1
|
Rodriguez OT, Valero MF, Gómez-Tejedor JA, Diaz L. Performance of Biodegradable Active Packaging in the Preservation of Fresh-Cut Fruits: A Systematic Review. Polymers (Basel) 2024; 16:3518. [PMID: 39771371 PMCID: PMC11679589 DOI: 10.3390/polym16243518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Fresh-cutting fruits is a common practice in markets and households, but their short shelf life is a challenge. Active packaging is a prominent strategy for extending food shelf life. A systematic review was conducted following the PRISMA guidelines to explore the performance and materials used in biodegradable active packaging for fresh-cut fruits. Sixteen studies were included from a search performed in July 2024 on Scopus and Web of Science databases. Only research articles in English on biodegradable active films tested on cut fruits were selected. Polysaccharides were the most employed polymer in film matrices (87.5%). Antioxidant and anti-browning activities were the active film properties that were most developed (62.5%), while plant extracts and essential oils were the most employed active agents (56.3%), and fresh-cut apples were the most commonly tested fruit (56.3%). Appropriate antioxidant, antibacterial, and barrier properties for fresh-cut fruit packaging were determined. Furthermore, there is a wide range of experimental designs to evaluate shelf-life improvements. In each case, shelf life was successfully extended. The findings show that different storage conditions, fruits, and material configurations can lead to different shelf-life extension performances. Thus, biodegradable active packaging for fresh-cut fruits has a strong potential for growth in innovative, sustainable, and functional ways.
Collapse
Affiliation(s)
- Oscar T. Rodriguez
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (O.T.R.); (M.F.V.)
| | - Manuel F. Valero
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (O.T.R.); (M.F.V.)
| | - José A. Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Luis Diaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia
| |
Collapse
|
2
|
Kowalonek J, Hamieau M, Szydłowska-Czerniak A. Influence of Different Deep Eutectic Solvents and Plant Extracts on Antioxidant, Mechanical, and Color Properties of Alginate Film. Polymers (Basel) 2024; 16:2084. [PMID: 39065401 PMCID: PMC11280554 DOI: 10.3390/polym16142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Eco-friendly functional alginate films with plant extracts (chokeberry pomace (ChP) or lemon balm (LB) herb) were obtained. Moreover, deep eutectic solvents (DESs) based on choline chloride, glucose, and betaine were used to acquire the active substances from plant materials. The films were tested regarding the antioxidant, mechanical, and color properties. The results revealed that the films' antioxidant capacities (AC) depended on the extract type and DES used, namely AC values for alginate films with LB were higher than those with ChP. Moreover, the results of the films' mechanical properties depended only on the DES, which acted as a plasticizer in most cases. Furthermore, the color analysis of the studied films showed a dependence on the type of extract and DES. The lightness (L*) was influenced only by the DES type, while the solvent and extract type affected the a* and b* values. Our results show that the films can be applied as active packaging for food products.
Collapse
Affiliation(s)
- Jolanta Kowalonek
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Malo Hamieau
- Univ Rennes, IUT de Rennes, F-35000 Rennes, France;
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| |
Collapse
|
3
|
Yan ZH, Dou RR, Wei F, Yang JH, Cui S, Sun MJ, Kang CY, Zhao CQ. Effects of eugenol on physicochemical properties of sturgeon skin collagen-chitosan composite membrane. J Food Sci 2024; 89:4032-4046. [PMID: 38778552 DOI: 10.1111/1750-3841.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.
