1
|
Okutan G, Koç G, Cansu Ü, Boran G. Edible Films Based on Plant and Animal Origin Proteins: Comparison of Some Mechanical and Physicochemical Characteristics. Food Sci Nutr 2025; 13:e4712. [PMID: 40104210 PMCID: PMC11913624 DOI: 10.1002/fsn3.4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 03/20/2025] Open
Abstract
Edible films were manufactured from three different proteins to evaluate their mechanical strength and some physicochemical features. Wheat gluten (WG), cow hide gelatin (CHG), and cow milk casein (CMC) were used at three different concentrations (5%, 6%, and 7% w/v for WG or 2%, 3%, and 4% w/v for both CHG and CMC) for the film samples. Water activity of the film samples varied within a rather narrow gap, which was between 0.26 and 0.36, with the highest values for WG films and the lowest for CMC. WG and CMC gave basic films while CHG resulted in acidic films with a pH value between 5.6 and 5.7. CHG films showed the highest conductivity while pH and conductivity increased as CHG concentration increased. WG resulted in opaque and dark colored films while CHG and CMC led to almost transparent and light colored films. Water vapor permeability of CMC films was slightly higher compared to CHG and WG counterparts with values around 2.0 × 10-14 g m/s Pa m2. In addition, tensile strength of CHG films was significantly higher than CMC and WG counterparts with values over 25 N/mm2 and more flexible with higher values of Young's modulus and elongation at break. It is concluded that CHG may be utilized by the food industry to manufacture edible films with superior mechanical features along with ease of dissolving and transparent visual characteristics, while WG and CMC might be preferred for more rigid, opaque, and dark colored films as needed.
Collapse
Affiliation(s)
- Gülistan Okutan
- Technical Sciences Vocational School Siirt University Siirt Türkiye
| | - Güneş Koç
- Department of Food Engineering Van Yüzüncü Yıl University Van Türkiye
| | - Ümran Cansu
- Vocational School of Organized Industrial Zone Harran University Şanlıurfa Türkiye
| | - Gökhan Boran
- Department of Food Engineering Van Yüzüncü Yıl University Van Türkiye
| |
Collapse
|
2
|
Santos DS, Matos RS, Pinto EP, Santos SB, da Fonseca Filho HD, Prioli R, Ferreira IM, Souza TM. Probing the Physicochemical, Nanomorphological, and Antimicrobial Attributes of Sustainable Silk Fibroin/Copaiba Oleoresin-Loaded PVA Films for Food Packaging Applications. Polymers (Basel) 2025; 17:375. [PMID: 39940576 PMCID: PMC11819781 DOI: 10.3390/polym17030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
We explore the development of biodegradable poly(vinyl alcohol) (PVA) films loaded with silk fibroin (SF) functionalized with copaiba oleoresin (SFCO) for potential use in active food packaging. The films were characterized, showing significant improvements in both their physicochemical and nanomorphological properties. Films containing 10% SFCO exhibited superior mechanical strength, with a Young modulus of 145 MPa and an elongation at break of 385%, compared to the control film with 42 MPa and 314%, respectively. The films also demonstrated barrier properties, with water vapor transmission rates (WVTRs) as low as 25.95 g/h·m2. Antimicrobial activity against Staphylococcus aureus and Escherichia coli was significantly improved, showing inhibition zones of up to 10 ± 1 mm and a minimum inhibitory concentration (MIC) of 100 µg∙mL-1. Three-dimensional nanomorphological analysis via atomic force microscopy (AFM) showed increased roughness in films with higher SFCO content, with root mean square (RMS) roughness values ranging from 2.70 nm to 11.5 nm. These results highlight the potential of SFCO-loaded PVA films as robust, eco-friendly alternatives to conventional packaging materials. They provide improved mechanical and antimicrobial properties, essential for extending the shelf life of perishable foods and advancing sustainability in the packaging industry.
Collapse
Affiliation(s)
- Daniel S. Santos
- Postgraduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Amapá-UNIFAP, Macapá 68903-419, AP, Brazil;
| | - Robert S. Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá, Macapá 68903-419, AP, Brazil
| | - Erveton P. Pinto
- Department of Physics, Federal University of Amapá, Macapá 68903-419, AP, Brazil;
| | - Samuel B. Santos
- Postgraduate Program in Physiological Sciences, Federal University of Sergipe, São Cristovão 49107-230, SE, Brazil;
| | - Henrique D. da Fonseca Filho
- Laboratório de Desenvolvimento e Aplicações de Nanomateriais da Amazônia (LADENA), Department of Materials Physics, Federal University of Amazonas, Manaus 69067-005, AM, Brazil;
| | - Rodrigo Prioli
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22541-041, Brazil;
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá 68903-419, AP, Brazil;
| | - Tiago M. Souza
- Department of Chemical Engineering, State University of Amapá, Macapá 68900-070, AP, Brazil
| |
Collapse
|
3
|
Santamarina MP, Giménez-Santamarina S, Santamarina C, Larran S, Roselló J. Conservation of Tiger Nut Tubers with Natural Biofilm Formulated with Thymus zygis Essential Oil. Molecules 2025; 30:436. [PMID: 39942542 PMCID: PMC11820408 DOI: 10.3390/molecules30030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Cyperus esculentus L. var sativus is cultivated in Spain, only in the L'Horta Nord in the Valencia region. In this country, tubers are consumed fresh to make a popular beverage in the Valencia region called "horchata de chufa" (chufa milk). This drink is considered beneficial for human health thanks to its high nutritional value and medicinal importance in several treatments. This work evaluates the antifungal potential of the Thymus zygis essential oil against fungi found in tiger nut warehouses to preserve tubers under the best conditions. The analyzed commercial thyme essential oil belongs to the thymol/p-cymene/γ-terpinene chemotype. Thymol was found in larger quantities (51.34%), followed by the identified biogenetic precursors p-cymene (35.16%) and γ-terpinene (3.53%). Carvacrol also appeared, but in small quantities (3.53%). During in vitro tests, the T. zygis EO showed strong inhibition (98.85% to 91.81% MGI) against fungi Alternaria alternata, Fusarium andiyazi, Fusarium incarnatum, and Fusarium oxysporum at 300 µg/mL. It totally inhibited their growth (100% MGI) at 400 µg/mL, and did so strongly (75.94%, 72.02%, and 70.78%) with fungi Podospora australis, Penicillium commune, and Cladosporium subuliforme, respectively. Under in vivo conditions, formulated as a protective biofilm, and by forcing the environmental conditions of temperature and humidity to the maximum for fungus F. andiyazi growth on tiger nut tubers, the created film acted as a strong protector against fungal attacks.
