1
|
Yan K, Kong J, Yu L, Yang J, Zeng X, Bai W, Qian M, Dong H. Flavor evolution and identification of the warmed-over flavor (WOF) in pre-cooked goose meat by means of HS-SPME-GC-MS and GC-IMS. Food Chem 2025; 481:143979. [PMID: 40157103 DOI: 10.1016/j.foodchem.2025.143979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
This study explored the flavor evolution of pre-cooked goose meat during storage, focusing on lipid oxidation's impact on warmed-over flavor (WOF). Using electronic nose, GC-IMS, and SPME-GC-MS to characterize volatile organic compounds (VOCs), 60 VOCs were identified by GC-IMS. SPME-GC-MS and OAV analysis identified 15 key VOCs, with OPLS-DA and VIP analysis highlighting diisobutyl phthalate, 2-octenoic acid, octadecyl alcohol and 1-octeno-3-alcohol as potential indicators of storage time in pre-cooked goose meat. Pearson correlation analysis revealed a strong link between key VOCs and lipid oxidation, especially secondary oxidation and polyunsaturated fatty acids (C24:1, C22:6n3). These findings emphasize the role of lipid oxidation in flavor intensification, providing valuable insights for flavor profiling and oxidation control.
Collapse
Affiliation(s)
- Kangling Yan
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiaxin Kong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Limei Yu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Min Qian
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
2
|
Kulawik P, Tadesse EE, Szymkowiak A, Tkaczewska J, Zając M, Guzik P, Janik M, Tadele W, Szram R, Grzebieniarz W, Nowak-Nazarkiewicz N, Milosavljević V, Jamróz E. Effect of multilayer nano-/mini-furcellaran/chitosan emulsions with oregano essential oil on quality, oxidation and consumer perception of pork loins stored at 4 °C and -20 °C. Int J Biol Macromol 2025; 303:140491. [PMID: 39894104 DOI: 10.1016/j.ijbiomac.2025.140491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
The aim of this study is to investigate the effects of multilayer nano-/mini- furcellaran/chitosan emulsions with oregano essential oil and bioactive peptides (RW4 and LL37) on nutritional quality, oxidation and consumer perception of pork loins stored at 4 °C and - 20 °C for 18 days and six months, respectively. The triple-layer emulsions were applied on pork loins via the electrospraying method at 20 kV. The multilayer mini-/nano-emulsions significantly inhibited lipid and protein oxidation during refrigerated and freezer storage, proving their antioxidant activity. In addition, the coatings did not negatively affect the color attributes or texture profile of pork loins either both storage conditions. Furthermore, the application of coatings had no influence on the proximate or fatty acid composition of pork loin during refrigerated storage. Therefore, this study allows to show that the developed triple-layer emulsions with oregano essential oil applied through electrospraying improved the quality and physicochemical properties of pork loins, proving potential for fresh meat preservation.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland.
| | - Eskindir Endalew Tadesse
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Andrzej Szymkowiak
- Department of Commerce and Marketing, Institute of Marketing, Poznań University of Economics and Business, Niepodległosci 10, PL-61-875, Poznań, Poland; Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Joanna Tkaczewska
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Marzena Zając
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Paulina Guzik
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Wondyfraw Tadele
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Rafał Szram
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | | | - Vedran Milosavljević
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510, Kraków, Poland
| |
Collapse
|
3
|
Wei L, Zhu S, Xiong G, Li J, Zhang W. Citric acid vapor-assisted crosslinking of zein/PEG composite nanofiber membrane embedded with nisin by electrospinning for the cooled goose meat preservation. Curr Res Food Sci 2025; 10:100983. [PMID: 39926038 PMCID: PMC11803153 DOI: 10.1016/j.crfs.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
This study demonstrated the fabrication of zein/polyethylene glycol/nisin (zein/PEG/nisin) nanofiber membrane and cross-linked by citric acid vapor (zein/PEG/nisin/C). The distribution within the whole nanofiber membranes was monitored by scanning electron microscopy (SEM). Studies using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) validated the effectiveness nisin encapsulation and molecular interactions. The water vapor permeability (WVP) and oxygen permeability (OP) of zein/PEG/nisin/C are 150.47 ± 7.14 (g m-2 24h) and 59.74 ± 3.10 (cm3 m-2 24h), respectively. Antibacterial experiments have shown that the antibacterial effect of zein/PEG/nisin/C on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and the diameters of the bacteriostatic circle were 11.52 ± 0.44 mm and 10.67 ± 0.46 mm, respectively. During 10 days of the storage of the cooled fresh goose meat, compared with the control group, the pH of zein/PEG/nisin/C nanofiber membrane was 5.7, the concentration of the total volatile basic nitrogen (TVB-N) and the value of total viable count (TVC) and thiobarbituric acids (TBARS) are 11.28 mg/100g, 5.01 ± 0.69 log (CFU g-1), and 0.83 mg kg-1, respectively. These results point to the possibility of using functionalized nanofiber membranes for the cold fresh goose meat preservation facilitated by vaporized citric acid cross-linking.