Collapse
Affiliation(s)
- Zi-Heng Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Rong-Rong Dou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Fang Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Jia-Hua Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Shan Cui
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Mei-Jun Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Yu Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Qing Zhao
- Department of Continuing Education, Baoding Open University, Baoding, P. R. China
| |
Collapse
|
4
|
Bhatia S, Shah YA, Al‐Harrasi A, Ullah S, Anwer MK, Koca E, Aydemir LY, Khan MR. A novel film based on a cellulose/sodium alginate/gelatin composite activated with an ethanolic fraction of Boswellia sacra oleo gum resin. Food Sci Nutr 2024; 12:1056-1066. [PMID: 38370062 PMCID: PMC10867510 DOI: 10.1002/fsn3.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 02/20/2024] Open
Abstract
Boswellia sacra and its derivatives exhibit notable bioactive properties, which have been the subject of extensive scientific research; however, their potential applications in food packaging remain largely untapped. In the current study, cellulose, sodium alginate, and gelatin composite edible films were fabricated with the addition of different concentrations (0.2% and 0.3%) of the ethanolic fraction of Boswellia sacra oleo gum resin (BSOR). The resultant films were examined for their physical, chemical, mechanical, barrier, optical, and antioxidant properties. Moreover, the films were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to study the impact of incorporating BSOR on the morphological, crystalline, and chemical properties of the films. The addition of BSOR increased the film thickness (0.026-0.08 mm), water vapor permeability (0.210-0.619 (g.mm)/(m2.h.kPa), and the intensity of the yellow color (3.01-7.20) while reducing the values of both tensile strength (6.67-1.03 MPa) and elongation at break (83.50%-48.81%). SEM and FTIR analysis confirmed the interaction between the BSOR and film-forming components. The antioxidant properties of the edible films were significantly increased with the addition of BSOR. The comprehensive findings of the study demonstrated that BSOR possesses the potential to serve as an efficient natural antioxidant agent in the fabrication of edible films.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
- School of Health ScienceUniversity of Petroleum and Energy StudiesDehradunIndia
- Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Sana Ullah
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐kharjSaudi Arabia
| | - Esra Koca
- Department of Food Engineering, Faculty of EngineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Faculty of EngineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey
| | - Mahbubar Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
5
|
Dirpan A, Ainani AF, Djalal M. A Review on Biopolymer-Based Biodegradable Film for Food Packaging: Trends over the Last Decade and Future Research. Polymers (Basel) 2023; 15:2781. [PMID: 37447428 DOI: 10.3390/polym15132781] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, much attention has been paid to the use of biopolymers as food packaging materials due to their important characteristics and properties. These include non-toxicity, ease of availability, biocompatibility, and biodegradability, indicating their potential as an alternative to conventional plastic packaging that has long been under environmental scrutiny. Given the current focus on sustainable development, it is imperative to develop studies on biopolymers as eco-friendly and sustainable food packaging materials. Therefore, the aim of this review is to explore trends and characteristics of biopolymer-based biodegradable films for food packaging, analyze the contribution of various journals and cooperation between countries, highlight the most influential authors and articles, and provide an overview of the social, environmental, and economic aspects of biodegradable films for food packaging. To achieve this goal, a bibliometric analysis and systematic review based on the PRISMA method were conducted. Relevant articles were carefully selected from the Scopus database. A bibliometric analysis was also conducted to discuss holistically, comprehensively, and objectively biodegradable films for food packaging. An increasing interest was found in this study, especially in the last 3 years with Brazil and China leading the number of papers on biodegradable films for food packaging, which were responsible for 20.4% and 12.5% of the published papers, respectively. The results of the keyword analysis based on the period revealed that the addition of bioactive compounds into packaging films is very promising because it can increase the quality and safety of packaged food. These results reveal that biodegradable films demonstrate a positive and promising trend as food packaging materials that are environmentally friendly and promote sustainability.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar 90245, Indonesia
| | - Andi Fadiah Ainani
- Research Group for Post-Harvest Technology and Biotechnology, Makassar 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
6
|
‘Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023; 28:molecules28062631. [PMID: 36985603 PMCID: PMC10052168 DOI: 10.3390/molecules28062631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Correspondence: ; Tel.: +006-088-320000 (ext. 8713); Fax: +006-088-320993
| | | | | |
Collapse
|
7
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Pedro AC, Paniz OG, Fernandes IDAA, Bortolini DG, Rubio FTV, Haminiuk CWI, Maciel GM, Magalhães WLE. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants (Basel) 2022; 11:1644. [PMID: 36139717 PMCID: PMC9495759 DOI: 10.3390/antiox11091644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Biomaterials come from natural sources such as animals, plants, fungi, algae, and bacteria, composed mainly of protein, lipid, and carbohydrate molecules. The great diversity of biomaterials makes these compounds promising for developing new products for technological applications. In this sense, antioxidant biomaterials have been developed to exert biological and active functions in the human body and industrial formulations. Furthermore, antioxidant biomaterials come from natural sources, whose components can inhibit reactive oxygen species (ROS). Thus, these materials incorporated with antioxidants, mainly from plant sources, have important effects, such as anti-inflammatory, wound healing, antitumor, and anti-aging, in addition to increasing the shelf-life of products. Aiming at the importance of antioxidant biomaterials in different technological segments as biodegradable, economic, and promising sources, this review presents the main available biomaterials, antioxidant sources, and assigned biological activities. In addition, potential applications in the biomedical and industrial fields are described with a focus on innovative publications found in the literature in the last five years.