Collapse
Affiliation(s)
- M. Pilar Santamarina
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (J.R.)
| | - Silvia Giménez-Santamarina
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (J.R.)
| | - Cristina Santamarina
- Departamento Bayer Crop Science, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Silvina Larran
- Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Josefa Roselló
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (J.R.)
| |
Collapse
|
4
|
Li H, Gao K, Guo H, Li R, Li G. Advancements in Gellan Gum-Based Films and Coatings for Active and Intelligent Packaging. Polymers (Basel) 2024; 16:2402. [PMID: 39274035 PMCID: PMC11397091 DOI: 10.3390/polym16172402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Gellan gum (GG) is a natural polysaccharide with a wide range of industrial applications. This review aims to investigate the potential of GG-based films and coatings to act as environmentally friendly substitutes for traditional petrochemical plastics in food packaging. GG-based films and coatings exhibit versatile properties that can be tailored through the incorporation of various substances, such as plant extracts, microorganisms, and nanoparticles. These functional additives enhance properties like the light barrier, antioxidant activity, and antimicrobial capabilities, all of which are essential for extending the shelf-life of perishable food items. The ability to control the release of active compounds, along with the adaptability of GG-based films and coatings to different food products, highlights their effectiveness in preserving quality and inhibiting microbial growth. Furthermore, GG-based composites that incorporate natural pigments can serve as visual indicators for monitoring food freshness. Overall, GG-based composites present a promising avenue for the development of sustainable and innovative food packaging solutions.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Huang H, Yan W, Tan S, Zhao Y, Dong H, Liao W, Shi P, Yang X, He Q. Frontier in gellan gum-based microcapsules obtained by emulsification: Core-shell structure, interaction mechanism, intervention strategies. Int J Biol Macromol 2024; 272:132697. [PMID: 38843607 DOI: 10.1016/j.ijbiomac.2024.132697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
As a translucent functional gel with biodegradability, non-toxicity and acid resistance, gellan gum has been widely used in probiotic packaging, drug delivery, wound dressing, metal ion adsorption and other fields in recent years. Because of its remarkable gelation characteristics, gellan gum is suitable as the shell material of microcapsules to encapsulate functional substances, by which the functional components can improve stability and achieve delayed release. In recent years, many academically or commercially reliable products have rapidly emerged, but there is still a lack of relevant reports on in-depth research and systematic summaries regarding the process of microcapsule formation and its corresponding mechanisms. To address this challenge, this review focuses on the formation process and applications of gellan gum-based microcapsules, and details the commonly used preparation methods in microcapsule production. Additionally, it explores the impact of factors such as ion types, ion strength, temperature, pH, and others present in the solution on the performance of the microcapsules. On this basis, it summarizes and analyzes the prospects of gellan gum-based microcapsule products. The comprehensive insights from this review are expected to provide inspiration and design ideas for researchers.
Collapse
Affiliation(s)
- Huihua Huang
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Wenjing Yan
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuliang Tan
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yihui Zhao
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenzhen Liao
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 510640, China
| | - Xingfen Yang
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China; South China Hospital, Shenzhen University, Shenzhen 518116, China.
