1
|
Falih MA, Altemimi AB, Hamed Alkaisy Q, Awlqadr FH, Abedelmaksoud TG, Amjadi S, Hesarinejad MA. Enhancing safety and quality in the global cheese industry: A review of innovative preservation techniques. Heliyon 2024; 10:e40459. [PMID: 39654744 PMCID: PMC11625285 DOI: 10.1016/j.heliyon.2024.e40459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The global cheese industry faces challenges in adopting new preservation methods due to microbiological decay and health risks associated with chemical preservatives. Ensuring the safety and quality control of hard and semi-hard cheeses is crucial given their prolonged maturation and storage. Researchers are urged to create cheese products emphasizing safety, minimal processing, eco-labels, and clean labels to address consumer health and environmental worries. This review aims to explore effective strategies for ensuring the safety and quality of ripened cheeses, covering traditional techniques like aging, maturation, and salting, along with innovative methods such as modified and vacuum packaging, high-pressure processing, and active and intelligent packaging. Additionally, sustainable cheese preservation approaches, their impact on shelf life extension, and the physiochemical and quality attributes post-preservation are all analyzed. Overall, the cheese industry stands to benefit from this evaluation through enhanced market value, increased consumer satisfaction, and better environmental sustainability.The integration of novel preservation techniques in the cheese industry not only addresses current challenges but also paves the way for a more sustainable and consumer-oriented approach. By continually refining and implementing safety measures, quality control processes, and environmentally friendly practices, cheese producers can meet evolving consumer demands while ensuring the longevity and integrity of their products. Through a concerted effort to embrace innovation and adapt to changing market dynamics, the global cheese industry is poised to thrive in a competitive landscape where safety, quality, and sustainability are paramount.
Collapse
Affiliation(s)
- Mohammed A. Falih
- Department of Dairy Science and Technology, College of Food Sciences, University of AL-Qasim Green, Al Qasim, Iraq
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Qausar Hamed Alkaisy
- Department of Dairy Science and Technology, College of Food Sciences, University of AL-Qasim Green, Al Qasim, Iraq
| | - Farhang H. Awlqadr
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran
| | | | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Mohamad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
2
|
Soutelino MEM, Silva ACDO, Rocha RDS. Natural Antimicrobials in Dairy Products: Benefits, Challenges, and Future Trends. Antibiotics (Basel) 2024; 13:415. [PMID: 38786143 PMCID: PMC11117376 DOI: 10.3390/antibiotics13050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This review delves into using natural antimicrobials in the dairy industry and examines various sources of these compounds, including microbial, plant, and animal sources. It discusses the mechanisms by which they inhibit microbial growth, for example, by binding to the cell wall's precursor molecule of the target microorganism, consequently inhibiting its biosynthesis, and interfering in the molecule transport mechanism, leading to cell death. In general, they prove to be effective against the main pathogens and spoilage found in food, such as Escherichia coli, Staphylococcus aureus, Bacillus spp., Salmonella spp., mold, and yeast. Moreover, this review explores encapsulation technology as a promising approach for increasing the viability of natural antimicrobials against unfavorable conditions such as pH, temperature, and oxygen exposure. Finally, this review examines the benefits and challenges of using natural antimicrobials in dairy products. While natural antimicrobials offer several advantages, including improved safety, quality, and sensory properties of dairy products, it is crucial to be aware of the challenges associated with their use, such as potential allergenicity, regulatory requirements, and consumer perception. This review concludes by emphasizing the need for further research to identify and develop effective and safe natural antimicrobials for the dairy industry to ensure the quality and safety of dairy products for consumers.