Collapse
Affiliation(s)
| | | | | | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Fernanda Thaís Vieira Rubio
- Departamento de Engenharia Química, Universidade de São Paulo, Escola Politécnica, Sao Paulo 05508-080, Sao Paulo, Brazil
| | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 81280-340, Paraná, Brazil
| | - Washington Luiz Esteves Magalhães
- Embrapa Florestas, Colombo 83411-000, Paraná, Brazil
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba 81531-990, Paraná, Brazil
| |
Collapse
|
9
|
Wu Y, Ma Y, Gao Y, Liu Y, Gao C. Poly (lactic acid)-based pH responsive membrane combined with chitosan and alizarin for food packaging. Int J Biol Macromol 2022; 214:348-359. [PMID: 35716790 DOI: 10.1016/j.ijbiomac.2022.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
A poly (lactic acid) (PLA) -based functional partition composite membrane (PLA/CA) containing chitosan (CS) and alizarin (AL) was designed by solution casting method. The PLA/CA membrane contains the antibacterial zone of the edge part (PLA/CS) and the pH response detection zone of the central part (PLA/AL). At the same time, the environmentally friendly plasticizer tributyl citrate (TBC) was added to make the prepared PLA/CA composite membrane have good flexibility and high transparency. The results of FE-SEM and FTIR showed that CS and AL were uniformly dispersed in PLA matrix and had good compatibility with PLA. The antioxidant activities of PLA/CS and PLA/AL composite films were 43.3 % and 72.8 %, respectively. At the same time, the inhibitory rates of PLA/CS membrane against Escherichia coli and Staphylococcus aureus were as high as 87.91 % and 75.17 %, respectively. PLA/AL films exhibit excellent UV barrier properties. When the environmental pH (ammonia and acetic acid vapor) changed repeatedly, the PLA/AL membrane showed reversible color change of yellow under acidic condition and purple under alkaline condition. During the packaging and storage of chicken breast meat, the freshness of chicken breast meat can be detected by the color change of functional PLA/CA composite membrane.
Collapse
Affiliation(s)
- Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Ma
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yiliang Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuetao Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
10
|
Preparation and characterization of chitosan/zein film loaded with lemon essential oil: Effects on postharvest quality of mushroom (Agaricus bisporus). Int J Biol Macromol 2021; 192:635-643. [PMID: 34656533 DOI: 10.1016/j.ijbiomac.2021.10.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
In this study, different concentrations of lemon essential oils (LEO) were incorporated into chitosan/zein complex film (C/Z/L films) to improve its antioxidant and antimicrobial capacity, and the effects of C/Z/L films on mushroom quality were evaluated at 4 °C for 12 d. The antioxidant and antimicrobial activity of C/Z films were effectively improved by addition of LEO in a concentration-dependent manner. What's more, EAB value and gas permeability increased while TS value and water vapor permeability decreased upon the gradual increase of LEO content. During the entire storage, C/Z/L films were effective in suppressing PPO and POD activity of mushrooms as well as inhibiting the growth of microorganism. Mushrooms packaged with the film containing 6% LEO showed the lowest browning index and respiration rate. In addition, the C/Z/L film-treated mushrooms exhibited higher antioxidant capacity and more satisfactory texture properties. The results of our study presented that C/Z active film loaded with LEO could be used to maintain the postharvest quality of mushrooms.
