collapse
|
40
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
41
|
Ningrum A, Widyastuti Perdani A, Supriyadi, Siti Halimatul Munawaroh H, Aisyah S, Susanto E. Characterization of Tuna Skin Gelatin Edible Films with Various Plasticizers‐Essential Oils and Their Effect on Beef Appearance. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andriati Ningrum
- Department of Food and Agricultural Product Technology Faculty of Agricultural Technology Universitas Gadjah Mada Yogyakarta Indonesia
| | - Arum Widyastuti Perdani
- Department of Culinary Arts Vocational Education Faculty of Engineering Yogyakarta State University Gunungkidul Indonesia
| | - Supriyadi
- Department of Food and Agricultural Product Technology Faculty of Agricultural Technology Universitas Gadjah Mada Yogyakarta Indonesia
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program Department of Chemistry Education Faculty of Mathematics and Science Education Universitas Pendidikan Indonesia Bandung Indonesia
| | - Siti Aisyah
- Chemistry Program Department of Chemistry Education Faculty of Mathematics and Science Education Universitas Pendidikan Indonesia Bandung Indonesia
| | - Eko Susanto
- Department of Fish Products Technology Faculty of Fisheries and Marine Science Universitas Diponegoro Jl. Prof. Soedarto, SH Tembalang Semarang Indonesia
| |
Collapse
|
42
|
Competency of Clove and Cinnamon Essential Oil Fumigation against Toxigenic and Atoxigenic Aspergillus flavus Isolates. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus flavus is a frequent contaminant of maize grain. We isolated this fungus, determined the colony morphology and species (by internal transcribed spacer sequencing) and measured the aflatoxin content. The selected A. flavus fungi were placed into two groups, toxigenic and atoxigenic; both appeared similar morphologically, except that the atoxigenic group lacked sclerotia. An essential oil fumigation test with clove and cinnamon oils as antifungal products was performed on fungal conidial discs and fungal colonies in Petri plates. Cinnamon oil at 2.5 to 5.0 μL/plate markedly inhibited the mycelial growth from conidial discs of both strains, whereas clove oil showed less activity. The oils had different effects on fungal mycelia. The higher clove fumigation doses of 10.0 to 20.0 μL/plate controlled fungal growth, while cinnamon oil caused less inhibition. Compared with atoxigenic groups, toxigenic A. flavus responded stably. Within abnormal A. flavus hyphae, the essential oils degenerated the hyphal morphology, resulting in exfoliated flakes and shrinkage, which were related to fungal membrane injury and collapse of vacuoles and phialide. The treatments, especially those with cinnamon oil, increased the electroconductivity, which suggested a weak mycelium membrane structure. Moreover, the treatments with essential oils reduced the ergosterol content in mycelia and the aflatoxin accumulation in the culture broth. The fumigations with clove and cinnamon oils inhibited the development of both conidia and colonies of A. flavus in dose-dependent manners.
Collapse
|
43
|
Recharla N, Balasubramanian B, Song M, Puligundla P, Kim SK, Jeong JY, Park S. Dietary turmeric ( Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:575-592. [PMID: 34189506 PMCID: PMC8204000 DOI: 10.5187/jast.2021.e55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
In livestock nutrition, natural feed additives are gaining increased attention as
alternatives to antibiotic growth promoters to improve animal performance. This
study investigated the effects of dietary turmeric supplementation on the growth
performance and gut health of weaned piglets. A total of 48 weaned piglets
(Duroc × [Landrace × Yorkshire]) were used in a 6-week feeding
trial. All piglets were allotted to two dietary treatments: corn-soybean meal
basal diet without turmeric (control) and with 1% weight per weight (w/w)
turmeric powder (turmeric). The results showed that dietary inclusion of
turmeric with the basal diet improved final body weight and total average daily
gain (p < 0.05). The concentrations of short-chain fatty
acids in the fecal samples, including acetic, butyric, and propionic acids, were
higher in the turmeric group (p < 0.05). The villus
height-to-crypt depth ratio was higher in the ileum of turmeric-fed piglets
(p = 0.04). The 16S rRNA gene sequencing of fecal
microbiota indicated that, at the phylum level, Firmicutes and
Bacteroidetes were the most predominant taxa in all fecal
samples. Bacteroidetes were significantly decreased in the
turmeric group compared to the control group (p = 0.021). At
the genus level, turmeric showed a decreased abundance of
Prevotella (p = 0.021) and an increasing
trend of Lactobacillus (p = 0.083). Among the
total detected species, nine bacterial species showed significant differences
between the two groups. The results of this study indicated that turmeric
altered the gut microbiota and short-chain fatty acid production. This suggests
that turmeric could be used as a potential alternative growth promoter for
piglets.