Collapse
Affiliation(s)
- Maria Eduarda Marques Soutelino
- Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; (M.E.M.S.); (A.C.d.O.S.)
| | - Adriana Cristina de Oliveira Silva
- Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; (M.E.M.S.); (A.C.d.O.S.)
| | - Ramon da Silva Rocha
- Food Engineering Department (ZEA), College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), 13635-900 Pirassununga, Brazil
| |
Collapse
|
3
|
Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Pourjafar H, Jafari SM. The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins. Curr Pharm Biotechnol 2024; 25:962-980. [PMID: 37264621 DOI: 10.2174/1389201024666230601141627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host's health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Department of Agricultural Research, Razi Vaccine and Serum Research Institute, Education and Extension Organization (AREEO), Tehran. Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Chi-Ching Lee
- Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Turkey
| | - Azadeh Rashidimehr
- Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Lorestan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
5
|
Ali MS, Lee EB, Lim SK, Suk K, Park SC. Isolation and Identification of Limosilactobacillus reuteri PSC102 and Evaluation of Its Potential Probiotic, Antioxidant, and Antibacterial Properties. Antioxidants (Basel) 2023; 12:238. [PMID: 36829797 PMCID: PMC9952246 DOI: 10.3390/antiox12020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
We isolated and characterized Limosilactobacillus reuteri PSC102 and evaluated its probiotic, antioxidant, and antibacterial properties. We preliminarily isolated 154 candidates from pig feces and analyzed their Gram nature, morphology, and lactic acid production ability. Based on the results, we selected eight isolates and tested their ability to produce digestive enzymes. Finally, we identified one isolate using 16S rRNA gene sequencing, namely, L. reuteri PSC102. We tested its probiotic properties in vitro, including extracellular enzyme activities, low pH and bile salt tolerance, autoaggregation and coaggregation abilities, adhesion to Caco-2 cells, antibiotic susceptibility, and hemolytic and gelatinase activities. Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging and reducing power assays. The antibacterial activity of this strain and its culture supernatant against enterotoxigenic Escherichia coli were evaluated using a time-kill assay and disk diffusion method, respectively. L. reuteri PSC102 exhibited tolerance toward low pH and bile salt and did not produce harmful enzymes or possess hemolytic and gelatinase activities. Its intact cells and cell-free extract exhibited potential antioxidant activities, and significantly inhibited the growth of enterotoxigenic E. coli. Our results demonstrate that L. reuteri PSC102 is a potential probiotic candidate for developing functional feed.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Rodrigues F, Cedran M, Bicas J, Sato H. Inhibitory effect of reuterin-producing Limosilactobacillus reuteri and edible alginate-konjac gum film against foodborne pathogens and spoilage microorganisms. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Sun MC, Hu ZY, Li DD, Chen YX, Xi JH, Zhao CH. Application of the Reuterin System as Food Preservative or Health-Promoting Agent: A Critical Review. Foods 2022; 11:foods11244000. [PMID: 36553742 PMCID: PMC9778575 DOI: 10.3390/foods11244000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Plant Science, Jilin University, Changchun 130062, China
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zi-Yi Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| |
Collapse
|
8
|
Enhancing the antibacterial activity of Lactobacillus reuteri against Escherichia coli by random mutagenesis and delineating its mechanism. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zhang L, Ben Said L, Hervé N, Zirah S, Diarra MS, Fliss I. Effects of drinking water supplementation with Lactobacillus reuteri, and a mixture of reuterin and microcin J25 on the growth performance, caecal microbiota and selected metabolites of broiler chickens. J Anim Sci Biotechnol 2022; 13:34. [PMID: 35246239 PMCID: PMC8897850 DOI: 10.1186/s40104-022-00683-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Since the overuse of antibiotics in animal production has led to a selection of antibiotic-resistant pathogens that affect humans and animals as well. Scientists are therefore searching for novel natural alternatives to antibiotics. In this study Lactobacillus reuteri and a combination of reuterin and microcin J25 (RJ) were evaluated as promoters of growth and modulators of the cecal microbiota and metabolite profiles in broiler chickens. One-day-old Cobb 500 male broilers were distributed to 8 treatments: negative control (without antibiotic), positive control (bacitracin), three concentrations of RJ and three doses of L. reuteri plus glycerol. The birds (2176, 34 per pen, 8 pens per treatment) were reared for 35 d. Results The body weight of the bacitracin and 5 mmol/L reuterin combined with 0.08 μmol/L microcin J25 (10RJ) treatment group was significantly higher than that of the negative control group (P < 0.05). L. reuteri had no significant effect on broiler growth. MiSeq high-throughput sequencing of 16S rRNA showed clustering of cecal microbial operational taxonomic unit diversity according to treatment. The influence of bacitracin and 10RJ on bacterial community overall structure was similar. They promoted Ruminococcaceae, Lachnospiraceae and Lactobacillaceae, increased the relative abundance of Faecalibacterium and decreased the abundance of Bacteroides and Alistipes, while the negative control condition favored Bacteroidaceae and Rikenellaceae. Furthermore, 10RJ increased the concentration of short-chain fatty acid in the cecum and changed the metabolome overall. Conclusions These overall suggest that 10RJ can promote a host-friendly gut environment by changing the cecal microbiome and metabolome. This combination of natural antimicrobial agents in the drinking water had a positive effect on broiler growth and may be suitable as an alternative to antibiotic growth promoters. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00683-6.
