1
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
2
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
3
|
Marole TA, Sibanda T, Buys EM. Assessing probiotic viability in mixed species yogurt using a novel propidium monoazide (PMAxx)-quantitative PCR method. Front Microbiol 2024; 15:1325268. [PMID: 38389538 PMCID: PMC10882272 DOI: 10.3389/fmicb.2024.1325268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Viability is a prerequisite for any therapeutic benefits associated with the ingestion of probiotic bacteria. Current culture-based techniques are inadequate for the enumeration of probiotics in mixed-species food products. This study utilized a quantitative PCR (qPCR) method coupled with propidium monoazide (PMAxx), and novel species-specific tuf gene primers to selectively enumerate Lacticaseibacillus rhamnosus, Bifidobacterium spp., and yogurt starter cultures in mixed-species probiotic yogurt. The method was optimized for PMAxx concentration and specificity and evaluated for efficiency and applicability. PMAxx-qPCR showed high specificity to the target organisms in mixed-species yogurt, quantifying only viable cells. The linear dynamic ranges were established over five to seven orders of magnitude. The assay was reliable with an efficiency of 91-99%, R2 values > 0.99, and a good correlation to the plate count method (r = 0.882). The results of this study demonstrate the high selectivity, improved lead time, and reliability of PMAxx-qPCR over the culture-dependent method, making it a valuable tool for inline viability verification during processing and improving probiotic quality assurance for processors and consumers.
Collapse
Affiliation(s)
- Tlaleo A Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Di Salvo E, Panebianco F, Panebianco A, Ziino G. Quantitative Detection of Viable but Nonculturable Vibrio parahaemolyticus in Frozen Bivalve Molluscs. Foods 2023; 12:2373. [PMID: 37372584 DOI: 10.3390/foods12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Antonio Panebianco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Graziella Ziino
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
5
|
Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods 2023; 12:foods12061179. [PMID: 36981106 PMCID: PMC10048424 DOI: 10.3390/foods12061179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses. When in the VBNC state, pathogens cannot form visible colonies during traditional culture but remain metabolically active and toxic. The resulting false negative results in growth-related assays can jeopardize food safety. This review summarizes the latest research on VBNC foodborne pathogens, including induction conditions, detection methods, mechanism of VBNC formation, and possible control strategies. It is hoped that this review can provide ideas and methods for future research on VBNC foodborne pathogenic bacteria.
Collapse
|
6
|
Zhang Y, Liao X, Feng J, Liu D, Chen S, Ding T. Induction of viable but nonculturable Salmonella spp. in liquid eggs by mild heat and subsequent resuscitation. Food Microbiol 2023; 109:104127. [DOI: 10.1016/j.fm.2022.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
7
|
Yadav M, Dhyani S, Joshi P, Awasthi S, Tanwar S, Gupta V, Rathore DK, Chaudhuri S. Formic acid, an organic acid food preservative, induces viable-but-non-culturable state, and triggers new Antimicrobial Resistance traits in Acinetobacter baumannii and Klebsiella pneumoniae. Front Microbiol 2022; 13:966207. [PMID: 36504816 PMCID: PMC9730046 DOI: 10.3389/fmicb.2022.966207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susmita Chaudhuri
- Department of Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
8
|
Shi Z, Li X, Fan X, Xu J, Liu Q, Wu Z, Pan D. PMA-qPCR method for the selective quantitation of viable lactic acid bacteria in fermented milk. Front Microbiol 2022; 13:984506. [PMID: 36160254 PMCID: PMC9491339 DOI: 10.3389/fmicb.2022.984506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The number of viable lactic acid bacteria (LAB) is a key indicator of the quality of fermented milk. Currently, the combination of propidium monoazide (PMA) and qPCR has been applied in the quantification of viable bacteria in various matrices. In this research, the PMA-qPCR method was used to detect the number of viable bacteria of each LAB species in fermented milk. By analyzing pheS gene and 16S rRNA gene sequence similarities in five species of LAB, namely Lactobacillus delbrueckii subsp. bulgaricus, Lactiplantibacillus plantarum, Streptococcus thermophilus, Lactobacillus helveticus, and Lactococcus lactis subsp. lactis, the pheS gene resolved species identities better and was thus selected to design specific primers and probes. The pheS gene was cloned into the pUC19 vector and used to construct a standard curve for absolute quantification. Standard curves for quantification were constructed for each LAB species for serial dilutions between 1011 and 106 CFU/mL, with R2 > 0.99. The number of viable bacteria in the fermented milk detected by PMA-qPCR was significantly lower than that of qPCR (P < 0.05), indicating that PMA inhibited the amplification of DNA from dead cells. This was corroborated by the results from bacterial staining and plate count experiments. The proposed PMA-qPCR method provided rapid qualitative and quantitative determination of the number of viable bacteria for each LAB species in fermented milk within 3 h.