| |
Collapse
|
6
|
Yan B, Chen T, Tao Y, Zhang N, Zhao J, Zhang H, Chen W, Fan D. Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review. Annu Rev Food Sci Technol 2024; 15:151-172. [PMID: 37906941 DOI: 10.1146/annurev-food-072023-034318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Gellan, an anionic heteropolysaccharide synthesized by Sphingomonas elodea, is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan-polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating-cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan-polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tiantian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Jiang X, Gu Y, Zhang L, Sun J, Yan J, Wang C, Lai B, Wu H. Physicochemical Properties of Granular and Gelatinized Lotus Rhizome Starch with Varied Proximate Compositions and Structural Characteristics. Foods 2023; 12:4330. [PMID: 38231847 DOI: 10.3390/foods12234330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
As a traditional and popular dietary supplement, lotus rhizome starch (LRS) has health benefits for its many nutritional components and is especially suitable for teenagers and seniors. In this paper, the approximate composition, apparent amylose content (AAC), and structural characteristics of five LRS samples from different regions were investigated, and their correlations with the physicochemical properties of granular and gelatinized LRS were revealed. LRS exhibited rod-shaped and ellipsoidal starch granules, with AAC ranging from 26.6% to 31.7%. LRS-3, from Fuzhou, Jiangxi Province, exhibited a deeper hydrogel color and contained more ash, with 302.6 mg/kg iron, and it could reach the pasting temperature of 62.6 °C. In comparison, LRS-5, from Baoshan, Yunnan Province, exhibited smoother granule surface, less fragmentation, and higher AAC, resulting in better swelling power and freeze-thaw stability. The resistant starch contents of LRS-3 and LRS-5 were the lowest (15.3%) and highest (69.7%), respectively. The enzymatic digestion performance of LRS was positively correlated with ash content and short- and long-term ordered structures but negatively correlated with AAC. Furthermore, the color and network firmness of gelatinized LRS was negatively correlated with its ash content, and the retrograde trend and freeze-thaw stability were more closely correlated with AAC and structural characteristics. These results revealed the physicochemical properties of LRS from different regions and suggested their advantages in appropriate applications as a hydrogel matrix.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiting Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lichao Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Jinjian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Jianan Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
9
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Tiwari S, Singh BK, Dubey NK. Aflatoxins in food systems: recent advances in toxicology, biosynthesis, regulation and mitigation through green nanoformulations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1621-1630. [PMID: 36222734 DOI: 10.1002/jsfa.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Aflatoxins are hepatocarcinogenic and immunosuppressive mycotoxins mainly synthesized by Aspergillus flavus, A. parasiticus and A. nomius in food systems, causing negative health impacts to humans and other organisms. Aflatoxins contaminate most of the agri-products of tropical and subtropical regions due to hot and humid conditions and persist in food items even after food processing steps, causing major threat towards the food security. Different physical and chemical strategies have been applied to mitigate aflatoxin contamination. However, negative impacts of chemical preservatives towards health and environment limit their practical applicability. In this regard, plant-based preservatives, due to their economical, eco-friendly and safer profile, are considered as a sustainable approach towards food safety. Incorporation of nanotechnology would enhance the bio-efficacy of green preservatives by overcoming some of their major challenges, such as volatility. The present review deals with recent information on toxicology and molecular and enzymatic regulatory pathways in the biosynthesis of aflatoxins in food systems. A proper understanding of the role of different genes and regulatory proteins may provide novel preventive strategies for aflatoxin detoxification and also in development of aflatoxin-resistant food items. The review also emphasizes the role of green nanoformulations as a sustainable approach towards the management of aflatoxins in food systems. In addition, some technological challenges of green nanotechnology have also been discussed in this review, along with highlighting some future perspectives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Yousefi M, Andishmand H, Assadpour E, Barzegar A, Kharazmi MS, Jafari SM. Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances. Crit Rev Food Sci Nutr 2023; 64:6498-6511. [PMID: 36728840 DOI: 10.1080/10408398.2023.2170318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Todays, nanoliposomes (NLPs) are considered as one of the most efficient nanocarriers to deal with bacteria, practically in food products. These nanodelivery systems are able to be loaded with different bioactive compounds. The main aim of this review is investigating recent approaches (mostly from the years of 2018 to 2022) regarding development of nanoliposomal natural antibacterial compounds. In this regard, NLPs alone, combined with films, coatings, or fibers, and in coated forms are reviewed as advanced delivery systems of antibacterial substances. Moreover, a robust and comprehensive coverage of the morphological and physical properties of formulated NLPs as well as their interactions with antibacterial substances are discussed. The importance of NLPs to encapsulate antibacterial ingredients, advantages and drawbacks, antibacterial pathways of formulated NLPs, and comparison of them with pure antibacterial bioactive compounds are also explained.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Food and Beverage Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hashem Andishmand
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Barzegar
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade De Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College Of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Physicochemical and Antioxidant Properties of Nanoliposomes Loaded with Rosemary Oleoresin and Their Oxidative Stability Application in Dried Oysters. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120818. [PMID: 36551024 PMCID: PMC9774588 DOI: 10.3390/bioengineering9120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lipid and protein oxidation is a main problem related to the preservation of dried aquatic products. Rosemary oleoresin is widely used as an antioxidant, but its application is limited due to its instability and easy degradation. Nanoliposome encapsulation is a promising and rapidly emerging technology in which antioxidants are incorporated into the liposomes to provide the food high quality, safety and long shelf life. The objectives of this study were to prepare nanoliposome coatings of rosemary oleoresin to enhance the antioxidant stability, and to evaluate their potential application in inhibiting protein and lipid oxidation in dried oysters during storage. The nanoliposomes encapsulating rosemary oleoresin were applied with a thin-film evaporation method, and the optimal amount of encapsulated rosemary oleoresin was chosen based on changes in the dynamic light scattering, Zeta potential, and encapsulation efficiency of the nanoliposomes. The Fourier transform-infrared spectroscopy of rosemary oleoresin nanoliposomes showed no new characteristic peaks formed after rosemary oleoresin encapsulation, and the particle size of rosemary oleoresin nanoliposomes was 100-200 nm in transmission electron microscopy. The differential scanning calorimetry indicated that the nanoliposomes coated with rosemary oleoresin had better thermal stability. Rosemary oleoresin nanoliposomes presented good antioxidant stability, and still maintained 48% DPPH radical-scavenging activity and 45% ABTS radical-scavenging activity after 28 d of storage, which was 3.7 times and 2.8 times higher than that of empty nanoliposomes, respectively. Compared with the control, the dried oysters coated with rosemary oleoresin nanoliposomes showed significantly lower values of carbonyl, sulfhydryl content, thiobarbituric acid reactive substances, Peroxide value, and 4-Hydroxynonenal contents during 28 d of storage. The results provide a theoretical basis for developing an efficient and long-term antioxidant approach.