Collapse
Affiliation(s)
- Neeraja Recharla
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | | | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jin Young Jeong
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
44
|
Hu Z, Yuan K, Zhou Q, Lu C, Du L, Liu F. Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107703] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Chemical composition, antibiofilm activities of Tunisian spices essential oils and combinatorial effect against Staphylococcus epidermidis biofilm. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Ivanović M, Makoter K, Islamčević Razboršek M. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030501. [PMID: 33800364 PMCID: PMC7999660 DOI: 10.3390/plants10030501] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The ginger family (Zingiberaceae) includes plants that are known worldwide to have a distinctive smell and taste, which are often used as spices in the kitchen, but also in various industries (pharmaceutical, medical, and cosmetic) due to their proven biological activity. The aim of this study was to investigate and compare the chemical composition and antioxidant activity (AA) of essential oils (EOs) of four characteristic ginger species: Elettaria cardamomum L. Maton (cardamom), Curcuma Longa L. (turmeric), Zingiber Officinale Roscoe (ginger), and Alpinia Officinarum Hance (galangal). Furthermore, the total phenolic content (TPC) and AA of crude extracts obtained after using ultrasound-assisted extraction (UAE) and different extraction solvents (80% ethanol, 80% methanol and water) were evaluated. A total of 87 different chemical components were determined by GC-MS/MS in the EOs obtained after hydrodistillation, 14 of which were identified in varying amounts in all EOs. The major compounds found in cardamom, turmeric, ginger, and galangal were α-terpinyl acetate (40.70%), β-turmerone (25.77%), α-zingiberene (22.69%) and 1,8-cineol (42.71%), respectively. In general, 80% ethanol was found to be the most effective extracting solvent for the bioactivities of the investigated species from the Zingiberaceae family. Among the crude extracts, ethanolic extract of galangal showed the highest TPC value (63.01 ± 1.06 mg GA g-1 DW), while the lowest TPC content was found in cardamom water extract (1.04 ± 0.29 mg GA g-1 DW). The AA evaluated by two different assays (ferric-reducing antioxidant power-FRAP and the scavenging activity of the cationic ABTS radical) proved that galangal rhizome is the plant with the highest antioxidant potential. In addition, no statistical difference was found between the AA of turmeric and ginger extracts, while cardamom rhizome was again inferior. In contrast to the crude extracts, the EOs resulted in significantly lower ABTS and FRAP values, with turmeric EO showing the highest AA.
Collapse
|
47
|
Pante GC, Castro JC, Lini RS, Romoli JCZ, Almeida RTRD, Garcia FP, Nakamura CV, Pilau EJ, Abreu Filho BAD, Machinski M. Litsea cubeba essential oil: chemical profile, antioxidant activity, cytotoxicity, effect against Fusarium verticillioides and fumonisins production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:387-395. [PMID: 33645426 DOI: 10.1080/03601234.2021.1890519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to determine the chemical profile of Litsea cubeba essential oil, carry out an in vitro evaluation of its antioxidant potential and its cytotoxicity, as well as its antifungal and antimicotoxigenic activities against Fusarium verticillioides. Most of the compounds observed in the EO were neral (32.75%) and geranial (37.67%). The radical scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid was 104.4 and 56.4 mmol Trolox mg-1, respectively, indicating good antioxidant activity. The EO studied by us revealed cytotoxic effect against HT-29 and HeLa cancer cells. The Minimum Inhibitory and Minimum Fungicidal Concentrations against F. verticillioides were both 125 µg mL-1. Morphological investigation, performed by fluorescence microscopy and scanning electron microscopy, showed that hyphae and microconidia structures underwent changes after treatment with the EO. Analyses performed with the EO strongly reduced the mycelial development of F. verticillioides and the synthesis of fumonisins B1 and B2 in dose-dependence effect compared (P < 0.01) with the fungal control (105 conidia mL-1) and positive control (fludioxonil + metalaxyl-M). Thus, the results obtained in vitro suggest that L. cubeba EO has excellent antioxidant, fungicidal, and antimycotoxigenic effects.