Collapse
Affiliation(s)
- Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiefei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qing Liu
- Nanjing Dairy Group, Nanjing, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- *Correspondence: Zhen Wu,
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Daodong Pan,
| |
Collapse
|
9
|
Hu L, Zhang S, Xue Y, Zhang Y, Zhang W, Wang S. Quantitative Detection of Viable but Nonculturable Cronobacter sakazakii Using Photosensitive Nucleic Acid Dye PMA Combined with Isothermal Amplification LAMP in Raw Milk. Foods 2022; 11:foods11172653. [PMID: 36076838 PMCID: PMC9455467 DOI: 10.3390/foods11172653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
An accurate method that rapidly detects the number of viable but nonculturable (VBNC) Cronobacter sakazakii was developed by combining propidium bromide with quantitative LAMP (PMA-QLAMP). The gyrB gene was the target for primers design. The optimal PMA treatment conditions were determined to eliminate the DNA amplification of 108 CFU/mL of dead C. sakazakii without affecting any viable C. sakazakii DNA amplification. Compared with the DNA of 24 strains of common non-C. sakazakii strains found in raw milk and dairy products, the DNA of only six C. sakazakii strains from different sources was amplified using PMA-QLAMP. The ability of PMA-QLAMP to quantitatively detect non-dead C. sakazakii in a 10% powdered infant formula (PIF) solution was limited to 4.3 × 102 CFU/mL and above concentrations. Pasteurizing 106 CFU/mL viable C. sakazakii yielded the maximum ratio of the VBNC C. sakazakii. PMA-QLAMP-based detection indicated that, although approximately 13% of 60 samples were positive for viable C. sakazakii, the C. sakazakii titers in these positive samples were low, and none entered the VBNC state under pasteurization. PMA-QLAMP showed potential as a specific and reliable method for detecting VBNC-C. sakazakii in pasteurized raw milk, thereby providing an early warning system that indicates potential contamination of PIF.
Collapse
Affiliation(s)
- Lianxia Hu
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Shufei Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Yaoguang Zhang
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Wei Zhang
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
- Correspondence: ; Tel.: +86-311-67362689
| |
Collapse
|
10
|
Chen L, Li L, Xie X, Chai A, Shi Y, Fan T, Xie J, Li B. An Improved Method for Quantification of Viable Fusarium Cells in Infected Soil Products by Propidium Monoazide Coupled with Real-Time PCR. Microorganisms 2022; 10:microorganisms10051037. [PMID: 35630479 PMCID: PMC9143521 DOI: 10.3390/microorganisms10051037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium is a soil-borne pathogen that causes root rot disease in cucumber. To date, quantitative real-time PCR (qPCR) is a common tool to detect the content of Fusarium in soil. However, qPCR cannot distinguish between viable and nonviable cells. The aim of this study was to develop a detection technique to pretreat tissue fluid with propidium monoazide (PMA) followed by extract DNA, and then to quantify viable Fusarium cells in contaminated soil. In this work, the specific primer pair F8-1/F8-2 was designed based on the translation elongation factor (EF) gene and a PMA-qPCR assay was established to amplify and quantify soils of viable Fusarium cells. The PMA pretreatment test was optimized, which indicated that the optimal PMA concentration and light exposure time were 50 mmol L−1 and 15 min, respectively. The lowest limit of viable cells in suspension detected and soil by PMA-qPCR were 82 spore mL−1 and 91.24 spore g−1, respectively. For naturally contaminated soil, viable Fusarium cells were detected in eight of the 18 samples, and the Fusarium amount ranged from 104 to 106 spore g−1. In conclusion, the PMA-qPCR method has the characteristics of high sensitivity, efficiency, and time saving, which could support nursery plants to avoid Fusarium infection and agro-industry losses.
Collapse
Affiliation(s)
- Lida Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
- Shouguang R&D Center of Vegetables, Chinese Academy of Agricultural Sciences, Weifang 262700, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Tengfei Fan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (J.X.); (B.L.)