Collapse
|
13
|
Bagheri V, Ghanbarzadeh B, Parastouei K, Baghersad MH. The Caucasian Whortleberry Extract/Myrtle Essential Oil Loaded Active Films: Physicochemical Properties and Effects on Quality Parameters of Wrapped Turkey Breast Meat. Foods 2022; 11:3553. [PMID: 36429145 PMCID: PMC9689128 DOI: 10.3390/foods11223553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
In this research work, the effects of myrtle essential oil (MEO) and Caucasian whortleberry extract (CWE) as natural additives were investigated on mechanical, physico-mechanical and antimicrobial properties of gellan/polyvinyl alcohol (G/PVA) film. Then, optimal blend active films were used for the wrapping of turkey breast meat stored at low temperature (4 ± 1 °C) for 15 days and chemical and sensory properties of wrapped meats were evaluated. The addition of MEO and CWE decreased tensile strength and increased the strain at the break of the films (p ≤ 0.05). Additionally, with increasing the amount of MEO and CWE, the permeability to water vapor (WVP) and the moisture content (MC) of the films decreased (p ≤ 0.05). MIC test showed that MEO and CWE were effective against S. aureus, E. coli, S. typhimurium, and P. fluorescens. at the concentrations of 5-6 and 15-17 mg/mL, respectively. Different microbiological, chemical, and sensory tests indicated that active films significantly enhanced the shelf life of turkey breast meat (p ≤ 0.05). Therefore, based on our finding in this study, the use of these active and biodegradable packagings can be effective and useful for protecting the microbial and sensory quality of turkey breast meat.
Collapse
Affiliation(s)
- Vahid Bagheri
- Health Research Centre, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran P.O. Box 51666-16471, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Northern Cyprus, Turkey
| | - Karim Parastouei
- Health Research Centre, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran P.O. Box 51666-16471, Iran
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran P.O. Box 51666-16471, Iran
| |
Collapse
|
14
|
Andrade J, González-Martínez C, Chiralt A. Physical and active properties of poly (vinyl alcohol) films with phenolic acids as affected by the processing method. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product. This review describes the main characteristics of the most abundant polysaccharides in nature and highlights their role in the formulation of biodegradable films. The compilation and discussion emphasize studies that report on the mechanical and barrier properties of biodegradable films when made from pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.
Collapse
|
16
|
Coimbra A, Ferreira S, Duarte AP. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem 2022; 393:133370. [PMID: 35667177 DOI: 10.1016/j.foodchem.2022.133370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
The Thymus plants have been used for centuries in traditional medicine and as a food spice, among this genus, Thymus zygis (red thyme) is a widespread plant, vastly used as a culinary flavouring agent. Its essential oil has demonstrated diverse bioactive properties, such as antimicrobial, insecticidal, larvicidal and antiparasitic activities. Numerous studies have characterized this essential oil showing that it possesses a broad antimicrobial spectrum and may even enhance the effect of certain antimicrobial agents. Its potential application as a food preservative has been analysed on different matrixes pointing to its antimicrobial activity against spoilage and pathogenic microorganisms in food. This review provides an insight in the chemical composition, antimicrobial, insecticidal, larvicidal and antiparasitic activities and toxicity of T. zygis essential oil, as well as its potential application in food as a preservative.
Collapse
Affiliation(s)
- Alexandra Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
17
|
Sadat Razavi M, Golmohammadi A, Nematollahzadeh A, Ghanbari A, Davari M, Carullo D, Farris S. Production of Innovative Essential Oil-Based Emulsion Coatings for Fungal Growth Control on Postharvest Fruits. Foods 2022; 11:foods11111602. [PMID: 35681352 PMCID: PMC9180006 DOI: 10.3390/foods11111602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
This work assessed the antimicrobial potential of natural essential oils (EOs) from cinnamon (CEO), zataria (ZEO), and satureja (SEO), applied natively or as coatings against Penicillium expansum and Botrytis cinerea during both in vitro and in vivo (on apple fruits) experiments. The induced inhibitory effect towards fungal growth, as a function of both EO type and concentration (75–1200 μL/L), was preliminarily investigated to select the most suitable EO for producing bacterial cellulose nanocrystals (BCNCs)/fish gelatin (GelA)-based emulsions. CEO and ZEO exhibited the best performances against P. expansum and B. cinerea, respectively. None of the pristine EOs completely inhibited the fungal growth and “disease severity”, properly quantified via size measurements of lesions formed on fruit surfaces. As compared to pristine CEO, coating emulsions with variable CEO concentration (75–2400 µL/L) curbed lesion spreading on apples, owing to the controlled CEO release during a 21-day temporal window. The strongest effect was displayed by BCNCs/GelA-CEO emulsions at the highest CEO concentration, upon which lesions on fruit skins were barely detectable. This work demonstrated the capability of EOs embedded in BCNCs/GelA-based nanocapsules to efficiently slow down microbial spoilage on postharvest fruits, thus offering viable opportunities for developing innovative antimicrobial packaging systems.
