1
|
Hasan M, Talukder S, Mandal AK, Tasmim ST, Parvin S, Ali Y, Sikder MH, Callaghan TJ, Soares Magalhães RJ, Islam T. Antimicrobial Resistance Profiles of Campylobacter spp. Recovered from Chicken Farms in Two Districts of Bangladesh. Foodborne Pathog Dis 2025; 22:118-130. [PMID: 38563794 DOI: 10.1089/fpd.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) in Campylobacter has reinforced its status as a foodborne pathogen of significant public health concern. Resistant Campylobacter is typically transferred to humans via the consumption of contaminated animal products, particularly poultry. The genes associated with antimicrobial resistance in Campylobacter spp. are poorly understood. To address this knowledge gap, we conducted a prevalence survey of AMR Campylobacter across 84 chicken farms in two districts of Bangladesh. Pooled cloacal swabs were collected from chickens and underwent bacteriological testing for Campylobacter spp. with PCR confirmation. Antimicrobial susceptibility was tested against 14 antibiotics by disk diffusion method, and 12 resistance genes were screened in Campylobacter-positive isolates using multiplex PCR. A total of 34 (40.5%) farms were Campylobacter-positive of which 73.5% of isolates were resistant to at least 10 antibiotics. The antimicrobial susceptibility results indicate a high level of resistance against streptomycin (97.1%), clindamycin (97.1%), ampicillin (94.1%), tetracycline (94.1%), erythromycin (91.2%), ciprofloxacin (88.2%), nalidixic acid (85.3%), and imipenem (82.4%), and comparatively a low frequency of resistance to chloramphenicol (47.1%), ceftazidime (44.1%), and colistin (35.3%). Multidrug-resistant (MDR) and extensively drug-resistant Campylobacter were identified in 97.1%, and 50% of isolates, respectively. Ten resistance genes were identified including blaTEM (in 97.1% of isolates), strA-strB (85.9%), tetA (70.6%), tetB (32.4%), qnrS (23.5%), blaCTX-M-1 (20.6%), qnrB (20.6%), blaSHV (8.8%), aadB (5.9%), and qnrA (2.9%). Our findings demonstrate that resistance to ampicillin, tetracycline, and ceftazidime in Campylobacter isolates was significantly (p ≤ 0.05) associated with the presence of blaTEM, tetA, and blaSHV genes, respectively. The high rates of AMR in Campylobacter isolates from our study are not surprising given the liberal use of antimicrobials and incomplete biosecurity provisions on farms. Of particular concern are resistance rates to those classes of antibiotics that should be reserved for human use (azithromycin, ciprofloxacin, and colistin). AMR was more prevalent in chicken farms that used multiple antibiotics, engaged in prophylactic treatment of the birds, and improperly disposed of antibiotic packages. The high prevalence of MDR in chicken-derived Campylobacter isolates from the different regions of our study reinforces the need for more prudent use of antimicrobial compounds in Bangladeshi chicken farms.