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
- Correspondence: (J.X.); (B.L.)
| |
Collapse
|
11
|
Rapid and visual detection of viable Staphylococcus aureus in pork and pork products by PMA and saltatory rolling circle amplification. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184:750-759. [PMID: 34171259 DOI: 10.1016/j.ijbiomac.2021.06.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Malayil L, Chattopadhyay S, Mongodin EF, Sapkota AR. Coupled DNA-labeling and sequencing approach enables the detection of viable-but-non-culturable Vibrio spp. in irrigation water sources in the Chesapeake Bay watershed. ENVIRONMENTAL MICROBIOME 2021; 16:13. [PMID: 34158117 PMCID: PMC8218497 DOI: 10.1186/s40793-021-00382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/01/2021] [Indexed: 06/01/2023]
Abstract
Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2'-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
14
|
Zampieri A, Babbucci M, Carraro L, Milan M, Fasolato L, Cardazzo B. Combining Culture-Dependent and Culture-Independent Methods: New Methodology Insight on the Vibrio Community of Ruditapes philippinarum. Foods 2021; 10:1271. [PMID: 34204939 PMCID: PMC8228196 DOI: 10.3390/foods10061271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Vibrios represent a natural contaminant of seafood products. V. alginolyticus, V. cholerae, V. parahaemolyticus and V. vulnificus are the most hazardous species to human health. Given the worldwide consumption of mollusc products, reliable detection of Vibrio species is recommended to prevent human vibriosis. In this study, culture-dependent and -independent methods were compared and integrated to implement knowledge of the Manila clam Vibrio community composition. Here, 16S and recA-pyrH metabarcoding were applied to compare the microbial communities of homogenate clam samples (culture-independent method) and their culture-derived samples plated on three different media (culture-dependent method). In addition, a subset of plated clam samples was investigated using shotgun metagenomics. Homogenate metabarcoding characterized the most abundant taxa (16S) and Vibrio species (recA-pyrH). Culture-dependent metabarcoding detected the cultivable taxa, including rare species. Moreover, marine agar medium was found to be a useful substrate for the recovery of several Vibrio species, including the main human pathogenic ones. The culture-dependent shotgun metagenomics detected all the main human pathogenic Vibrio species and a higher number of vibrios with respect to the recA-pyrH metabarcoding. The study revealed that integration of culture-dependent and culture-independent methods might be a valid approach for the characterization of Vibrio biodiversity.
Collapse
Affiliation(s)
| | | | | | | | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy; (A.Z.); (M.B.); (L.C.); (M.M.); (B.C.)
| | | |
Collapse
|
15
|
Rapid and absolute quantification of VBNC Cronobacter sakazakii by PMAxx combined with single intact cell droplet digital PCR in infant foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Rey MDLÁ, Cap M, Favre LC, Rodríguez Racca A, Dus Santos MJ, Vaudagna SR, Mozgovoj M. Evaluation of PMA‐qPCR methodology to detect and quantify viable Shiga toxin‐producing
Escherichia coli
in beef burgers. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- María de los Ángeles Rey
- Instituto Tecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA) Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Mariana Cap
- Instituto Tecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA) Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Leonardo Cristian Favre
- Instituto Tecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA) Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Anabel Rodríguez Racca
- Instituto Tecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA) Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - María José Dus Santos
- Instituto de Virología e Innovaciones tecnológicas Centro de Investigaciones en Ciencias Veterinarias y Agronómicas INTA‐CONICET Buenos Aires Argentina
| | - Sergio R. Vaudagna
- Instituto Tecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA) Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Marina Mozgovoj
- Instituto Tecnología de AlimentosInstituto Nacional de Tecnología Agropecuaria (INTA) Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| |
Collapse
|
17
|
Chen NT, Cheong NS, Lin CY, Tseng CC, Su HJ. Ambient viral and bacterial distribution during long-range transport in Northern Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116231. [PMID: 33360070 DOI: 10.1016/j.envpol.2020.116231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Long-range transport (LRT) reportedly carries air pollutants and microorganisms to downwind areas. LRT can be of various types, such as dust storm (DS) and frontal pollution (FP); however, studies comparing their effects on bioaerosols are lacking. This study evaluated the effect of LRT on viral and bacterial concentrations in Northern Taiwan. When LRT occurred and possibly affected Taiwan from August 2013 to April 2014, air samples (before, during, and after LRT) were collected in Cape Fugui (CF, Taiwan's northernmost point) and National Taiwan University (NTU). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was applied to quantify influenza A virus. qPCR and qPCR coupled with propidium monoazide were, respectively, used to quantify total and viable bacteria. Types and occurrence of LRT were confirmed according to the changing patterns of meteorological factors and air pollution, air mass sources (HYSPLIT model), and satellite images. Two Asian DS and three FP cases were included in this study. Influenza A virus was detected only on days before and during FP occurred on January 3-5, 2014, with concentrations of 0.87 and 10.19 copies/m3, respectively. For bacteria, the increase in concentrations of total and viable cells during Asian DSs (17-19 and 25-29 November 2013) was found at CF only (from 3.13 to 3.40 and from 2.62 to 2.85 log copies/m3, respectively). However, bacterial levels at NTU and CF both increased during FP and lasted for 2 days after FP. In conclusion, LRT increased the levels of influenza A virus and bacteria in the ambient air of Northern Taiwan, particularly at CF. During and 2 days (at least) after LRT, people should avoid outdoor activities, especially in case of FP.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Ngok-Song Cheong
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan-Yao Lin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Hong J, Wang W, Wang J, Wang X, Xie H, Li T, Gan N. A turn-on-type fluorescence resonance energy transfer aptasensor for vibrio detection using aptamer-modified polyhedral oligomeric silsesquioxane-perovskite quantum dots/Ti 3C 2 MXenes composite probes. Mikrochim Acta 2021; 188:45. [PMID: 33479797 DOI: 10.1007/s00604-020-04679-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
A pair of composite probes based on aptamer modified polyhedral oligomeric silsesquioxane-perovskite quantum dots (POSS-PQDs-Apt) as signal probe and titanium carbide (Ti3C2) MXenes as quencher were prepared for the first time. They were employed to fabricate one turn-on-type aptasensor relying on fluorescence resonance energy transfer (FRET) for Vibrio parahaemolyticus (VP) determination. The POSS-PQDs-Apt can be adsorbed on the MXenes nanosheets, and its fluorescence was quenched due to the FRET. After the composite probes were incubated with VP for 50 min, the POSS-PQDs-Apt binding with VP can be released from the surface of MXenes, and the signal recovered due to its higher affinity to the VP than MXenes. The fluorescence intensity from 519 nm emission of the system was measured at 480 nm excitation. Under In optimized conditions, the assay can determine VP in the concentration range 102 - 106 cfu/mL, and the detection limit (LOD) was 30 cfu/mL using fluorescence detection. The LOD is still 100 cfu/mL by naked eye detection which is proper for on-line monitoring VP in aquaculture water. This method was also used to detect VP in actual samples of seawater, the recovery of spiked samples was between 93% and 106%, and relative standard deviation (RSD) was between 2.7% and 6.7%. The result is consistent with the plate count. Therefore, this assay could provide a candidate platform for screening VP in aquaculture industry.
Collapse
Affiliation(s)
- Juncheng Hong
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wenhai Wang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Wang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiao Wang
- School of medicine, Ningbo University, Ningbo, 315211, China
| | - Hongzhen Xie
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Tianhua Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Li Y, Huang TY, Mao Y, Chen Y, Shi F, Peng R, Chen J, Yuan L, Bai C, Chen L, Wang K, Liu J. Study on the Viable but Non-culturable (VBNC) State Formation of Staphylococcus aureus and Its Control in Food System. Front Microbiol 2020; 11:599739. [PMID: 33324380 PMCID: PMC7726111 DOI: 10.3389/fmicb.2020.599739] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
A Viable but non-culturable (VBNC) state is a bacterial survival strategy under reverse conditions. It poses a significant challenge for public health and food safety. In this study, the effect of external environmental conditions including acid, nutrition, and salt concentrations on the formation of S. aureus VBNC states at low temperatures were investigated. Different acidity and nutritional conditions were then applied to food products to control the VBNC state formation. Four different concentration levels of each factor (acid, nutrition, and salt) were selected in a total of 16 experimental groups. Nutrition showed the highest influence on the VBNC state formation S. aureus, followed by acid and salt. The addition of 1% acetic acid could directly kill S. aureus cells and inhibit the formation of the VBNC state with a nutrition concentration of 25, 50, and 100%. A propidium monoazide-polymerase chain reaction (PMA-PCR) assay was applied and considered as a rapid and sensitive method to detect S. aureus in VBNC state with the detection limit of 104 CFU/mL.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuzhu Mao
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanni Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Fan Shi
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ruixin Peng
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jinxuan Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
21
|
Copin S, Mougin J, Raguenet V, Robert-Pillot A, Midelet G, Grard T, Bonnin-Jusserand M. Ethidium and propidium monoazide: comparison of potential toxicity on Vibrio sp. viability. Lett Appl Microbiol 2020; 72:245-250. [PMID: 33058219 DOI: 10.1111/lam.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.