Collapse
Affiliation(s)
- Mahsa Sadat Razavi
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Abdollah Golmohammadi
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
- Correspondence: (A.G.); (S.F.); Tel.: +98-04515517500 (A.G.); +39-0250316805 (S.F.); Fax: +98-04515520567 (A.G.); +39-0250316672 (S.F.)
| | - Ali Nematollahzadeh
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Alireza Ghanbari
- Department of Horticulture, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Mahdi Davari
- Department of Plant Protection, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Daniele Carullo
- Food Packaging Lab, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, I-20133 Milan, Italy;
| | - Stefano Farris
- Food Packaging Lab, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, I-20133 Milan, Italy;
- Correspondence: (A.G.); (S.F.); Tel.: +98-04515517500 (A.G.); +39-0250316805 (S.F.); Fax: +98-04515520567 (A.G.); +39-0250316672 (S.F.)
| |
Collapse
|
18
|
Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers (Basel) 2022; 14:polym14101987. [PMID: 35631869 PMCID: PMC9147565 DOI: 10.3390/polym14101987] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
At present, people more actively pursuing biodegradable-based food packaging to lower the environmental problems of plastic-based packaging. Starch could become a promising alternative to plastic because of its properties (easily available, nontoxic, tasteless, biodegradable, ecofriendly, and edible). This review article is focused mainly on the impact of the properties of starch-based biodegradable films, such as their thickness, morphology, and optical, water-barrier, mechanical, oxygen-barrier, antioxidant, and antimicrobial properties, after the incorporation of additives, and how such films fulfill the demands of the manufacturing of biodegradable and edible food-based film with preferable performance. The incorporation of additives in starch-based films is largely explained by its functioning as a filler, as shown via a reduction in water and oxygen permeability, increased thickness, and better mechanical properties. Additives also showed antimicrobial and antioxidant properties in the films/coatings, which would positively impact the shelf life of coated or wrapped food material.
Collapse
|
19
|
Blancas-Benitez FJ, Montaño-Leyva B, Aguirre-Güitrón L, Moreno-Hernández CL, Fonseca-Cantabrana A, Romero-Islas LDC, González-Estrada RR. Impact of edible coatings on quality of fruits: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Abstract
Consumers’ interest in a high-quality healthy diet is creating a growing trend in the food industry, focusing on the design and development of new products rich in bioactive compounds. This work involves the formulation of a vegetable sauce obtained from a mixture of pumpkin and pepper, the study of the evolution of bioactive compounds, quality and sensory parameters during storage at 4 and 25 °C, the influence of the packaging materials (PVC, PE/PA, and PS), and the migration degree. Antioxidant activity, polyphenols, carotenoids, and brown pigments contents were studied at 25 °C. Overall migration of the containers and the evolution of the physicochemical parameters and sensory attributes of the sauce were analyzed. All plastic materials showed an overall migration lower than the limit of EU and Mercosur Regulations. PVC better preserved polyphenols, antioxidant activity, and carotenoids until 50, 10, and 30 days, respectively, and lower development of brown pigments was observed. Higher storage temperatures favored undesirable changes in sensory attributes before 50 days of storage. PVC can be used to achieve greater conservation of the sensory attributes of sauce, regardless of the storage temperature. It could be considered the best material to preserve the bioactive properties and sensory attributes of the sauce until 30 days.
Collapse
|
21
|
Antifungal properties of hybrid films containing the essential oil of Schinus molle: Protective effect against postharvest rot of tomato. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Chia Seed Mucilage Edible Films with Origanum vulgare and Satureja montana Essential Oils: Characterization and Antifungal Properties. MEMBRANES 2022; 12:membranes12020213. [PMID: 35207134 PMCID: PMC8875529 DOI: 10.3390/membranes12020213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Films made with mucilage obtained from defatted chia seeds and incorporated with oregano (Origanum vulgare) and savory (Satureja montana) essential oils (0.1,1.0 and 1.5% v/v) were prepared to evaluate their physical, optical, mechanical and antifungal properties as well as their microstructure. The use of different types of essential oils (oregano or savory) only had a significant effect on the light transmittance, total color difference (∆E) and antifungal activity of the films. However, the kind of essential oil was not significant for the physical, optical and mechanical properties of the films. Increasing concentrations of essential oils up to 1.5% v/v led to a decrease in tensile strength (TS) and elongation at break (EB). Antifungal properties significantly increased with the incorporation of essential oils (p < 0.05). The antifungal activity of the chia mucilage films incorporated with O. vulgare and S. montana essential oil was screened by agar disc-diffusion assay against five mold strains commonly found in foods. Films containing 0.1% v/v of essential oils were not active, whereas films containing 1.0 and 1.5% v/v were very effective at inhibiting the growth of the tested mold strains (38.01–77.66%). Scanning electron microscopy showed that incorporation of essential oils caused some heterogeneity in the films and the surface displayed no pores or cracks as well as a better integration of oregano EO in the polymeric network. The results pointed out that the incorporation of oregano and savory essential oils as a natural antimicrobial agent has appreciable potential for the development of films as active packaging to control mold contamination and increase food safety.
Collapse
|
23
|
Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Zhu B, Liu Y, Qin Y, Chen H, Zhou L. Release of clove essential oil loaded by mesoporous nano‐silica in polylactic acid‐based food packaging on postharvest preservation of white button mushroom. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bifen Zhu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming 650550 China
| | - Yudi Liu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming 650550 China
| | - Yuyue Qin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming 650550 China
| | - Haiyan Chen
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming 650550 China
| | - Linyan Zhou
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming 650550 China
| |
Collapse
|
25
|
Antimicrobial PLA-PVA multilayer films containing phenolic compounds. Food Chem 2021; 375:131861. [PMID: 34942501 DOI: 10.1016/j.foodchem.2021.131861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Multilayer materials with good interlayer-adhesion were obtained by thermocompression for laminating an internal poly (vinyl alcohol) (PVA) layer with two external poly (lactic acid) (PLA) layers. Carvacrol or ferulic acid were incorporated into the PVA sheet to obtain active materials. The multilayer films were characterised as to their microstructure, thermal behaviour, tensile and barrier properties. Furthermore, the antimicrobial capacity of the materials was analysed in packaged beef meat samples for 17 days at 5 °C. The laminates exhibited tensile properties close to those of the PLA films, but with enhanced stretchability. Compared to the monolayers, the barrier capacity of multilayers was much improved by combining polyester and PVA layers, which provide the laminate with water vapour and oxygen barrier capacity, respectively. Active multilayers were effective at controlling microbial growth in beef meat during cold storage. Therefore, the materials developed were functionally adequate for food packaging purposes and successfully promoted the meat preservation.