Collapse
Affiliation(s)
- Liya Zhang
- Institute of Nutrition and Functional Foods, Université Laval, QC, Québec, Canada
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, QC, Québec, Canada
| | | | - Séverine Zirah
- Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, Paris, France
| | - Moussa Sory Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, QC, Québec, Canada.
| |
Collapse
|
10
|
Reuterin-producing Limosilactobacillus reuteri: Optimization of in situ reuterin production in alginate-based filmogenic solutions. Curr Res Food Sci 2021; 4:926-931. [PMID: 34927088 PMCID: PMC8646958 DOI: 10.1016/j.crfs.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Limosilactobacillus reuteri produces reuterin via glycerol anaerobic fermentation. This compound has antimicrobial properties and is used for food preservation purposes. Filmogenic solutions constituted of polysaccharides and glycerol are also employed, however, reuterin synthesis in filmogenic solutions has not yet been reported. Thus, the aim of this study was to optimize the in situ reuterin production by L. reuteri in alginate- and glycerol based-filmogenic solution, evaluating the survival of reuterin-producing bacteria during fermentation. The study consisted of a completely randomized design employing two L. reuteri strains (DSM 20016 and DSM 17938). The filmogenic solutions were obtained using sodium alginate (20 g/L) and two independent variables were studied: glycerol (0–300 mmol/L) and initial biomass of L. reuteri (≅6, 7, and 8 log CFU/mL). The samples were analyzed every 24 h for 72 h of anaerobic fermentation (37 °C). Both L.reuteri strains confirmed the potential for reuterin production and were susceptible to the metabolite produced. The highest reuterin production was achieved using L. reuteri DSM 20016. The initial microbial biomass of 8 log CFU/mL and 100 mmol/L of glycerol increased the reuterin production. However, higher conversion yields from glycerol to reuterin were obtained using 50 mmol/L of substrate. L. reuteri strains DSM 20016 and DSM 17938 produce reuterin. In situ reuterin production was detected in filmogenic solution. Reuterin production varied with initial microbial biomass and glycerol concentration.
Collapse
|
11
|
Genome Sequence of the Reuterin-Producing Strain Limosilactobacillus reuteri INIA P572. Microbiol Resour Announc 2021; 10:e0098821. [PMID: 34881975 PMCID: PMC8656388 DOI: 10.1128/mra.00988-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limosilactobacillus reuteri is a beneficial bacterium that inhabits the gastrointestinal tract of different mammals. Diverse beneficial effects have been attributed to specific strains, in part mediated by the production of reuterin. Here, we report the draft genome sequence of L. reuteri INIA P572, a reuterin-producing strain isolated from pig feces.
Collapse
|
12
|
Diez-Echave P, Martín-Cabrejas I, Garrido-Mesa J, Langa S, Vezza T, Landete JM, Hidalgo-García L, Algieri F, Mayer MJ, Narbad A, García-Lafuente A, Medina M, Rodríguez-Nogales A, Rodríguez-Cabezas ME, Gálvez J, Arqués JL. Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients 2021; 13:1860. [PMID: 34072532 PMCID: PMC8228662 DOI: 10.3390/nu13061860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.