Collapse
Affiliation(s)
- S Copin
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - J Mougin
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - V Raguenet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - A Robert-Pillot
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Vibrions et du Choléra, Paris, France
| | - G Midelet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - T Grard
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - M Bonnin-Jusserand
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
22
|
Li J, Zhao X. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Food Res Int 2020; 137:109742. [DOI: 10.1016/j.foodres.2020.109742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
23
|
Lv X, Wang L, Zhang J, Zeng H, Chen X, Shi L, Cui H, He X, Zhao L. Rapid and sensitive detection of VBNC Escherichia coli O157: H7 in beef by PMAxx and real-time LAMP. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107292] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Lei S, Gu X, Xue W, Rong Z, Wang Z, Chen S, Zhong Q. A 4-plex Droplet Digital PCR Method for Simultaneous Quantification and Differentiation of Pathogenic and Non-pathogenic Vibrio parahaemolyticus Based on Single Intact Cells. Front Microbiol 2020; 11:1727. [PMID: 32903334 PMCID: PMC7434843 DOI: 10.3389/fmicb.2020.01727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023] Open
Abstract
Vibrio parahaemolyticus is a significant seafood-borne pathogen, leading to serious acute gastrointestinal diseases worldwide. In this study, a reliable 4-plex droplet digital PCR (ddPCR) was successfully established and evaluated for the simultaneous detection of V. parahaemolyticus based on tlh, tdh, ureR, and orf8 in food samples using single intact cells. The targets tlh and ureR were labeled with 6-Carboxyfluorescein (FAM), and the targets tdh and orf8 were labeled with 5’-Hexachlorofluorescein (HEX). Due to reasonable proration of primers and probes corresponding into the two fluorescence channels of the ddPCR detecting platforms, the clearly separated 16 (24) clusters based on fluorescence amplitude were obtained. For better results, the sample hot lysis time and the cycle number were optimized. The results showed that the minimum number of “rain” and maximum fluorescence amplification were presented for precise detection in the condition of 25 min of the sample hot lysis time and 55 cycles. The sensitivity of this 4-plex ddPCR assay was 39 CFU/mL, which was in accordance with that of the conventional plate counting and was 10-fold sensitive than that of qPCR. In conclusion, the 4-plex ddPCR assay presented in this paper was a rapid, specific, sensitive, and accurate tool for the detection of V. parahaemolyticus including pandemic group strains and could be applied in the differentiation of V. parahaemolyticus in a wide variety of samples.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaokui Gu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China.,Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhangquan Rong
- Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Zhe Wang
- Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Lei S, Gu X, Zhong Q, Duan L, Zhou A. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Dias CO, Scariot MC, de Mello Castanho Amboni RD, Arisi ACM. Application of propidium monoazide coupled with quantitative PCR to evaluate cell viability of Bifidobacterium animalis subsp. lactis in a non-dairy probiotic beverage. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01566-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Purpose
In this study, a PMA-qPCR assay was developed for the enumeration of Bifidobacterium animalis subsp. lactis BB-12 viable cells in a non-dairy probiotic beverage.
Methods
Probiotic viability was monitored in three formulations of probiotic passion fruit juice microencapsulated by spray drying, during 30 days of storage at 4 °C. Viable cells were quantified using qPCR and PMA-qPCR assays targeting tuf gene and by plate counting method.
Results
The limit of detection for all samples was 103 genome copies, corresponding to 21.3 pg of DNA. Higher CFU values were obtained for B. lactis BB-12 enumeration by qPCR, when compared to those obtained by PMA-qPCR and plate count, for all probiotic juice microcapsules. Similar quantification values were obtained by PMA-qPCR and plate counting for all samples and remained above 8 log CFU/g during the storage period.
Conclusion
These results demonstrated that the PMA-qPCR technique is a promising approach for B. lactis BB-12 viable cell enumeration in complex matrices such as passion fruit juice microcapsules. This PMA-qPCR assay allowed the achievement of reliable results faster than with the traditional plate counting method.