Collapse
Affiliation(s)
- Lanlan Wei
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaijie Zhu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Guoyuan Xiong
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Zhou HF, Deng WY, Guo HQ, Luo WH, Han ZQ, Cheng Z, Lau WM, Xiao NY, Zhang XQ. Antibacterial activity of polyethylene film by hyperthermal hydrogen induced cross-linking with chitosan quaternary ammonium salt. Int J Biol Macromol 2025; 286:138335. [PMID: 39638192 DOI: 10.1016/j.ijbiomac.2024.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In this study, hyperthermal hydrogen-induced cross-linking (HHIC) technology was applied to construct a dense cross-linking layer of antibacterial chitosan quaternary ammonium salt (HTCC) to PE surface through the selective cleavage of CH bonds and subsequent cross-linking of the resulting carbon radicals. Before HHIC treatment, UV-Ozone was used to activate PE surface to facilitate HTCC adsorption. FT-IR and XPS analyses proved the successful cross-linking between PE and HTCC. From AFM analysis, the prepared PE cross-linked HTCC film (PE-c-HTCC) showed the rougher surface with average roughness (Ra) of 9.16 nm. The water vapor permeability (WVP) and oxygen permeability (OP) values of the film were decreased by about 83 % and 97 %, respectively. Additionally, the film exhibited strong antibacterial properties against E. coli and S. aureus. In terms of these properties, the shelf life of fresh beef could be extended for 2 days after packing with the PE-c-HTCC film.
Collapse
Affiliation(s)
- Hui-Fang Zhou
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wan-Ying Deng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hao-Qi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen-Han Luo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi-Qiang Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528000, China
| | - Zheng Cheng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528000, China
| | - Nai-Yu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xue-Qin Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
5
|
Günal-Köroğlu D, Yılmaz H, Gultekin Subasi B, Capanoglu E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res Int 2025; 200:115378. [PMID: 39779159 DOI: 10.1016/j.foodres.2024.115378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear. This review comprehensively explores the impact of various preservation techniques, including high hydrostatic pressure (HHP), irradiation (IR), and modified atmosphere packaging (MAP), on protein oxidation during chilled or frozen storage of meat products. While these techniques have shown promising results in extending shelf-life, their effects on protein oxidation are dose-dependent and must be carefully controlled to maintain product quality. Preservation techniques involving the use of phenolic additives have demonstrated synergistic effects in mitigating protein oxidation during storage. Notably, natural phenolic additives have shown comparable efficacy compared to artificial antioxidants. Additionally, incorporating phenolic additives into bio-edible films has shown promise in combating protein oxidation.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Türkiye.