Collapse
Affiliation(s)
| | | | - Renata Sano Lini
- Department of Basic Health Science, State University of Maringá, Maringá, Brazil
| | | | | | | | | | | | | | - Miguel Machinski
- Department of Basic Health Science, State University of Maringá, Maringá, Brazil
| |
Collapse
|
48
|
Danial AM, Medina A, Magan N. Lactobacillus plantarum strain HT-W104-B1: potential bacterium isolated from Malaysian fermented foods for control of the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 2021; 37:57. [PMID: 33625606 PMCID: PMC7904726 DOI: 10.1007/s11274-021-03020-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/04/2022]
Abstract
The objective was to screen and evaluate the anti-fungal activity of lactic acid bacteria (LABs) isolated from Malaysian fermented foods against two Trichophyton species. A total of 66 LAB strains were screened using dual culture assays. This showed that four LAB strains were very effective in inhibiting growth of T. rubrum but not T. interdigitale. More detailed studies with Lactobacillus plantarum strain HT-W104-B1 showed that the supernatant was mainly responsible for inhibiting the growth of T. rubrum. The minimum inhibitory concentration (MIC), inhibitory concentration, the 50% growth inhibition (IC50) and minimum fungicide concentration (MFC) were 20 mg/mL, 14 mg/mL and 30 mg/mL, respectively. A total of six metabolites were found in the supernatant, with the two major metabolites being L-lactic acid (19.1 mg/g cell dry weight (CDW)) and acetic acid (2.2 mg/g CDW). A comparative study on keratin agar media showed that the natural mixture in the supernatants predominantly contained L-lactic and acetic acid, and this significantly controlled the growth of T. rubrum. The pure two individual compounds were less effective. Potential exists for application of the natural mixture of compounds for the treatment of skin infection by T. rubrum.
Collapse
Affiliation(s)
- Azlina Mohd Danial
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK.,Science and Food Technology Research Centre, Malaysian Agricultural and Research Institute, 43400, Serdang, Selangor, Malaysia
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK.
| |
Collapse
|
49
|
Setzer WN, Duong L, Poudel A, Mentreddy SR. Variation in the Chemical Composition of Five Varieties of Curcuma longa Rhizome Essential Oils Cultivated in North Alabama. Foods 2021; 10:foods10020212. [PMID: 33494170 PMCID: PMC7909793 DOI: 10.3390/foods10020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Turmeric (Curcuma longa L.) is an important spice, particularly is Asian cuisine, and is also used in traditional herbal medicine. Curcuminoids are the main bioactive agents in turmeric, but turmeric essential oils also contain health benefits. Turmeric is a tropical crop and is cultivated in warm humid environments worldwide. The southeastern United States also possesses a warm humid climate with a growing demand for locally sourced herbs and spices. In this study, five different varieties of C. longa were cultivated in north Alabama, the rhizome essential oils obtained by hydrodistillation, and the essential oils were analyzed by gas chromatographic techniques. The major components in the essential oils were α-phellandrene (3.7-11.8%), 1,8-cineole (2.6-11.7%), α-zingiberene (0.8-12.5%), β-sesquiphellandrene (0.7-8.0%), ar-turmerone (6.8-32.5%), α-turmerone (13.6-31.5%), and β-turmerone (4.8-18.4%). The essential oil yields and chemical profiles of several of the varieties are comparable with those from tropical regions, suggesting that these should be considered for cultivation and commercialization in the southeastern United States.
Collapse
Affiliation(s)
- William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
- Correspondence: (W.N.S.); (S.R.M.)
| | - Lam Duong
- Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA;
| | - Ambika Poudel
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
| | - Srinivasa Rao Mentreddy
- Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA;
- Correspondence: (W.N.S.); (S.R.M.)
| |
Collapse
|
50
|
A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractEssential oils (EOs) are complex mixtures of compounds derived from plants that exhibit antimicrobial activity. Several studies have demonstrated their antifungal activity in food matrices or in vitro via vapor phase or direct addition. Recently, researchers are focusing on elucidating the target site or the mechanism of action of various EOs. Past research has suggested evidence of how EOs act in the fungal cells via assays assessed from cell wall alterations or gene expression modifications. However, no previous reports have summarized most methods for finding the target site of the mechanism of action for EOs. Therefore, this review presents the methods and assays used to discover the target site or the mechanism of action of EOs against fungal cells. Researchers commonly analyze the plasma membrane integrity using various techniques as well as the changes in cell morphology. Meanwhile, the quantification of the activity of the mitochondrial enzymes, ROS species, and gene expression are less assayed.
Collapse
|