Collapse
|
27
|
Mbye M, Baig MA, AbuQamar SF, El-Tarabily KA, Obaid RS, Osaili TM, Al-Nabulsi AA, Turner MS, Shah NP, Ayyash MM. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci Food Saf 2020; 19:1110-1124. [PMID: 33331686 DOI: 10.1111/1541-4337.12554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Probiotics are defined as live microorganisms that improve the health of the host when administered in adequate quantities. Nonetheless, probiotics encounter extreme environmental conditions during food processing or along the gastrointestinal tract. This review discusses different environmental stresses that affect probiotics during food preparation, storage, and along the alimentary canal, including high temperature, low temperature, low and alkaline pH, oxidative stress, high hydrostatic pressure, osmotic pressure, and starvation. The understanding of how probiotics deal with environmental stress and thrive provides useful information to guide the selection of the strains with enhanced performance in specific situations, in food processing or during gastrointestinal transit. In most cases, multiple biological functions are affected upon exposure of the cell to environmental stress. Sensing of sublethal environmental stress can allow for adaptation processes to occur, which can include alterations in the expression of specific proteins.
Collapse
Affiliation(s)
- Mustapha Mbye
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Mohd Affan Baig
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE.,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University (UAEU), Al-Ain, UAE.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mark S Turner
- School of Agriculture and Food Sciences, the University of Queensland (UQ), Brisbane, Queensland, Australia
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mutamed M Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| |
Collapse
|
28
|
Analysis of microbial contamination of household water purifiers. Appl Microbiol Biotechnol 2020; 104:4533-4545. [PMID: 32193577 DOI: 10.1007/s00253-020-10510-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Household water purifiers are increasingly used to treat drinking water at the household level, but their influence on the microbiological safety of drinking water has rarely been assessed. In this study, representative purifiers, based on different filtering processes, were analyzed for their impact on effluent water quality. The results showed that purifiers reduced chemical qualities such as turbidity and free chlorine. However, a high level of bacteria (102-106 CFU/g) was detected at each stage of filtration using a traditional culture-dependent method, whereas quantitative PCR with propidium monoazide (PMA) treatment showed 106-108 copies/L of total viable bacteria in effluent water, indicating elevated microbial contaminants after purifiers. In addition, high-throughput sequencing revealed a diverse microbial community in effluents and membranes. Proteobacteria (22.06-97.42%) was the dominant phylum found in all samples, except for purifier B, in which Melainabacteria was most abundant (65.79%). For waterborne pathogens, Escherichia coli (100-106 copies/g) and Pseudomonas aeruginosa (100-105 copies/g) were frequently detected by qPCR. Sequencing also demonstrated the presence of E. coli (0-6.26%), Mycobacterium mucogenicum (0.01-3.46%), and P. aeruginosa (0-0.16%) in purifiers. These finding suggest that water from commonly used household purifiers still impose microbial risks to human health.
Collapse
|
29
|
Han L, Wang K, Ma L, Delaquis P, Bach S, Feng J, Lu X. Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment. Appl Environ Microbiol 2020; 86:e02566-19. [PMID: 32005729 PMCID: PMC7082562 DOI: 10.1128/aem.02566-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.
Collapse
Affiliation(s)
- Lu Han
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lina Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Susan Bach
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Jinsong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Zhou W, Wang K, Hong W, Bai C, Chen L, Fu X, Huang T, Liu J. Development and Application of a Simple "Easy To Operate" Propidium Monoazide-Crossing Priming Amplification on Detection of Viable and Viable But Non-culturable Cells of O157 Escherichia coli. Front Microbiol 2020; 11:569105. [PMID: 33101241 PMCID: PMC7546352 DOI: 10.3389/fmicb.2020.569105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
O157 Escherichia coli is one of the most important foodborne pathogens causing disease even at low cellular numbers. Thus, the early and accurate detection of this pathogen is important. However, due to the formation of viable but non-culturable (VBNC) status, the golden standard culturing methodology fails to identify O157 E. coli once it enters VBNC status. Crossing priming amplification (CPA) is a novel, simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to firstly develop and apply a CPA assay with propidium monoazide (PMA) for the rapid detection of the foodborne E. coli O157:H7 in VBNC state. Five primers (2a/1s, 2a, 3a, 4s, and 5a) were specially designed for recognizing three targets, which were rfbE, stx1, and stx2, and evaluated for its effectiveness in detecting VBNC cell of E. coli O157:H7 with detection limits of pure VBNC culture at 103, 105, and 105 colony-forming units (CFUs)/ml for rfbE, stx1, and stx2, respectively, whereas those of food samples (frozen pastry and steamed bread) were 103, 105, and 105 CFUs/ml. The application of the PMA-CPA assay was successfully used on detecting E. coli O157:H7 in VBNC state from food samples. In conclusion, this is the first development of PMA-CPA assay on the detection of VBNC cell, which was found to be useful and a powerful tool for the rapid detection of E. coli O157:H7 in VBNC state. Undoubtedly, the PMA-CPA method can be of high value to the food industry owing to its various advantages such as speed, specificity, sensitivity, and cost-effectiveness.