Collapse
|
11
|
Khan MR, Di Giuseppe FA, Torrieri E, Sadiq MB. Recent advances in biopolymeric antioxidant films and coatings for preservation of nutritional quality of minimally processed fruits and vegetables. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Santos FH, Siqueira LE, Cardoso GP, Molina G, Pelissari FM. Antioxidant packaging development and optimization using agroindustrial wastes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabiana Helen Santos
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Luana Elisa Siqueira
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Giselle Pereira Cardoso
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Franciele Maria Pelissari
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| |
Collapse
|
13
|
Development of active packaging film from sodium alginate/carboxymethyl cellulose containing shallot waste extracts for anti-browning of fresh-cut produce. Int J Biol Macromol 2021; 188:790-799. [PMID: 34384801 DOI: 10.1016/j.ijbiomac.2021.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Owing to growing concerns about making pollution-free sustainable environment by reducing the dumping of agricultural waste and convert it into valuable product is a key to carry out the present study. The ultimate goal of this study is to convert onion solid wastes (OSWs) into active packaging and evaluating the anti-browning effect due to the OSWs holding rich polyphenols and antioxidants. The active packaging film was fabricated by using sodium alginate (SA) and carboxymethyl cellulose (CMC) along with SOWEs such as peel and stalk at 0.2% and 0.5% concentration. The film made with SA/CMC/SOWEs had good physical, mechanical, optical and barrier property, higher phenolic and antioxidant activity compared to control. In addition, the effect of SA/CMC/SOWEs film packaging on anti-browning and quality of fresh-cut apple and potato stored at 4 °C was studied. The results show the SA/CMC/SOWEs film had better effect on controlling browning index in fresh-cut apple and potato over the storage of 12 days and 5 days. This study concludes that the SA/CMC film developed with shallot stalk extract can be used for wrapping of fresh-cut fruits and vegetables. It also prevents browning and maintains the overall quality than control and shallot peel incorporated film.
Collapse
|
14
|
Barone AS, Matheus JRV, de Souza TSP, Moreira RFA, Fai AEC. Green-based active packaging: Opportunities beyond COVID-19, food applications, and perspectives in circular economy-A brief review. Compr Rev Food Sci Food Saf 2021; 20:4881-4905. [PMID: 34355490 DOI: 10.1111/1541-4337.12812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
The development of biodegradable packaging, based on agro-industrial plant products and by-products, can transform waste into products with high added value and reduce the use of conventional nonrenewable packaging. Green-based active packaging has a variety of compounds such as antimicrobials, antioxidants, aromatics, among others. These compounds interact with packaged products to improve food quality and safety and favor the migration of bioactive compounds from the polymeric matrix to food. The interest in the potential hygienic-sanitary benefit of these packages has been intensified during the COVID-19 pandemic, which made the population more aware of the relevant role of packaging for protection and conservation of food. It is estimated that the pandemic scenario expanded food packaging market due to shift in eating habits and an increase in online purchases. The triad health, sustainability, and circular economy is a trend in the development of packaging. It is necessary to minimize the consumption of natural resources, reduce the use of energy, avoid the generation of waste, and emphasize the creation of social and environmental values. These ideas underpin the transition from the emphasis on the more subjective discourse to the emphasis on the more practical method of thinking about the logic of production and use of sustainable packaging. Presently, we briefly review some trends and economic issues related to biodegradable materials for food packaging; the development and application of bio-based active films; some opportunities beyond COVID-19 for food packaging segment; and perspectives in circular economy.