Collapse
Affiliation(s)
- Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sudipta Talukder
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Amit Kumar Mandal
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Syeda Tanjina Tasmim
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yamin Ali
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Livestock Services, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Thomas J Callaghan
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Ricardo J Soares Magalhães
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Qiu Y, Ferreira JP, Ullah RW, Flanagan P, Zaheer MU, Tahir MF, Alam J, Hoet AE, Song J, Akram M. Assessment of the Implementation of Pakistan's National Action Plan on Antimicrobial Resistance in the Agriculture and Food Sectors. Antibiotics (Basel) 2024; 13:206. [PMID: 38534641 DOI: 10.3390/antibiotics13030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024] Open
Abstract
The agriculture and food (agrifood) sectors play key roles in the emergence, spread, and containment of antimicrobial resistance (AMR). Pakistan's first National Action Plan (NAP) on AMR was developed to guide One Health interventions to combat AMR through 2017-2022. To improve subsequent iterations, we assessed the implementation of Pakistan's NAP in the agrifood sectors (NAPag) in October 2022, using the Progressive Management Pathway on AMR tool developed by the Food and Agriculture Organization of the United Nations (FAO). The assessment tool addressed four crucial focus areas of the NAPag: governance, awareness, evidence, and practices. Each focus area contains multiple topics, which involve four sequential stages of activities to progressively achieve systematic management of AMR risk in the agrifood sectors. High-level representatives of the NAPag stakeholders provided information for the assessment through pre-event documentary review and workshop discussions. The assessment results showed that Pakistan's NAPag had an overall moderate coverage (59%) of the anticipated activities. Gaps were particularly notable in strengthening governance, good practices, and interventions in non-livestock sectors. Furthermore, only 12% of the evaluated activities were fully executed and documented, consistently remaining at the planning and piloting stages in the livestock sector across all the examined topics. Insufficient attention to non-livestock sectors, inadequate regulation and enforcement capacity, and resource constraints have hindered scalable and sustainable interventions under the current plan. This assessment provides valuable insights to strengthen the inclusiveness and contribution of the agrifood sectors in the next NAP iteration. In the short-to-medium term, strategic prioritization is necessary to optimize the use of limited resources and target the most critical gaps, such as improving awareness among key stakeholders and fortifying regulations for prudent antimicrobial use. In the long term, integration of AMR into the country's broader health, development, and agricultural transformation agendas will be needed to generate sustainable benefits.
Collapse
Affiliation(s)
- Yu Qiu
- Food and Agriculture Organization of the United Nations (FAO) Headquarters, 00153 Rome, Italy
| | - Jorge Pinto Ferreira
- Food and Agriculture Organization of the United Nations (FAO) Headquarters, 00153 Rome, Italy
| | - Riasat Wasee Ullah
- Office of the Animal Husbandry Commissioner, Ministry of National Food Security and Research, Government of Pakistan, Islamabad 44000, Pakistan
| | - Peter Flanagan
- FAO Regional Office for Asia and the Pacific, Bangkok 10200, Thailand
| | | | | | - Javaria Alam
- FAO Country Representative Office, Islamabad 44000, Pakistan
| | - Armando E Hoet
- FAO Reference Center on Antimicrobial Resistance, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Junxia Song
- Food and Agriculture Organization of the United Nations (FAO) Headquarters, 00153 Rome, Italy
| | - Muhammad Akram
- Office of the Animal Husbandry Commissioner, Ministry of National Food Security and Research, Government of Pakistan, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Al-Khresieh RO, Al-Daghistani HI, Abu-Romman SM, Abu-Niaaj LF. Genetic Signature and Serocompatibility Evidence for Drug Resistant Campylobacter jejuni. Antibiotics (Basel) 2022; 11:1421. [PMID: 36290079 PMCID: PMC9598221 DOI: 10.3390/antibiotics11101421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Campylobacteriosis, a foodborne illness, is one of the world's leading causes of gastrointestinal illness. This study investigates the link between human campylobacteriosis and the consumption of potentially contaminated food with Campylobacter jejuni. Three hundred sixty samples were collected from humans, chicken cloaca, raw chicken meat, unpasteurized milk, and vegetables. The chickens were obtained from licensed and non-licensed slaughterhouses, and only the necks and wings were studied. Samples were enriched under microaerobic conditions then cultured on the modified charcoal cefoperazone deoxycholate agar. Bacteria was identified by staining, biochemical testing, and molecular identification by the polymerase chain reaction for the virulence genes; hipO, asp, dnaJ, cadF, cdtA, cdtB, and cdtC. The genomic homogeneity of C. jejuni between human and chicken isolates was assessed by the serological Penner test and the pulse field gel electrophoresis (PFGE). Campylobacter was not detected in the vegetables and pasteurized milk, though, only twenty isolates from chickens and clinical samples were presumed to be Campylobacter based on their morphology. The biochemical tests confirmed that five isolates were C. coli, and fifteen isolates were C. jejuni including two isolates from humans, and the remaining were from chickens. The colonization of C. jejuni in chickens was significantly lower in necks (6.66%) obtained from licensed slaughterhouses compared to those obtained from non-licensed slaughterhouses (33.3%). The antimicrobial susceptibility test showed that all identified C. jejuni isolates were resistant to antibiotics, and the majority of isolates (53.5%) showed resistance against six antibiotics, though, all isolates were resistant to ciprofloxacin, tetracycline, and aztreonam. The Penner test showed P:21 as the dominant serotype in isolates from humans, necks, and cloaca. The serohomology of C. jejuni from human isolates and chicken necks, wings, and cloaca was 71%, 36%, 78%, respectively. The PFGE analysis of the pattern for DNA fragmentation by the restriction enzyme Smal showed a complete genotypic homology of C. jejuni human isolates and chicken necks compared to partial homology with cloacal isolates. The study brings attention to the need for effective interventions to ensure best practices for safe poultry production for commercial food chain supply to limit infection with foodborne pathogens, including Campylobacter.