Collapse
|
26
|
|
27
|
Cui C, Ji N, Wang Y, Xiong L, Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Development of antioxidant and antimicrobial bioactive films based on Oregano essential oil/mesoporous nano-silica/sodium alginate. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Tavares AG, Andrade J, Silva RRA, Marques CS, Silva JORD, Vanetti MCD, Melo NRD, Soares NDFF. Carvacrol-loaded liposome suspension: optimization, characterization and incorporation into poly(vinyl alcohol) films. Food Funct 2021; 12:6549-6557. [PMID: 34096962 DOI: 10.1039/d1fo00479d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to encapsulate carvacrol into liposomes in order to promote its application in active food packaging. Response surface methodology was used to evaluate the effect of the concentration of the liposomal components on its characteristics. The optimum formulation for the preparation of liposomes with the highest encapsulation efficiency (59.0 ± 1.99%) was found to be 3000 μg mL-1 of cholesterol and 4000 μg mL-1 of carvacrol. Carvacrol reduced the polydispersity index and increased the zeta potential and the thermal stability of liposomes. Fourier-transform infrared spectroscopy indicated that the interaction of carvacrol with liposomes occurred probably through hydrogen-bonding. The incorporation into liposomes maintained the antibacterial effect of carvacrol, but when in the film, carvacrol liposomes were not effective against the microorganisms tested. Liposomes may offer a viable option for stabilizing carvacrol, however, more studies are necessary to enable its application in food packaging.
Collapse
Affiliation(s)
- Adassa Gama Tavares
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, 36570-900, Viçosa, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vianna TC, Marinho CO, Marangoni Júnior L, Ibrahim SA, Vieira RP. Essential oils as additives in active starch-based food packaging films: A review. Int J Biol Macromol 2021; 182:1803-1819. [PMID: 34058206 DOI: 10.1016/j.ijbiomac.2021.05.170] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
The production of sustainable food packaging from renewable sources represents a prominent alternative to the use of petrochemical-based plastics. For example, starch remains one of the more closely studied replacement options due to its broad availability, low cost and significant advances in improving properties. In this context, essential oils as additives fulfil a key role in the manufacture of renewable active packaging with superior performances. In this review, a comprehensive summary of the impact of adding essential oils to the starch-based films is provided. After a brief introduction to the fundamental concepts related to starch and essential oils, details on the most recent advances in obtaining active starch-based films are presented. Subsequently, the effects of essential oils addition on the structure-property relationships (from physicochemical to antimicrobial ones) are thoroughly addressed. Finally, applications and challenges to the widespread use of essential oils are critically discussed.
Collapse
Affiliation(s)
- Thomás Corrêa Vianna
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil
| | - Carolina Oliveira Marinho
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil
| | - Luís Marangoni Júnior
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Brazil
| | - Salam Adnan Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
32
|
Pandey AK, Chávez-González ML, Silva AS, Singh P. Essential oils from the genus Thymus as antimicrobial food preservatives: Progress in their use as nanoemulsions-a new paradigm. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Andrade J, González-Martínez C, Chiralt A. Liposomal Encapsulation of Carvacrol to Obtain Active Poly (Vinyl Alcohol) Films. Molecules 2021; 26:molecules26061589. [PMID: 33805693 PMCID: PMC8001182 DOI: 10.3390/molecules26061589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/04/2022] Open
Abstract
Lecithins of different origins and compositions were used for the liposomal encapsulation of carvacrol within the framework of the development of active films for food packaging. Liposomes were incorporated into aqueous polymeric solutions from fully (F) and partially (P) hydrolysed Poly (vinyl alcohol) (PVA) to obtain the films by casting. The particle size distribution and ζ-potential of the liposomal suspensions, as well as their stability over time, were evaluated. Liposomal stability during film formation was analysed through the carvacrol retention in the dried film and the film microstructure. Subtle variations in the size distributions of liposomes from different lecithins were observed. However, the absolute values of the ζ-potential were higher (−52, −57 mV) for soy lecithin (SL) liposomes, followed by those of soy lecithin enriched with phosphatidylcholine (SL-PC) (−43, −50 mV) and sunflower lecithin (SFL) (−33, −38 mV). No significant changes in the liposomal properties were observed during the study period. Lyotropic mesomorphism of lipid associations and carvacrol leakage occurred to differing extents during the film drying step, depending on the membrane lipid composition and surface charge. Liposomes obtained with SL-PC were the most effective at maintaining the stability of carvacrol emulsion during film formation, which led to the greatest carvacrol retention in the films, whereas SFL gave rise to the least stable system and the highest carvacrol losses. P-PVA was less sensitive to the emulsion destabilisation due to its greater bonding capacity with carvacrol. Therefore, P-PVA with carvacrol-loaded SL-PC liposomes has great potential to produce active films for food packaging applications.