Collapse
Affiliation(s)
- Patricia Diez-Echave
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - José Garrido-Mesa
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Teresa Vezza
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José M. Landete
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Laura Hidalgo-García
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Francesca Algieri
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Melinda J. Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Ana García-Lafuente
- Centro para la Calidad de los Alimentos, INIA-CISC, c/José Tudela s/n, 42004 Soria, Spain;
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Alba Rodríguez-Nogales
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan L. Arqués
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| |
Collapse
|
13
|
García-Díez J, Saraiva C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2544. [PMID: 33806611 PMCID: PMC7967642 DOI: 10.3390/ijerph18052544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/30/2023]
Abstract
Starter cultures can be defined as preparations with a large number of cells that include a single type or a mixture of two or more microorganisms that are added to foods in order to take advantage of the compounds or products derived from their metabolism or enzymatic activity. In foods from animal origin, starter cultures are widely used in the dairy industry for cheese, yogurt and other fermented dairy products, in the meat industry, mainly for sausage manufacture, and in the fishery industry for fermented fish products. Usually, microorganisms selected as starter culture are isolated from the native microbiota of traditional products since they are well adapted to the environmental conditions of food processing and are responsible to confer specific appearance, texture, aroma and flavour characteristics. The main function of starter cultures used in food from animal origin, mainly represented by lactic acid bacteria, consists in the rapid production of lactic acid, which causes a reduction in pH, inhibiting the growth of pathogenic and spoilage microorganisms, increasing the shelf-life of fermented foods. Also, production of other metabolites (e.g., lactic acid, acetic acid, propionic acid, benzoic acid, hydrogen peroxide or bacteriocins) improves the safety of foods. Since starter cultures have become the predominant microbiota, it allows food processors to control the fermentation processes, excluding the undesirable flora and decreasing hygienic and manufacturing risks due to deficiencies of microbial origin. Also, stater cultures play an important role in the chemical safety of fermented foods by reduction of biogenic amine and polycyclic aromatic hydrocarbons contents. The present review discusses how starter cultures contribute to improve the microbiological and chemical safety in products of animal origin, namely meat, dairy and fishery products.
Collapse
Affiliation(s)
- Juan García-Díez
- CECAV—Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
| |
Collapse
|
14
|
Zhang G, Tan Y, Yu T, Wang S, Liu L, Li C. Synergistic antibacterial effects of reuterin and catechin against Streptococcus mutans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Al-Nabulsi AA, Osaili TM, Oqdeh SB, Olaimat AN, Jaradat ZW, Ayyash M, Holley RA. Antagonistic effects of Lactobacillus reuteri against Escherichia coli O157:H7 in white-brined cheese under different storage conditions. J Dairy Sci 2021; 104:2719-2734. [PMID: 33455758 DOI: 10.3168/jds.2020-19308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
This study aimed to investigate the survival of the foodborne pathogen Escherichia coli O157:H7 in white-brined cheeses as influenced by the presence of Lactobacillus reuteri. The white cheeses were made from pasteurized bovine milk inoculated with E. coli O157:H7 (cocktail of 3 strains) to achieve ∼5 log10 cfu/g with absence or presence of Lb. reuteri (∼6 log10 cfu/g). Cheese samples were brined in 10% or 15% NaCl solution and stored at 10°C and 25°C for 28 d. The white-brined cheeses were assessed for salt content, pH, water activity (Aw), and numbers of E. coli O157:H7, Lb. reuteri, nonstarter lactic acid bacteria (NSLAB), yeasts, and molds. Results showed that E. coli O157:H7 survived in cheese stored in both brine solutions at 10°C and 25°C regardless of the presence of Lb. reuteri. A substantial reduction was observed in cheese stored in 10% NaCl brine at 25°C, followed by cheese