Collapse
Affiliation(s)
- Rozan O. Al-Khresieh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Hala I. Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Saeid M. Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Lubna F. Abu-Niaaj
- Department of Agricultural and Life Sciences, John W. Garland College of Engineering, Science, Technology and Agriculture, Central State University, Wilberforce, OH 45384, USA
| |
Collapse
|
4
|
Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics (Basel) 2022; 11:antibiotics11070830. [PMID: 35884085 PMCID: PMC9312241 DOI: 10.3390/antibiotics11070830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance in foodborne pathogens is an emergent global health concern. The objectives of this study were to assess antimicrobial resistance (AMR) in Campylobacter isolates from chicken carcasses and to investigate the AMR molecular mechanisms as well as the presence of virulence determinants. The study was performed on 257 samples collected from abattoirs and retail shops in northeastern Tunisia. Forty-eight Campylobacter isolates were recovered and identified as C. jejuni (n = 33) and C. coli (n = 15). Antibiotic resistance was tested against eight antibiotics and high resistance rates were observed against tetracycline (100%), erythromycin (97.9%), ciprofloxacin (73%), nalidixic acid (85.4%), ampicillin (83.3%), amoxicillin/clavulanic acid (22.9%), chloramphenicol (75%), and gentamicin (27.1%). All isolates were multidrug-resistant, and 22 resistance patterns were found. All isolates were screened for AMR genes (tet(O), tet(A), tet(B), tet(L), cmeB, ermB, blaOXA-61, and aphA-3), and for point mutations in gyrA (C257T substitution) and 23SrRNA (A2075G/A2074C) genes. All screened AMR genes, as well as the C257T and the A2075G mutations, were detected. The virulence genotypes were also determined, and all isolates carried the motility (flaA) and invasion (cadF) genes. Most of them also harbored the cdtA, cdtB, and cdtC genes, encoding the Campylobacter toxin. The screening of the cgtB and the wlaN genes, involved in Guillain-Barré Syndrome expression, revealed the presence of the cgtB in 21.2% of C. jejuni strains, whereas none of them carried the wlaN gene. Our findings highlight the emergence of Campylobacter strains simultaneously harboring several virulence and AMR determinants, which emphasizes the risk of transmission of MDR strains to humans via the food chain. Hence, controlling the dissemination of foodborne pathogens “from the farm to the fork” as well as restricting the use of antimicrobials in husbandry are mandatory to prevent the risk for consumers and to mitigate the dissemination of MDR pathogens.