Collapse
|
34
|
Yuan L, Feng W, Zhang Z, Peng Y, Xiao Y, Chen J. Effect of potato starch-based antibacterial composite films with thyme oil microemulsion or microcapsule on shelf life of chilled meat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110462] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Ramakrishnan RK, Wacławek S, Černík M, Padil VVT. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int J Biol Macromol 2021; 177:526-534. [PMID: 33636265 DOI: 10.1016/j.ijbiomac.2021.02.156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The assembly of bio-based macromolecules of gum kondagogu/sodium alginate (KO/SA) was fabricated using glycerol as a plasticiser and their optimum blending ratio was identified based on their physical and chemical, structural, mechanical, barrier, and morphological properties. The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) analysis show that both biomacromolecules are well organised due to the hydrogen bond interaction between molecular chains involving the hydroxyl, carbonyl, and acetyl groups. Structural identification was performed by recording X-ray diffraction (XRD) spectra. Field emission scanning electron microscopy (FESEM) was used to identify the distinction between the surface of the films of biopolymers, and their conjugates, where the addition of SA increased the surface homogeneity and smoothness. The water contact angle of the blend films reached up to 81°, although the value for pure biomacromolecule films was very low. The blend films also exhibited high tensile strength (up to 24 MPa) compared to the pure biopolymer films. Investigation of film-forming ability, mechanical strength, permeability, transparency, and biodegradability of the developed KO/SA bio-macromolecular association may be established as green and sustainable food packaging films.
Collapse
Affiliation(s)
- Rohith K Ramakrishnan
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| |
Collapse
|
36
|
|
37
|
Lin D, Zheng Y, Wang X, Huang Y, Ni L, Chen X, Wu Z, Huang C, Yi Q, Li J, Qin W, Zhang Q, Chen H, Wu D. Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. Int J Biol Macromol 2020; 165:1241-1249. [DOI: 10.1016/j.ijbiomac.2020.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023]
|
38
|
Chen X, Xiao J, Cai J, Liu H. Phase separation behavior in zein-gelatin composite film and its modulation effects on retention and release of multiple bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Chen Z, Zong L, Chen C, Xie J. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers (Basel) 2020; 12:polym12102403. [PMID: 33086533 PMCID: PMC7603116 DOI: 10.3390/polym12102403] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film’s biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.
Collapse
|
41
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
42
|
Fonseca LM, Radünz M, Dos Santos Hackbart HC, da Silva FT, Camargo TM, Bruni GP, Monks JL, da Rosa Zavareze E, Dias AR. Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4263-4271. [PMID: 32378215 DOI: 10.1002/jsfa.10468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Thyme essential oil (TEO) is an excellent natural substitute for synthetic compounds to maintain the quality and safety of food products. It acts as an antioxidant agent. We aimed to nanoencapsulate TEO at concentrations of 1%, 3%, and 5% (v/w, dry basis) in electrospun nanofibers made of starch (50% w/v) and formic acid (75% v/v). The rheological parameters of the fiber-forming solutions were measured, and various physical and chemical properties of the nanofibers were analyzed. RESULTS The starch/TEO nanofibers presented homogeneous morphology. The starch nanofibers showed high encapsulation efficiency (EE, 99.1% to 99.8%), which, along with the Fourier transform infra-red (FTIR) spectrum and thermogravimetric analysis (TGA) analysis, indicate strong protection of the phenolic compounds of TEO. Nanofibers with 5% TEO retained up to 50% of the phenolic compounds after exposure to thermal treatment. The antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals of the starch/TEO nanofibers varied from 11.1% to 14.2% and the inhibition values (29.8%, P ≤ 0.05) against hydroxyl radicals were the same for free TEO and the nanofibers. CONCLUSION Owing to these properties, electrospun starch/TEO nanofibers can be applied in food products or food packaging.
Collapse
Affiliation(s)
- Laura M Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Marjana Radünz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Francine T da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Taiane M Camargo
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Graziella P Bruni
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | | | - Alvaro Rg Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
43
|
Kong R, Wang J, Cheng M, Lu W, Chen M, Zhang R, Wang X. Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. Int J Biol Macromol 2020; 164:1631-1639. [PMID: 32763393 DOI: 10.1016/j.ijbiomac.2020.08.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
Abstract
An active film was prepared by corn starch (CS), polyvinyl alcohol (PVA) and carvacrol nanoemulsions (CNE). The microstructure and properties of CNE/corn starch/PVA (CNE/CSP) films were characterized and investigated. Scanning electron microscopy (SEM) revealed the uniform distribution of CNE and discontinuity of the film matrix. Fourier transform infrared (FT-IR) and rheological analysis indicated that CNE could weaken molecular interaction of the film matrix. X-ray diffraction (XRD) show that the films are amorphous and CNE has no effect on crystal structure of the films. Incorporation of CNE significantly increased the tensile strength, Young's modulus, elongation at break, barrier (water vapor and ultraviolet), antioxidant and antifungal activity. With the CNE incorporated, the optimal tensile strength, Young's modulus, elongation at break and antioxidant activity of the films can reach 12 MPa, 11 MPa, 133%, 81%, respectively. Minimum water vapor permeability was 3.1 × 10-12 gd-1m-1Pa-1. Notably, films incorporated with CNE (≥20%) had good DPPH free radical scavenging ability (>50%) when stored up to 6 days. Films with 25% CNE exhibited excellent antifungal activity against Trichoderma sp. and its inhibitory zone was 47 mm. Overall, the CSP films loaded with CNE (>15%) could be used as food packing materials with good antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Ruiqi Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenqian Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Menglin Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
44
|
Ocak B. Properties and characterization of thyme essential oil incorporated collagen hydrolysate films extracted from hide fleshing wastes for active packaging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29019-29030. [PMID: 32424755 DOI: 10.1007/s11356-020-09259-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In this investigation, collagen hydrolysate (CH) films extracted from hide fleshing wastes were successfully developed using solvent casting method by incorporating different concentrations of thyme essential oil (TO) (2%, 4%, 6%, and 8%) into the CH. Depending on the concentration of TO, thickness, tensile strength (TS), elongation at break (EAB), film solubility (FS), color, opacity, light transmittance, and thermal properties varied. Addition of TO resulted in the increases in the thickness, EAB (%), and light barrier performance of CH-TO films while there was a significant decrease in TS and FS of the CH films (p ≤ 0.05). According to our findings, the increment of TO content induced higher lightness and yellowness but lower redness values compared to CH film. Fourier-transform infrared spectroscopy was conducted to determine the molecular changes and interactions between CH extracted from hide fleshing wastes and TO. In order to analyze the thermal behavior of the films, differential scanning calorimetry analysis was conducted. Moreover, the structure-property relationships of CH and TO were examined by scanning electron microscopy and a reduction in the compact and homogenous structures of the films containing TO was observed. Promising results have been obtained showing that CH-based films can be used for active packaging purposes, thereby contributing to a significant reduction in the environmental impact of both leather solid waste and plastic packaging materials.