stored in 15% NaCl brine at 10°C by 2.64 and 2.16 log10 cfu/g, respectively, in the presence of Lb. reuteri and by 1.02 and 1.87 log10 cfu/g, respectively, in the absence of Lb. reuteri under the same conditions. The pathogen in brine solutions survived but at a lower rate. Furthermore, the growth of Lb. reuteri and NSLAB were enhanced or slightly decreased in cheese and brine by 28 d, respectively. The salt concentrations of cheese ranged from 4 to 6% and 5 to 7% (wt/wt), during 28-d ripening in 10 and 15% brine, respectively. Values of pH and Aw slightly increased at d 1 after exposure to brine and reached 4.69 to 6.08 and 0.91 to 0.95, respectively, in all treatments. Therefore, the addition of Lb. reuteri can be used as a biopreservation method to inhibit the survival of E. coli O157:H7 in white-brined cheese when combined with the appropriate temperature, NaCl level, and storage time.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Clinical Nutrition and Dietetics, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Saba B Oqdeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13115, Jordan
| | - Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mutamed Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
16
|
Zhang Z, Wang K, Oh JH, Zhang S, van Pijkeren JP, Cheng CC, Ren D, Wei H, Gänzle MG, Walter J. A Phylogenetic View on the Role of Glycerol for Growth Enhancement and Reuterin Formation in Limosilactobacillus reuteri. Front Microbiol 2020; 11:601422. [PMID: 33408707 PMCID: PMC7779471 DOI: 10.3389/fmicb.2020.601422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Lineages within the species Limosilactobacillus reuteri have specialized to various hosts and their genomes reflect these adaptations. The pdu-cbi-cob-hem gene cluster is conserved in most human and poultry isolates but is infrequent in rodent and porcine isolates. This gene cluster confers the transformation of glycerol into 3-hydroxy-propionaldehyde (reuterin), which can either be secreted and function as precursor of the antimicrobial compound acrolein or serve as an electron acceptor that enhances the organisms' growth rate. However, it remains unclear which of these two functions is more relevant for L. reuteri evolution and ecology. Here we characterized the effect of glycerol on growth rate and reuterin formation in L. reuteri strains across different phylogenetic lineages during growth on ecologically relevant carbohydrates. We further evaluated the innate reuterin resistance among these strains to infer a possible role of reuterin in the evolution of strains. Results revealed that the poultry/human lineage VI strain, L. reuteri DSM 17938 shows more growth enhancement through glycerol and greater capacity for reuterin production on glucose and maltose as compared to human lineage II strains. Interestingly, reuterin production in lineage II strains was significantly elevated on raffinose and lactose, reaching levels similar to DSM 17938. On all carbohydrates tested, reuterin production occurred during the exponential growth phase and became undetectable during the stationary growth phase. The amount of reuterin produced was sufficient to inhibit E. coli, suggesting that it could be ecologically relevant, but the resistance towards reuterin among L. reuteri strains was highly variable and, for the most part, unrelated to the strain's capacity for reuterin production. Overall, the findings suggest differences in the substrate-specific regulation of the pdu cluster in L. reuteri lineages that might be reflective of their ecological niches, e.g., chicken foregut versus human infant and adult large intestine. Such information can inform future studies on the ecology of L. reuteri and guide the development of synbiotic applications to improve the therapeutic use of this species.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton, AB, Canada
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Shenwei Zhang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Christopher C. Cheng
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Dayong Ren
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Michael G. Gänzle
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jens Walter