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
6
|
Zhang H, Zhao J, Li X, Kang H. Improving the physicochemical quality and oxidative stability of deep-fried pork meatballs by coating with chitosan grafted gallic acid. Meat Sci 2024; 218:109629. [PMID: 39159509 DOI: 10.1016/j.meatsci.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The objective of this research was to examine the effectiveness of chitosan (CH)-gallic acid (GA) conjugate (CH-g-GA) as an edible coating in improving the physicochemical properties and oxidative stability of deep-fat fried pork meatballs. The meatballs were coated with either CH alone, a combination of CH and GA, or CH-g-GA before being fried at 180 °C for 5 min. The viscosity of the coating solutions influenced the amount of coating picked up by the meatballs, with higher viscosity coatings showing increased pickup. The application of chitosan-based coatings in deep-fried meatballs resulted in a decrease in moisture loss and oil uptake, as well as decreased b* values and hardness, while maintaining consistent cooking yield. Furthermore, compared to the control group, the chitosan-based coatings treatment significantly increased the ratio of immobilized water and decreased the ratio of free water (P < 0.05), as well as effectively inhibited lipid oxidation in deep-fried meatballs (P < 0.05). Among the different coatings tested, CH-g-GA coating exhibited the highest effectiveness. The research findings suggest that the CH-g-GA edible coating has significant potential in enhancing the overall quality of deep-fried meatballs.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Junren Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Guangdong 525000, China
| | - Xinling Li
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huaibin Kang
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
7
|
Zhang H, Li X, Cheng W, Kang H. Impact of Incorporating Gallic Acid-Grafted-Chitosan on the Quality Attributes of Refrigerated Chicken Patties. Food Sci Anim Resour 2024; 44:1266-1282. [PMID: 39554818 PMCID: PMC11564132 DOI: 10.5851/kosfa.2024.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 11/19/2024] Open
Abstract
To improve the antimicrobial and antioxidant characteristics of chitosan (CH), a conjugate of gallic acid (GA) and chitosan (GA-g-CH) was synthesized through a radical grafting process. The impact of the addition of GA-g-CH on the quality of chicken patties was investigated during a 15-day period under refrigerated conditions. The microbiological characteristics, encompassing the total viable counts, counts of Pseudomonas spp., and counts of lactic acid bacteria were assessed. Furthermore, the water migration, sensory characteristics, and physicochemical characteristics, including thiobarbituric acid-reactive substances (TBARS), carbonyl content, pH level, water holding capacity (WHC), and color deterioration were also evaluated. The findings suggest that both CH+GA and GA-g-CH addition effectively maintained the quality of chicken patties during cold storage. Nevertheless, GA-g-CH exhibited superior antimicrobial properties and a stronger capacity to inhibit the formation of TBARS and carbonyl compounds. The addition of GA-g-CH also inhibited water migration, maintained a higher WHC, and resulted in superior sensory attributes for a longer duration compared to the other treated samples, thus prolonging the shelf life and retarding the deterioration of fresh chicken patties by 3-6 days during refrigerated storage. The research findings suggest that the incorporation of GA-g-CH exhibits promising potential in maintaining the freshness of ground chicken products during storage.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Food and Bioengineering, Henan
University of Science and Technology, Luoyang 471003,
China
| | - Xinling Li
- School of Food and Bioengineering, Henan
University of Science and Technology, Luoyang 471003,
China
| | - Weiwei Cheng
- School of Food and Bioengineering, Henan
University of Science and Technology, Luoyang 471003,
China
| | - Huaibin Kang
- School of Food and Bioengineering, Henan
University of Science and Technology, Luoyang 471003,
China
| |
Collapse
|
8
|
Ruan P, Zhang K, Zhang W, Kong Y, Zhou Y, Yao B, Wang Y, Wang Z. Polyphenolic truxillic acid crosslinked sodium alginate film with notable antimicrobial and biodegradable properties for food packaging. Int J Biol Macromol 2024; 279:135184. [PMID: 39216579 DOI: 10.1016/j.ijbiomac.2024.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
This work demonstrated an innovative antimicrobial and biodegradable food packaging film CBDA-10-SA which was prepared by crosslinking a natural polyphenolic truxillic acid (cyclobutane-dicarboxylic acid, CBDA-10) and sodium alginate (SA). The CBDA-10-SA film exhibited improved tensile strength (148 MPa) and UV shielding capabilities. The maximum thermal decomposition temperature was achieved of 249 °C. Compared to SA film, CBDA-10-SA showed increased antibacterial activities. In food packaging test, the CBDA-10-SA inhibited the rapid growth of potential of hydrogen (pH) value, slowed down the weight loss, reduced total plate count (TPC) value of pork, and delayed the spoilage process of pork. Notably, CBDA-10-SA displayed remarkable degradability in soil, with 60 % degrading in four weeks. In this study, CBDA-10-SA showed enhanced physicochemical and mechanical properties compared to traditional SA film. Those improvements make it anticipated to be used in not only food packaging but also mechanical, pharmaceutical, and agricultural fields.