Collapse
Affiliation(s)
- Bugra Ocak
- Faculty of Engineering, Department of Leather Engineering, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
45
|
Antioxidant and antimicrobial applications of biopolymers: A review. Food Res Int 2020; 136:109327. [PMID: 32846526 DOI: 10.1016/j.foodres.2020.109327] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/26/2022]
Abstract
Biopolymers have generated mounting interest among researchers and industrialists over the recent past. Rising consciousness on the use of eco-friendly materials as green alternatives for fossil-based biopolymers has shifted the research focus towards biopolymers. Advances in technologies have opened up new windows of opportunities to explore the potential of biopolymers. In this context, this review presents a critique on applications of biopolymers in relation to antioxidant and antimicrobial activities. Some biopolymers are reported to contain inherent antioxidant and antimicrobial properties, whereas, some biopolymers, which do not possess such inherent properties, are used as carriers for other biopolymers or additives having these properties. Modifications are often performed in order to improve the properties of biopolymers to suit them for different applications. This review aims at presenting an overview on recent advances in the use of biopolymers with special reference to their antioxidant and antimicrobial applications in various fields.
Collapse
|
46
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Nakisozi H, Van der Meeren P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Raveau R, Fontaine J, Lounès-Hadj Sahraoui A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020; 9:E365. [PMID: 32245234 PMCID: PMC7143296 DOI: 10.3390/foods9030365] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
Naturally produced by aromatic plants, essential oils (EO) contain a wide range of volatile molecules, including mostly secondary metabolites, which possess several biological activities. Essential oils properties such as antioxidant, antimicrobial and anti-inflammatory activities are known for a long time and hence widely used in traditional medicines, cosmetics and food industries. However, despite their effects against many phytopathogenic fungi, oomycetes and bacteria as well as weeds, their use in agriculture remains surprisingly scarce. The purpose of the present review is to gather and discuss up-to-date biological activities of EO against weeds, plant pathogenic fungi, oomycetes and bacteria, reported in the scientific literature. Innovative methods, potentially valuable to improve the efficiency and reliability of EO, have been investigated. In particular, their use towards a more sustainable agriculture has been discussed, aiming at encouraging the use of alternative products to substitute synthetic pesticides to control weeds and plant diseases, without significantly affecting crop yields. An overview of the market and the recent advances on the regulation of these products as well as future challenges to promote their development and wider use in disease management programs is described. Because of several recent reviews on EO insecticidal properties, this topic is not covered in the present review.
Collapse
Affiliation(s)
| | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228 Calais cedex, France; (R.R.); (J.F.)
| |
Collapse
|
48
|
The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers (Basel) 2020; 12:polym12020497. [PMID: 32102448 PMCID: PMC7077722 DOI: 10.3390/polym12020497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/26/2022] Open
Abstract
Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films.
Collapse
|
49
|
Development and Properties of Fish Gelatin/Oxidized Starch Double Network Film Catalyzed by Thermal Treatment and Schiff' Base Reaction. Polymers (Basel) 2019; 11:polym11122065. [PMID: 31835840 PMCID: PMC6960496 DOI: 10.3390/polym11122065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
Abstract
In order to improve the properties of fish gelatin (FG), oxidized starch (OS) was adopted to form hetero-covalent linkage with it based on thermal treatment and the Schiff’ base reaction. The effects of different ratios of FG/OS (ranging from 10:1 to 2:1) on the properties of films were investigated. OS improved the mechanical and barrier properties of films significantly, while the moisture content decreased as OS concentration increased. The optimum concentration was obtained at the loading amount of 1.5% (w/v) OS. FT-IR spectra revealed the covalent cross-linking between FG and OS induced by Schiff’ base reaction. Moreover, composite films had superior preservation effect on blueberry, according to the results of weight loss, total soluble solids, titratable acidity, and total anthocyanin content. Therefore, this study suggested that FG-OS double network films (FODF) has great potential in the packaging industry.
Collapse
|
50
|
Sapper M, Bonet M, Chiralt A. Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108574] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|