Collapse
Affiliation(s)
- Wenqu Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xin Fu,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- Junyan Liu,
| |
Collapse
|
31
|
Rapid and Sensitive Detection of Viable but Non-culturable Salmonella Induced by Low Temperature from Chicken Using EMA-Rti-LAMP Combined with BCAC. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Detection of viable but nonculturable Vibrio parahaemolyticus in shrimp samples using improved real-time PCR and real-time LAMP methods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Zhong Q, Wang B, Wang J, Liu Y, Fang X, Liao Z. Global Proteomic Analysis of the Resuscitation State of Vibrio parahaemolyticus Compared With the Normal and Viable but Non-culturable State. Front Microbiol 2019; 10:1045. [PMID: 31134040 PMCID: PMC6517545 DOI: 10.3389/fmicb.2019.01045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen which has become a major concern of seafood products. The bacteria in the viable but non-culturable (VBNC) state are unable to form colonies on growth media, but under appropriate conditions they can regain culturability. In this study, V. parahaemolyticus was induced into VBNC state at low temperature and oligotrophic condition, and was resuscitated to culturable state. The aim of this study is to explore the comparative proteomic profiles of the resuscitation state compared with the VBNC state and the exponential phase of V. parahaemolyticus using isobaric tags for relative and absolute quantitation (iTRAQ) technique. The differentially expressed proteins (DEPs) were subjected to GO functional annotations and KEGG pathway analysis. The results indicated that a total of 429 proteins were identified as the significant DEPs in the resuscitation cells compared with the VBNC cells, including 330 up-regulated and 99 down-regulated DEPs. Meanwhile, the resuscitation cells displayed 25 up-regulated and 36 down-regulated DEPs (total of 61 DEPs) in comparison with the exponential phase cells. The remarkable DEPs including ribosomal proteins, ABC transporters, outer membrane proteins and flagellar proteins. GO annotation showed that the 429 DEPs were classified into 37 GO terms, of which 17 biological process (BP) terms, 9 cellular component (CC) terms and 11 molecular function (MF) terms. The up-regulated proteins presented in all GO terms except two terms of developmental process and reproduction. The 61 DEPs were assigned to 23 GO terms, the up- and down-regulated DEPs were both mainly involved in cellular process, establishment of localization, metabolic process and so on. KEGG pathway analysis revealed that the 429 DEPs were assigned to 35 KEGG pathways, and the pathways of ribosome, glyoxylate and dicarboxylate metabolism were significantly enriched. Moreover, the 61 DEPs located in 26 KEGG pathways, including the significantly enriched KEGG pathways of ABC transporters and two-component system. This study would contribute to a better understanding of the molecular mechanism underlying the resuscitation of the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, China
| | - Bin Wang
- Guangdong Scau Assets Management Co., Ltd., South China Agricultural University, Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yufei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Telli AE, Doğruer Y. Discrimination of viable and dead Vibrio parahaemolyticus subjected to low temperatures using Propidium Monoazide - Quantitative loop mediated isothermal amplification (PMA-qLAMP) and PMA-qPCR. Microb Pathog 2019; 132:109-116. [PMID: 31034964 DOI: 10.1016/j.micpath.2019.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine the effect of cold (4 °C) and subzero (-18 °C, -45 °C) temperatures on the occurrence time of membrane damage to provide Propidium Monoazide (PMA) penetration of Vibrio parahaemolyticus inoculated to the sea bass. Direct plate counting (DPC) and PMA-based quantitative loop-mediated isothermal amplification (qLAMP) and qPCR was utilized for discrimination of dead and live bacteria on the designated storage days (1, 3, 7, and 14). The optimum amount of PMA was 50 μM for inhibition of amplification derived from dead cells in spiked samples. The number of live V. parahaemolyticus was detectable at the end of the 14. day using PMA-qLAMP and PMA-qPCR at all the temperatures. On the 7th day, culturability has lost at any of the storage temperatures and DPCs at -18 °C and -45 °C revealed a difference of about 1 log10 CFU/ml between 1st and 3rd days. The same difference was also observed in PMA-qLAMP and PMA-qPCR on the same days (0.59-0.95 log10 CFU/ml). Subzero temperatures have the highest rate of viability while causing the fastest decrease in culturability in sample groups as a result of the higher level of transition to VBNC state. qLAMP and qPCR methods in the PMA-treated and nontreated groups on the storage days at all temperatures gave similar results (p > 0.05).