Collapse
|
5
|
Islam MS, Hasib FMY, Nath C, Ara J, Logno TA, Uddin MH, Khalil MI, Dutta P, Das T, Chowdhury S. Molecular detection and risk factors associated with multidrug-resistant Campylobacter jejuni from broiler cloacal and meat samples in Bangladesh. Zoonoses Public Health 2022; 69:843-855. [PMID: 35619326 DOI: 10.1111/zph.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/22/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The gastrointestinal tract of poultry is a potential source of Campylobacter jejuni. Here, the prevalence, risk factors, antimicrobial susceptibility profile and genetic relationship of C. jejuni were studied in broilers from farms and meat from live bird markets (LBMs) and super shops (SS). Pooled cloacal samples were obtained from farms in six districts of Bangladesh between June 2019 and March 2020. Pooled meat samples were obtained from LBMs and SS in the Chattogram district. Microbial culture, polymerase chain reaction (PCR), antimicrobial susceptibility tests were used to detect multidrug-resistant C. jejuni. A positive PCR amplicon was validated by mapA partial gene sequencing and subsequent phylogenetic analysis. In total, 12.5% (95% CI: 8.5-17.7%) of farms (N = 216) and 27.1% (95% CI: 15.28-41.85%) of LBMs and SS (N = 48) tested positive for C. jejuni. Moreover, 98% of the isolates were multidrug-resistant, with 86% resistant to five or more antimicrobial groups. Multivariable logistic regression analysis showed a downtime of <14 days, no separate footwear for shed access, and more than one person entering the sheds were significantly associated with C. jejuni colonization. Phylogenetic analysis revealed a strong relationship between C. jejuni strains obtained in Bangladesh and strains isolated in India, South Africa and Grenada from humans, pigs and bats. This study revealed significant contamination of broiler meat with Campylobacter spp. and C. jejuni. Potential sources of contamination and anthropogenic factors associated with the alarming prevalence of C. jejuni identified in this study would aid in reducing the growing risks of broiler-associated pathogens.
Collapse
Affiliation(s)
- Md Sirazul Islam
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Farazi Muhammad Yasir Hasib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.,Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Jahan Ara
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tahia Ahmed Logno
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Helal Uddin
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Ibrahim Khalil
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Pronesh Dutta
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.,One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
6
|
Takeuchi MG, de Melo RT, Dumont CF, Peixoto JLM, Ferreira GRA, Chueiri MC, Iasbeck JR, Timóteo MF, de Araújo Brum B, Rossi DA. Agents of Campylobacteriosis in Different Meat Matrices in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6087. [PMID: 35627626 PMCID: PMC9140573 DOI: 10.3390/ijerph19106087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
We aimed to identify the prevalence of thermophilic species of Campylobacter in meats of different species available on the Brazilian commercial market and to determine the genetic diversity, antimicrobial resistance and virulence potential of the isolates. A total of 906 samples, including chicken, beef and pork carcasses and chicken and beef livers, were purchased in retail outlets, and prevalences of 18.7% (46/246), 3.62% (5/138), 10.14% (14/138), 3.62% (5/138) and 4.47% (11/132), respectively, were identified, evidencing the dissemination of genotypes in the main producing macro-regions. Of all isolates, 62.8% were classified as multidrug resistant (MDR), with resistance to amoxicillin-clavulanate (49.4%), tetracycline (51.8%) and ciprofloxacin (50.6%) and co-resistance to macrolides and fluoroquinolones (37.1%). Multivirulent profiles were identified mainly in isolates from chicken carcasses (84.8%), and the emergence of MDR/virulent strains was determined in pork isolates. All isolates except those from chicken carcasses showed a high potential for biofilm formation (71.4% luxS) and consequent persistence in industrial food processing. For chicken carcasses, the general virulence was higher in C. jejuni (54.3%), followed by C. coli (24%) and Campylobacter spp. (21.7%), and in the other meat matrices, Campylobacter spp. showed a higher prevalence of virulence (57.2%). The high rates of resistance and virulence reinforce the existence of strain selection pressure in the country, in addition to the potential risk of strains isolated not only from chicken carcasses, but also from other meat matrices.