Collapse
Affiliation(s)
- Panyao Ruan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kexin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Kong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Bin Yao
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Jiang LS, Li YC, Zheng FX, Zhang MJ, Zheng WX, Liu DY, Meng FB. Application of Lactiplantibacillus plantarum hydrogel coating in combination with ice temperature for the preservation of fresh yak meat. Food Chem X 2024; 23:101735. [PMID: 39263338 PMCID: PMC11388355 DOI: 10.1016/j.fochx.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Fresh yak meat is highly nutritious and prone to spoilage, so developing suitable preservation methods is crucial. In this study, hydrogel coatings composed of konjac glucomannan, Lactiplantibacillus plantarum and gallic acid (KGX) were applied to preserve fresh yak meat under ice temperature (-1 °C). After 16 days, KGX group showed lowest total viable count (5.3 ± 0.1 log cfu/g) and total volatile basic nitrogen (13.02 ± 1.40 mg/100 g), which did not exceed the relevant standards of fresh meat. Combined assessments of color, texture, pH, drip loss rate, and thiobarbituric acid reactive substances indicated that KGX coating effectively prolonged yak meat preservation. High-throughput sequencing revealed that KGX coating effectively reduced the abundance of Pseudomonas and Candida. The application of L. plantarum hydrogel coatings in conjunction with ice temperature increased the shelf life of fresh yak meat to 16-20 days, suggesting its potential as a viable preservation method for fresh meat.
Collapse
Affiliation(s)
- Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fu-Xu Zheng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Meng-Jiao Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wen-Xuan Zheng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 610046, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 610046, PR China
| |
Collapse
|
10
|
Gangadharan G, Gupta S, Kudipady ML, Puttaiahgowda YM. Gallic Acid Based Polymers for Food Preservation: A Review. ACS OMEGA 2024; 9:37530-37547. [PMID: 39281951 PMCID: PMC11391454 DOI: 10.1021/acsomega.4c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The extensive usage of nonbiodegradable plastic materials for food packaging is a major environmental concern. To address this, researchers focus on developing biocompatible and biodegradable food packaging from natural biopolymers, such as polysaccharides, proteins, and polyesters. These biopolymer-based packaging materials extend the shelf life of food due to their inherent antimicrobial and antioxidant properties. An important additive that enhances these beneficial effects is gallic acid (GA), a naturally occurring phenolic compound. GA exhibits potent antioxidant activity by scavenging free radicals and excellent antimicrobial activity against a wide range of bacteria by disrupting cell membranes. These gallic acid based active packaging solutions have demonstrated remarkable abilities to inhibit lipid oxidation, enzymatic browning, and microbial contamination and even retard the ripening processes in mushrooms, walnuts, strawberries, fresh-cut apples, bananas, fish, pork, and beef. This review focuses on the antioxidant, antibacterial, and food preservation capabilities of GA-incorporated biodegradable food packaging materials as an eco-friendly alternative to conventional plastic packaging.
Collapse
Affiliation(s)
- Gayathri Gangadharan
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Manas Laxman Kudipady
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
11
|
Smaoui S, Echegaray N, Kumar M, Chaari M, D'Amore T, Shariati MA, Rebezov M, Lorenzo JM. Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products. Appl Biochem Biotechnol 2024; 196:3604-3635. [PMID: 37615854 DOI: 10.1007/s12010-023-04680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Advancements in food science and technology have paved the way for the development of natural antimicrobial compounds to ensure the safety and quality of meat and meat products. Among these compounds, bacteriocin produced by lactic acid bacteria has gained considerable scientific attention for its ability to preserve the healthy properties of meat while preventing spoilage. This natural preservative is seen as a pioneering tool and a potent alternative to chemical preservatives and heat treatment, which can have harmful effects on the nutritional and sensory qualities of meat. Bacteriocin produced by lactic acid bacteria can be used in various forms, including as starter/protective cultures for fermented meats, purified or partially purified forms, loaded in active films/coatings, or established in encapsulate systems. This review delves into the downstream purification schemes of LAB bacteriocin, the elucidation of their characteristics, and their modes of action. Additionally, the application of LAB bacteriocins in meat and meat products is examined in detail. Overall, the use of LAB bacteriocins holds immense potential to inspire innovation in the meat industry, reducing the dependence on harmful chemical additives and minimizing the adverse effects of heat treatment on nutritional and sensory qualities. This review provides a comprehensive understanding of the potential of bacteriocin produced by lactic acid bacteria as a natural and effective meat preservative.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia.
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Moufida Chaari
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Teresa D'Amore
- Deparment of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121, Foggia, Italy
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave, Almaty, 050060, Republic of Kazakhstan.