Collapse
Affiliation(s)
- A Ezgi Telli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Yusuf Doğruer
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
35
|
Sun Y, Duan N, Ma P, Liang Y, Zhu X, Wang Z. Colorimetric Aptasensor Based on Truncated Aptamer and Trivalent DNAzyme for Vibrio parahemolyticus Determination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2313-2320. [PMID: 30721047 DOI: 10.1021/acs.jafc.8b06893] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, after optimizing the original aptamer sequence by truncation and site-directed mutagenesis, a simple and sensitive colorimetric aptasensor was established for detecting the widespread food-borne pathogen Vibrio parahemolyticus ( V. parahemolyticus). The detection strategy was based on the competition for an V. parahemolyticus specific aptamer between its complementary DNA (cDNA) and V. parahemolyticus. The aptamer-conjugated magnetic nanoparticles (MNPs) were used as capture probes, and the G-quadruplex (G4) DNAzyme was employed as the signal amplifying element. Under optimal conditions, a wide linear detection range (from 102 to 107 cfu/mL) was available, and the detection limit could be as low as 10 cfu/mL. This method was also used to detect V. parahemolyticus in contaminated salmon samples, and the results showed good consistency with those obtained from standard plate counting method. Therefore, this novel aptasensor could be a good candidate for sensitive and selective detection of V. parahemolyticus without complicated operations.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Yao Liang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Xiaoyin Zhu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi 214122 , China
- Collaborative Innovation Center of Food safety and Quality Control of Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
36
|
Anupama KP, Deeksha K, Deeksha A, Karunasagar I, Karunasagar I, Maiti B. Comparative performance of TCBS and TSA for the enumeration of trh+ Vibrio parahaemolyticus by direct colony hybridization. J Microbiol Methods 2018; 157:37-42. [PMID: 30578890 DOI: 10.1016/j.mimet.2018.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/28/2023]
Abstract
Vibrio parahaemolyticus is one of the important foodborne pathogens is of public health concern due to the emergence of pandemic strains causing disease outbreaks worldwide. We evaluated the DNA based colony hybridization technique for the detection and enumeration of total and pathogenic V. parahaemolyticus from the bivalve shellfish, clam using non-radioactive, enzyme-labeled probe targeting the tlh and trh genes, respectively. The digoxigenin (DIG) labeled probes designed in this study showed 100% specificity by dot blot assay. Colony hybridization using DIG probes was performed using both non-selective, trypticase soy agar (TSA) and the selective medium, thiosulfate citrate bile salts sucrose (TCBS) agar. Of 32 clam samples analyzed, 71.88% had>10,000 V. parahaemolyticus cells/g in TSA whereas it was 18.75% in case of TCBS. All the samples showed the presence of total V. parahaemolyticus in TSA and 97% in the case of TCBS. Interestingly, results of the trh+V. parahaemolyticus samples were quite high while using TCBS plates (62.5%) as compared to TSA (43.75%). However, the cell numbers obtained from TSA were higher than from TCBS. Several yellow colonies on TCBS turned out to be V. parahaemolyticus using colony hybridization, which was further confirmed by PCR and sucrose utilization test. Colony hybridization using DIG-labeled probe was found to be highly sensitive and could differentiate and enumerate pathogenic and non-pathogenic strains of V. parahaemolyticus. Since traditional methods are not only labor-intensive and time-consuming but also less sensitive, colony hybridization using DIG-labeled probes would be a useful alternative for the enumeration of V. parahaemolyticus in naturally contaminated seafood.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, NITTE (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Kundar Deeksha
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, NITTE (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Ariga Deeksha
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, NITTE (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Iddya Karunasagar
- NITTE (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru 575018, India
| | - Indrani Karunasagar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, NITTE (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, India; NITTE (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru 575018, India
| | - Biswajit Maiti
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, NITTE (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, India.
| |
Collapse
|