Collapse
Affiliation(s)
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (M.G.T.); (C.F.D.); (J.L.M.P.); (G.R.A.F.); (M.C.C.); (J.R.I.); (M.F.T.); (B.d.A.B.); (D.A.R.)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Prevalence and antimicrobial susceptibility pattern of Campylobacter jejuni in raw retail chicken meat in Metropolitan Accra, Ghana. Int J Food Microbiol 2022; 376:109760. [DOI: 10.1016/j.ijfoodmicro.2022.109760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
|
8
|
Bulajić N, Miljković-Selimović B, Tambur Z, Kocić B, Kalevski K, Aleksić E. Prevalence of antimicrobial resistance in Campylobacter spp.: A review of the literature. Acta Microbiol Immunol Hung 2021; 69:2021.01544. [PMID: 34735366 DOI: 10.1556/030.2021.01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Campylobacter spp. are commensal organisms in the intestinal tract of food producing and companion animals. There is an increasing trend of human campylobacteriosis worldwide, including complicated cases that request treatment by antibiotics. Prevalence of resistance continually increases, especially to fluoroquinolones and tetracyclines. There are many reports on multiresistant strains of Campylobacter spp.In this work we present the available information about the prevalence and antimicrobial resistance of Campylobacter spp. worldwide, as well as studies from Serbia published in last two decades. Campylobacter strains isolated from animal samples in Serbia showed increased prevalence of antimicrobial resistance to all clinically relevant antibiotics. Preliminary data (2014-2019) from Reference laboratory for Campylobacter and Helicobacter at the Institute of Public Health of Niš, Serbia show high resistance rates to ciprofloxacin (90%) and to tetracycline (50%) but low resistance to erythromycin (<5%) in human Campylobacter isolates.
Collapse
Affiliation(s)
| | | | - Zoran Tambur
- 3Faculty of Stomatology, Pančevo, University Busines Academy in Novi Sad, Serbia
| | | | - Katarina Kalevski
- 3Faculty of Stomatology, Pančevo, University Busines Academy in Novi Sad, Serbia
| | - Ema Aleksić
- 3Faculty of Stomatology, Pančevo, University Busines Academy in Novi Sad, Serbia
| |
Collapse
|
9
|
Suman Kumar M, Ramees TP, Dhanze H, Gupta S, Dubal ZB, Kumar A. Occurrence and antimicrobial resistance of Campylobacter isolates from broiler chicken and slaughter house environment in India. Anim Biotechnol 2021; 34:199-207. [PMID: 34352178 DOI: 10.1080/10495398.2021.1953514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Campylobacteriosis is among the most frequently reported foodborne zoonoses. A total of 848 samples were screened for Campylobacter spp. and occurrence was found to be 8.7%, 2.3% and 1.65% in broiler cecum samples, chicken meat samples and slaughter house environment swabs, respectively. High level of antimicrobial resistance was found against tetracycline (64.1%), doxycycline (54.4%), ampicillin (46.6%), nalidixic acid (42.7%), kanamycin (35.9%), and ciprofloxacin (33.33%). Resistance to co-amoxiclav (19.4%) and erythromycin (21.4%) was less common. The MAR index of the isolates was in the range of 0.11-0.78. Multi-drug resistance was observed in 54.4% of the isolates, with 53.2% C. jejuni and 55.3% C. coli isolates found resistant against three or more classes of antimicrobials. Presence of mutations in gyrA and 23S rRNA genes was investigated, which revealed that all the fluoroquinolone resistant isolates possessed Thr-86-Ile point mutation, whereas only 68% of erythromycin resistant isolates had A2075G mutation. The tetO gene was present in 91.7% tetracycline resistant isolates and blaOXA-61 gene was detected in 97.9% of the ampicillin resistant isolates. The occurrence of antimicrobial resistant Campylobacter spp. in broiler chicken samples and slaughter house settings is a public health risk and calls for judicial use of antimicrobials.
Collapse
Affiliation(s)
- M Suman Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - T P Ramees
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - H Dhanze
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - S Gupta
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Z B Dubal
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - A Kumar
- Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
10
|
Kleinubing NR, Ramires T, Würfel SDFR, Haubert L, Scheik LK, Kremer FS, Lopes GV, Silva WPD. Antimicrobial resistance genes and plasmids in Campylobacter jejuni from broiler production chain in Southern Brazil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Ahmed T, Ameer HA, Javed S. Pakistan's backyard poultry farming initiative: impact analysis from a public health perspective. Trop Anim Health Prod 2021; 53:210. [PMID: 33733340 DOI: 10.1007/s11250-021-02659-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Commercial poultry rearing in Pakistan dates back to the 1960s. Meanwhile, backyard poultry setups have been providing meat and eggs for human consumption and supplementing the livelihood of farmers in many rural setups for ages. Different poultry rearing practices have varied approaches to feed supplementation, administration, biosafety practices, and flock size. All are important factors affecting disease spread and vulnerability. Recently, the Pakistani government announced the prime minister's Backyard Poultry Initiative under the National Agricultural Emergency program to economically develop farmers, especially women. Widespread adoption of this scheme with little to no training of inexperienced farmers may lead to the emergence of zoonotic infections in the population. The focus of the current review is to examine the probable impact of the promotion of backyard poultry farming practices by the government on the spread of zoonotic illnesses, both in the farmers and consumer population.