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, CEGIIR, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Musiy LY, Tsisaryk OY, Slyvka IM, Kushnir II. Antagonistic activity of strains of lactic acid bacteria isolated from Carpathian cheese. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A promising area for improving probiotics is the search for new sources of strains and the development of complex preparations which would include different types of bacterial cultures that complement each other. Sources of selection may be traditional dairy products, in particular, cheeses made from raw milk. Wild strains can be endowed with antibacterial properties. The antagonistic action of lactic acid bacteria (LAB) has long attracted the attention of researchers and scientists. The aim of the study was to investigate the antagonistic activity against pathogenic and opportunistic microorganisms of LAB strains isolated from traditional Carpathian cheese. Three samples of cheese were selected for the research – one sample of brynza and budz (brynza before salting), made in the highlands of the Carpathians, and one sample of budz, made in the foothills. LAB were identified using classic microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, 16S rRNA gene sequencing). The objects of our studies were five strains of LAB: Lactococcus lactis IMAU32258, L. garvieae JB2826472, Enterococcus durans FMA8, E. faecium L3-23, E. faecium IMAU9421. Technological parameters such as acid-forming activity of milk fermentation, resistance to high concentrations of NaCl and temperature optimums of cultivation were taken as the main criteria for assessing the suitability of LAB for inclusion in fermentation preparations. Antagonistic activity was determined by agar diffusion (agar well method) and optic density of test cultures using a Multiscan FC microplate reader (Thermo scientifiс, USA) at the wave of 620 nm. There were four reference strains of pathogenic and opportunistic microorganisms were test cultures: Listeria monocytogenes PCM 2191, Staphylococcus aureus PCM 458, Escherichia coli PCM 2208, Salmonella typhimurium PCM 2182. Strains of the test cultures were received from the collection of microorganisms of the Institute of Biology and Biotechnology the (University of Rzeszów, Poland). According to the ability of LAB strains to form lactic acid, L. lactis IMAU32258 was the best acid-forming agent with an acid-forming energy of 94 °T. E. faecium was characterized by moderate levels of active and titratable acidity. Less pronounced acid-forming ability was determined for the species E. durans and L. garvieae. Cultures of the genus E. faecium, L. garvieae and E. durans were the most resistant to high concentrations of NaCl (6.5%). Regarding temperature optimums, we found that strains of E. faecium and E. durans species grew both at temperatures of 10, 15 and 45 °C, whereas no growth of L. lactis IMAU32258 and L. garvieae JB282647 2 was observed at 45 °C. Among the studied bacteria, the strains of E. durans FMA8 and E. faecium L3-23 were characterized by the highest antagonistic activity in producing the largest zones of growth inhibition and optic density of pathogenic and opportunistic microorganisms. The strain L. garvieae JB282647 2 exhibited the lowest level of antagonistic activity against pathogenic and opportunistic microorganisms.
Collapse
|
18
|
Landete JM, Langa S, Escudero C, Peirotén Á, Arqués JL. Fluorescent detection of nisin by genetically modified Lactococcus lactis strains in milk and a colonic model: Application of whole-cell nisin biosensors. J Biosci Bioeng 2020; 129:435-440. [PMID: 31757606 DOI: 10.1016/j.jbiosc.2019.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
Detection of bioactive peptides in complex ecosystems like intestinal environment is a difficult task. In this study, we developed two new bioreporters for nisin based on Lactococcus lactis NZ9000 transformed with the vector pNZ:Nis-aFP or pNZ:Nis-mCherry, that encoded for the anaerobic fluorescent protein evoglow-Pp1 (aFP) or the fluorescent protein mCherry, respectively. The biosensors were used to study nisin A production by L. lactis INIA 650 in milk and in a colonic model. The use of L. lactis NZ9000 pNZ:Nis-aFP as a biosensor allowed the detection of nisin produced by L. lactis INIA 650 in milk, but not in the in vitro colonic model. In milk, this reporter was induced by direct addition of 10 ng/ml nisin while, in the colonic model, nisin concentrations of 50 ng/ml were necessary. However, the reporter system based on pNZ:Nis-mCherry showed a higher sensibility, detecting nisin concentrations of 1 ng/ml produced by L. lactis INIA 650 in colonic media using agar diffusion or cross streak bioassays.