Collapse
Affiliation(s)
- Andreza Salles Barone
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | | | - Ricardo Felipe Alves Moreira
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Collective Health Department, Biomedical Institute, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Zhang Y, Wang B, Lu F, Wang L, Ding Y, Kang X. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1237-1248. [PMID: 33979271 DOI: 10.1080/19440049.2021.1885745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nowadays, the food industry is focused on improving the shelf life of products by controlling lipid oxidation using natural antioxidants. The study of natural antioxidants is a field that attracts great interest because of their greater safety compared to synthetic ones. Plant-derived antioxidants being eco-friendly and effective are increasingly playing an important role in food preservation. When incorporated into active packaging, plant-derived antioxidants have no direct contact with foods, and will not change the colour or taste of the foods. They will, however, inhibit the development of rancidity, retard formation of toxic oxidation products, maintain nutritional quality, and prolong the shelf life of products. This review summarises research on the development of plant-derived antioxidants in food packaging. Antioxidants are found in plants such as green tea, olive leaves, ginkgo leaves, rosemary, Indian gooseberry, cinnamon, savoury, bay leaves, mango leaves, sage and clove etc. Antioxidants can scavenge free radicals and inhibit the activity of polyphenol oxidase. Therefore, they can inhibit lipid oxidation and browning of fruit and vegetables. These active substances can be obtained through extracting the plants using solvents with different polarities. The oxidation resistance of active substances can be determined by DPPH radical scavenging capacity, oxygen radical absorbance capacity, PPO enzyme inhibition capacity and other methods. In recent years, research on the preparation of food packaging with plant-derived antioxidants has also made significant progress. One development is to encapsulate plant-derived antioxidants such as tea polyphenols with capsules containing inorganic components. Thus, they can be blended with polyethylene granules and processed into active packaging film by industrial production methods such as melting, extrusion and blowing film. This research promotes the commercial application of active packaging incorporated with plant-derived antioxidants.
Collapse
Affiliation(s)
- Yan Zhang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Baoying Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Fangfang Lu
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lin Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Yanhong Ding
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Xinya Kang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| |
Collapse
|
16
|
Nur Amila Najwa I, Mat Yusoff M, Nur Hanani Z. Potential of Silver-Kaolin in Gelatin Composite Films as Active Food Packaging Materials. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Hashemi SMB, Jafarpour D. The efficacy of edible film from Konjac glucomannan and saffron petal extract to improve shelf life of fresh-cut cucumber. Food Sci Nutr 2020; 8:3128-3137. [PMID: 32724577 PMCID: PMC7382154 DOI: 10.1002/fsn3.1544] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 11/07/2022] Open
Abstract
The efficacy of saffron petal extract (SPE; 1%-4%) incorporated into Konjac glucomannan (KGM) edible films on the quality and shelf life of fresh-cut cucumbers was evaluated. Changes in chemical, physical, and microbial properties, antioxidant activity, and total soluble phenolic contents of sliced cucumbers during storage at 4°C for 5 days were investigated. Results showed that the addition of SPE markedly reduced the water vapor permeability features of produced films, whereas the moisture content and transparency of them increased (p < .05). All the formulated films containing 1%-4% of SPE exhibited significant antimicrobial properties against the examined pathogens (Escherichia coli, Shigella sonnei, Salmonella Typhi, Staphylococcus aureus, and Bacillus cereus) both in vitro and in vivo conditions. KGM films incorporated SPE were successful in reducing mesophilic bacteria and fungi populations so that the microbial load significantly decreased as the concentrations of SPE increased and KGM + 4% of SPE was considered as the most effective treatment in decreasing the microbial content of sliced cucumbers. Total soluble solids of the treated cucumbers were significantly increased at the end of the storage in refrigerator, compared to the control sample. Moreover, antioxidant activity (DPPH assay) and total soluble phenols in treated fruit increased with storage time, while these parameters decreased with increasing concentrations of SPE incorporated into KGM film. So according to the findings, the introduced film with KGM and SPE could be considered as an edible film and be applied to preserve the fruit and vegetables quality and extend the shelf life of sliced cucumbers.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and TechnologyCollege of AgricultureIslamic Azad University of Fasa BranchFarsIran
| |
Collapse
|
18
|