Collapse
Affiliation(s)
- Taliha Ahmed
- COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan
| | - Hafiza Aqsa Ameer
- COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan
| | - Sundus Javed
- COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
12
|
Parvaiz N, Ahmad F, Yu W, MacKerell AD, Azam SS. Discovery of beta-lactamase CMY-10 inhibitors for combination therapy against multi-drug resistant Enterobacteriaceae. PLoS One 2021; 16:e0244967. [PMID: 33449932 PMCID: PMC7810305 DOI: 10.1371/journal.pone.0244967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
β-lactam antibiotics are the most widely used antimicrobial agents since the discovery of benzylpenicillin in the 1920s. Unfortunately, these life-saving antibiotics are vulnerable to inactivation by continuously evolving β-lactamase enzymes that are primary resistance determinants in multi-drug resistant pathogens. The current study exploits the strategy of combination therapeutics and aims at identifying novel β-lactamase inhibitors that can inactivate the β-lactamase enzyme of the pathogen while allowing the β-lactam antibiotic to act against its penicillin-binding protein target. Inhibitor discovery applied the Site-Identification by Ligand Competitive Saturation (SILCS) technology to map the functional group requirements of the β-lactamase CMY-10 and generate pharmacophore models of active site. SILCS-MC, Ligand-grid Free Energy (LGFE) analysis and Machine-learning based random-forest (RF) scoring methods were then used to screen and filter a library of 700,000 compounds. From the computational screens 74 compounds were subjected to experimental validation in which β-lactamase activity assay, in vitro susceptibility testing, and Scanning Electron Microscope (SEM) analysis were conducted to explore their antibacterial potential. Eleven compounds were identified as enhancers while 7 compounds were recognized as inhibitors of CMY-10. Of these, compound 11 showed promising activity in β-lactamase activity assay, in vitro susceptibility testing against ATCC strains (E. coli, E. cloacae, E. agglomerans, E. alvei) and MDR clinical isolates (E. cloacae, E. alvei and E. agglomerans), with synergistic assay indicating its potential as a β-lactam enhancer and β-lactamase inhibitor. Structural similarity search against the active compound 11 yielded 28 more compounds. The majority of these compounds also exhibited β-lactamase inhibition potential and antibacterial activity. The non-β-lactam-based β-lactamase inhibitors identified in the current study have the potential to be used in combination therapy with lactam-based antibiotics against MDR clinical isolates that have been found resistant against last-line antibiotics.