Collapse
Affiliation(s)
- José M Landete
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - Carlos Escudero
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Juan L Arqués
- Departamento de Tecnología de Alimentos, INIA, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
19
|
Drakula S, Novotni D, Mustač NČ, Voučko B, Krpan M, Hruškar M, Ćurić D. A Simple HS-SPME/GC-MS Method for Determination of Acrolein from Sourdough to Bread. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01612-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Gao Z, Daliri EBM, Wang J, Liu D, Chen S, Ye X, Ding T. Inhibitory Effect of Lactic Acid Bacteria on Foodborne Pathogens: A Review. J Food Prot 2019; 82:441-453. [PMID: 30794461 DOI: 10.4315/0362-028x.jfp-18-303] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Foodborne pathogens are serious challenges to food safety and public health worldwide. Fermentation is one of many methods that may be used to inactivate and control foodborne pathogens. Many studies have reported that lactic acid bacteria (LAB) can have significant antimicrobial effects. The current review mainly focuses on the antimicrobial activity of LAB, the mechanisms of this activity, competitive growth models, and application of LAB for inhibition of foodborne pathogens.
Collapse
Affiliation(s)
- Zhenhong Gao
- 1 Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,2 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Eric Banan-Mwine Daliri
- 3 Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jun Wang
- 4 College of Food Science and Engineering, Qingdao Agricultural University, Chengyang, Qingdao 266109, People's Republic of China (ORCID: http://orcid.org/0000-0001-7676-0493 )
| | - Donghong Liu
- 1 Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shiguo Chen
- 1 Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingqian Ye
- 1 Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tian Ding
- 1 Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,2 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
21
|
Morandi S, Silvetti T, Battelli G, Brasca M. Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Campagnollo FB, Margalho LP, Kamimura BA, Feliciano MD, Freire L, Lopes LS, Alvarenga VO, Cadavez VAP, Gonzales-Barron U, Schaffner DW, Sant'Ana AS. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol 2018. [PMID: 29526214 DOI: 10.1016/j.fm.2018.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Artisanal raw milk cheeses are highly appreciated dairy products in Brazil and ensuring their microbiological safety has been a great need. This study reports the isolation and characterization of lactic acid bacteria (LAB) strains with anti-listerial activity, and their effects on Listeria monocytogenes during refrigerated shelf-life of soft Minas cheese and ripening of semi-hard Minas cheese. LAB strains (n = 891) isolated from Minas artisanal cheeses (n = 244) were assessed for anti-listerial activity by deferred antagonism assay at 37 °C and 7 °C. The treatments comprised the production of soft or semi-hard Minas cheeses using raw or pasteurized milk, and including the addition of selected LAB only [Lactobacillus brevis 2-392, Lactobacillus plantarum 1-399 and 4 Enterococcus faecalis (1-37, 2-49, 2-388 and 1-400)], L. monocytogenes only, selected LAB co-inoculated with L. monocytogenes, or without any added cultures. At 37 °C, 48.1% of LAB isolates showed anti-listerial capacity and 77.5% maintained activity at 7 °C. Selected LAB strains presented a bacteriostatic effect on L. monocytogenes in soft cheese. L. monocytogenes was inactivated during the ripening of semi-hard cheeses by the mix of LAB added. Times to attain a 4 log-reduction of L. monocytogenes were 15 and 21 days for semi-hard cheeses produced with raw and pasteurized milk, respectively. LAB with anti-listerial activity isolated from artisanal Minas cheeses can comprise an additional barrier to L. monocytogenes growth during the refrigerated storage of soft cheese and help shorten the ripening period of semi-hard cheeses aged at ambient temperature.
Collapse
Affiliation(s)
- Fernanda B Campagnollo
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Larissa P Margalho
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Bruna A Kamimura
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo D Feliciano
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Letícia S Lopes
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Verônica O Alvarenga
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Vasco A P Cadavez
- CIMO Mountain Research Center, School of Agriculture, Polytechnic Institute of Braganza, Braganza, Portugal
| | - Ursula Gonzales-Barron
- CIMO Mountain Research Center, School of Agriculture, Polytechnic Institute of Braganza, Braganza, Portugal
| | - Donald W Schaffner
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers - The State University of New Jersey, New Brunswick, NJ, USA
| | - Anderson S Sant'Ana
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|