Jamróz E, Kopel P. Polysaccharide and Protein Films with Antimicrobial/Antioxidant Activity in the Food Industry: A Review. Polymers (Basel) 2020; 12:E1289. [PMID: 32512853 PMCID: PMC7361989 DOI: 10.3390/polym12061289] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
From an economic point of view, the spoilage of food products during processing and distribution has a negative impact on the food industry. Lipid oxidation and deterioration caused by the growth of microorganisms are the main problems during storage of food products. In order to reduce losses and extend the shelf-life of food products, the food industry has designed active packaging as an alternative to the traditional type. In the review, the benefits of active packaging materials containing biopolymers (polysaccharides and/or proteins) and active compounds (plant extracts, essential oils, nanofillers, etc.) are highlighted. The antioxidant and antimicrobial activity of this type of film has also been highlighted. In addition, the impact of active packaging on the quality and durability of food products during storage has been described.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| |
Collapse
|
19
|
Jiang J, Gong L, Dong Q, Kang Y, Osako K, Li L. Characterization of PLA-P3,4HB active film incorporated with essential oil: Application in peach preservation. Food Chem 2020; 313:126134. [DOI: 10.1016/j.foodchem.2019.126134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/03/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
20
|
Dos Anjos HA, Luna S, Hernández-Macedo ML, López JA. Antimicrobial and Antioxidant Active Food Packaging: Technological and Scientific Prospection. Recent Pat Biotechnol 2019; 14:99-111. [PMID: 31584383 DOI: 10.2174/1872208313666191004113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial and antioxidant packaging play an important role in the food industry by ensuring food quality and prolonging the product's shelf life. Therefore, this scientific survey covers the technological domain in the active food packaging development processes and types of packaging. METHODS This paper aims to provide a review of patents and scientific publications on active packaging with antimicrobial and antioxidant properties in order to show technological advances in this field of knowledge and its applicability in the food industry. RESULTS The patent review indicates an increase in the number of documents deposited in recent decades regarding various types of packaging formulations, particularly active packaging to preserve foods and their shelf life. In the last few decades, the scientific publication also includes several studies concerning the development of active food packaging using natural products with antimicrobial and antioxidant proprieties. Overall, the results show the advantages of incorporating natural products into polymer matrices to develop industrial packaging, providing a safe and high-quality food product to the consumer. On the other hand, the review also highlighted lack of cooperation between inventors and companies of active packaging development. CONCLUSION Further study in this regard would help provide data form research and patents on the active food-packaging field as well as economic issues, indicating the global development scenario of this innovative area.
Collapse
Affiliation(s)
- Heriberto A Dos Anjos
- Postgraduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
| | - Saionara Luna
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Bahia (UFBA), Salvador, Brazil
| | - María L Hernández-Macedo
- Postgraduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Jorge A López
- Postgraduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| |
Collapse
|
21
|
Antioxidant Activities and Total Phenolic Content of Malaysian Herbs as Components of Active Packaging Film in Beef Patties. Antioxidants (Basel) 2019; 8:antiox8070204. [PMID: 31269679 PMCID: PMC6680856 DOI: 10.3390/antiox8070204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/22/2023] Open
Abstract
Active packaging containing natural extracts is a promising innovation to prolong the shelf life of perishable food. The objective of this work was to develop a bioactive edible film from semi-refined carrageenan (SRC) and glycerol (G) as plasticizer incorporated with natural extract. Five Malaysian herbs were evaluated to determine their total phenolic content (TPC) and antioxidant activities. The Persicaria minor (PM) extract demonstrated the highest TPC (1.629 mg GAE/L sample) and radical scavenging activity evaluated by the radicals 2,2’-azinobis [3-ethylbenzothiazoline-6-sulfonic acid] (27.166 mg TE/L sample), 2,2-diphenyl-1-picrylhydrazyl (719.89 mg eq. Trolox/L sample) and α,α′-Azodiisobutyramidine dihydrochloride (5.81 mg TE/L sample). Thus, PM extract was selected for active packaging film at concentrations of 0.4, 1.0 and 2.0% and compared with 0.4% Butylatedhydroxianisole in 2% SRC and 0.9% G film formulation. The meat patties were wrapped in the films and stored under refrigeration (4 ± 2 °C) for 14 days. The film with 2% PM exhibited significantly lower lipid deterioration analysed by the thiobarbituric acid reactive substance assay (p < 0.05) and small changes in % metmyoglobin value which indicated the minimum development of brown colour (p < 0.05). Hence, this film can be used as a packaging material to improve meat quality characteristics.
Collapse
|