Collapse
Affiliation(s)
- Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faisal Ahmad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wenbo Yu
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States of America
| | - Alexander D. MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States of America
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
13
|
Liu S, Kilonzo-Nthenge A, Nahashon SN, Pokharel B, Mafiz AI, Nzomo M. Prevalence of Multidrug-Resistant Foodborne Pathogens and Indicator Bacteria from Edible Offal and Muscle Meats in Nashville, Tennessee. Foods 2020; 9:foods9091190. [PMID: 32872118 PMCID: PMC7555593 DOI: 10.3390/foods9091190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
This study investigated the prevalence of antimicrobial-resistant bacteria in retail edible offal and muscle meats in Nashville, Tennessee. A total of 348 retail meats (160 edible offal and 188 muscle) were analyzed for Salmonella enterica serovar, Campylobacter, Escherichia coli, E. coli O157:H7, and enterococci. Bacteria was identified using biochemical and PCR methods. Salmonella enterica serovar (4.4% and 4.3%), Campylobacter (1.9% and 1.1%), E. coli (79.4% and 89.4%), and enterococci (88.1% and 95.7%) was detected in offal and muscle meats, respectively. Chicken liver (9.7%) was most frequently contaminated with Salmonella enterica serovar, followed by ground chicken (6.9%) and chicken wings (4.2%). No Salmonella enterica serovar was detected in beef liver, beef tripe, and ground beef. The prevalence of Campylobacter was 6.9%, 2.3%, and 1.4% in beef liver, ground beef, and ground chicken, respectively. None of the meats were positive for E. coli O157:H7. Resistance of isolates was significantly (p < 0.05) highest in erythromycin (98.3%; 99.1%), followed by tetracycline (94%; 98.3%), vancomycin (88.8%; 92.2%) as compared to chloramphenicol (43.1%; 53.9%), amoxicillin/clavulanic (43.5%; 45.7%), and ciprofloxacin (45.7%; 55.7%) in offal and muscle meats, respectively. Imipenem showed the lowest resistance (0%; 0.9%). A total of 41 multidrug-resistant patterns were displayed. Edible offal could be a source of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Siqin Liu
- Department of Agriculture and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (S.L.); (S.N.N.); (B.P.); (A.I.M.); (M.N.)
| | - Agnes Kilonzo-Nthenge
- Department of Human Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA
- Correspondence: ; Tel.: +1-(615)-963-5437; Fax: +1-(615)-963-5557
| | - Samuel N. Nahashon
- Department of Agriculture and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (S.L.); (S.N.N.); (B.P.); (A.I.M.); (M.N.)
| | - Bharat Pokharel
- Department of Agriculture and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (S.L.); (S.N.N.); (B.P.); (A.I.M.); (M.N.)
| | - Abdullah Ibn Mafiz
- Department of Agriculture and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (S.L.); (S.N.N.); (B.P.); (A.I.M.); (M.N.)
| | - Maureen Nzomo
- Department of Agriculture and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (S.L.); (S.N.N.); (B.P.); (A.I.M.); (M.N.)
| |
Collapse
|
14
|
Igwaran A, Okoh AI. Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2020; 9:E426. [PMID: 32708075 PMCID: PMC7400711 DOI: 10.3390/antibiotics9070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO2 at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-OXA-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
15
|
Alaboudi AR, Malkawi IM, Osaili TM, Abu-Basha EA, Guitian J. Prevalence, antibiotic resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from chickens in Irbid governorate, Jordan. Int J Food Microbiol 2020; 327:108656. [PMID: 32445835 DOI: 10.1016/j.ijfoodmicro.2020.108656] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 11/25/2022]
Abstract
Campylobacter is the world's leading cause of bacterial gastroenteritis, causing nearly 9 million cases of food poisoning in Europe every year. Poultry is considered the main source of Campylobacter infection to humans. The objectives of the study were to determine occurrence of C. jejuni and C. coli in chickens, the antimicrobial resistance, genotypes, and relatedness of the isolates. A total of 177 chicken samples obtained from informal butcher shops (fresh), formal poultry slaughterhouses (refrigerated) and retail market (frozen) were analyzed. Isolation of Campylobacter spp. was conducted according to the ISO 10272-2006 method. Multiplex PCR was used for confirmation and identification of the isolates. The disk diffusion method was used to determine the antimicrobial resistance of the isolates and multilocus sequence typing was used for genotyping. The proportion of samples with Campylobacter spp. was 31.6% among all chicken samples (fresh and refrigerated 47.5%, frozen 0%) C. coli was isolated from 42.4% of chicken samples obtained from butcher shops and from 18.6% of samples obtained in formal slaughterhouses. C. jejuni was isolated from 17.0% of samples obtained in butcher shops and formal slaughterhouses. Campylobacter spp. was not isolated in frozen chicken samples. All tested isolates showed resistance toward ciprofloxacin and susceptibility toward imipenem and all of the isolates were multidrug resistant toward 5 or more antimicrobials. Three sequence types were identified among 10 C. coli isolates and seven sequence types were identified among 10 C. jejuni isolates. Among sequence types, chicken isolates shared similarities of both phenotypic and genetic levels.
Collapse
Affiliation(s)
- Akram R Alaboudi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ismail M Malkawi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Ehab A Abu-Basha
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Javier Guitian
- Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA Hatfield, UK
| |
Collapse
|
16
|
Noreen Z, Siddiqui F, Javed S, Wren BW, Bokhari H. Transmission of multidrug-resistant Campylobacter jejuni to children from different sources in Pakistan. J Glob Antimicrob Resist 2020; 20:219-224. [DOI: 10.1016/j.jgar.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
|
17
|
Prevalence and Antibiotic Resistance Patterns of Campylobacter spp. Isolated from Broiler Chickens in the North of Tunisia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7943786. [PMID: 30671471 PMCID: PMC6323509 DOI: 10.1155/2018/7943786] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/28/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
The aim of the current study is to assess the prevalence of Campylobacter infection in broiler chickens, raised in intensive production conditions, and to evaluate the antimicrobial susceptibility of recovered Campylobacter isolates. A total of 590 cloacal swab samples were taken from 13 broiler chicken flocks in the North East of Tunisia. All samples were tested for the presence of thermophilic Campylobacter by culture and PCR, targeting the mapA and ceuE genes, respectively. Susceptibility to antimicrobial drugs was tested against 8 antibiotics. Prevalence of Campylobacter infection, relationship with geographic origins and seasons, antimicrobial resistance rates and patterns were analyzed. Total prevalence of Campylobacter infection in broiler flocks was in the range of 22.4%, with a predominance of C. jejuni (68.9%), followed by C. coli (31.1%). Positive association was highlighted between the infection level and the season (P < 0.001), but no link was emphasized considering the geographic origin. Antimicrobial susceptibility testing revealed very high resistance rates detected against macrolide, tetracycline, quinolones, and chloramphenicol, ranging from 88.6% to 100%. Lower resistance prevalence was noticed for β-lactams (47% and 61.4%) and gentamicin (12.9%). 17 R-type patterns were observed, and a common pattern was found in 30.3% of isolates. This study provides updates and novel data on the prevalence and the AMR of broiler campylobacters in Tunisia, revealing the occurrence of high resistance to several antibiotics and emphasizing the requirement of better surveillance and careful regulation of antimicrobials use.
Collapse
|
18
|
Occurrence of Campylobacter in retail meat in Lahore, Pakistan. Acta Trop 2018; 185:42-45. [PMID: 29709629 DOI: 10.1016/j.actatropica.2018.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022]
Abstract
Campylobacter, one of the emerging zoonotic pathogens, is worldwide in distribution. This thermo-tolerant pathogen is one of the leading causes of diarrhea and gastroenteritis in humans. The main sources of infection are contaminated meat and meat products. A cross-sectional study was conducted to estimate the prevalence of Campylobacter species in retail meat in the Lahore district of Pakistan from September 2014 to January 2015. A total of 600 samples (200 samples each of beef, mutton, and chicken) were collected from retail shops through convenience sampling and preceded for Campylobacter contamination using the ISO 10272-1:2006 (E) method. Campylobacter was present in all three types of meat; the highest prevalence being recorded in chicken meat (29%) followed by mutton (18%) and beef (15.5%). Campylobacters were isolated from 125 (20.8%) samples out of the 600 meat samples. Campylobacter jejuni was more common (74.4%) than C. coli (25.6%). The highest number of Campylobacters were isolated in September (25/125) and November (23/125) while low numbers were isolated in October and December with isolates rate of (17/125) and (19/125), respectively. The highest prevalence was seen in the oldest and overpopulated town of Data Gunj Bakhsh 16% (20/125) while lowest prevalence was seen in a newer and least populated town of Gulburg (7/125). These results indicate that Campylobacter species are circulating in various meat sources in Lahore and that it may pose a threat to public health.
Collapse
|