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, 109316, Russian Federation
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, 32004, Spain
| |
Collapse
|
12
|
Cabrera-Barjas G, Albornoz K, Belchi MDL, Giordano A, Bravo-Arrepol G, Moya-Elizondo E, Martin JS, Valdes O, Nesic A. Influence of chitin nanofibers and gallic acid on physical-chemical and biological performances of chitosan-based films. Int J Biol Macromol 2024; 263:130159. [PMID: 38368972 DOI: 10.1016/j.ijbiomac.2024.130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
In this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films. Increased concentration of chitin nanofibers in films reduced the overall water vapor permeability of films by 51 %. In addition, gallic acid and chitin nanofibers had synergic effect on high chitosan film's antioxidant and antifungal activity toward Botrytis cinerea (both above 95 %). Finally, chitosan/gallic acid/chitin nanofibers films reduced decay incidence of strawberries, increased total soluble solid content, and promoted high production of some polyphenols during cold storage, in comparison to the control chitosan films and uncoated strawberry samples. Hence, these results suggest that chitosan/gallic acid/chitin nanofibers can present eco-sustainable approach for preservation of strawberries, giving them additional nutritional value.
Collapse
Affiliation(s)
- Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Maria Dolores Lopez Belchi
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Ady Giordano
- Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| | - Gaston Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7810000, Chile.
| | - Ernesto Moya-Elizondo
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Juan San Martin
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.
| | - Aleksandra Nesic
- University of Belgrade, Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Serbia.
| |
Collapse
|
13
|
Zhang R, Xu G, Su Y, Rao S. Potential Application of Ovalbumin Gel Nanoparticles Loaded with Carvacrol in the Preservation of Fresh Pork. Gels 2023; 9:941. [PMID: 38131927 PMCID: PMC10742687 DOI: 10.3390/gels9120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Plant essential oil has attracted much attention in delaying pork spoilage due to its safety, but its low antibacterial efficiency needs to be solved by encapsulation. Our previous research had fabricated a type of ovalbumin gel nanoparticles loaded with carvacrol (OCGn-2) using the gel-embedding method, which had a high encapsulation rate and antibacterial activity. The main purpose of this study was to further evaluate the stability and slow-release characteristics of OCGn-2 and potential quality effects of the nanoparticles on the preservation of fresh pork pieces during 4 °C storage. The particle test showed that the nanoparticles had better heat stability below 85 °C and salt stability below 90 mM. The in vitro release study indicated that the carvacrol in OCGn-2 followed a Fickian release mechanism. The pork preservation test suggested that the OCGn-2 coating treatments could remarkably restrict the quality decay of pork slices compared to free carvacrol or a physical mixture of ovalbumin and carvacrol treatment. Nano-encapsulation of ovalbumin is beneficial to the sustained release, enhanced oxidation resistance, and improved antibacterial activity of carvacrol. The study suggested that ovalbumin gel nanoparticles embedded with carvacrol could be applied as an efficient bacterial active packaging to extend the storage life of pork.
Collapse
Affiliation(s)
- Ruyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.Z.); (Y.S.)
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Guangwei Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.Z.); (Y.S.)
| | - Shengqi Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.Z.); (Y.S.)
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| |
Collapse
|
14
|
Zhang J, Wei Z, Lu T, Qi X, Xie L, Vincenzetti S, Polidori P, Li L, Liu G. The Research Field of Meat Preservation: A Scientometric and Visualization Analysis Based on the Web of Science. Foods 2023; 12:4239. [PMID: 38231689 DOI: 10.3390/foods12234239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Meat plays a significant role in human diets, providing a rich source of high-quality protein. With advancements in technology, research in the field of meat preservation has been undergoing dynamic evolution. To gain insights into the development of this discipline, the study conducted an analysis and knowledge structure mapping of 1672 papers related to meat preservation research within the Web of Science Core Collection (WOSCC) spanning from 2001 to 2023. And using software tools such as VOSviewer 1.6.18 and CiteSpace 5.8.R3c allowed for the convenient analysis of the literature by strictly following the software operation manuals. Moreover, the knowledge structure of research in the field of meat preservation was synthesized within the framework of "basic research-technological application-integration of technology with fundamental research," aligning with the research content. Co-cited literature analysis indicated that meat preservation research could be further categorized into seven collections, as well as highlighting the prominent role of the antibacterial and antioxidant properties of plant essential oils in ongoing research. Subsequently, the future research direction and focus of the meat preservation field were predicted and prospected. The findings of this study could offer valuable assistance to researchers in swiftly comprehending the discipline's development and identifying prominent research areas, thus providing valuable guidance for shaping research topics.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, MC, Italy
| | - Zixiang Wei
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Ting Lu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xingzhen Qi
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lan Xie
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, MC, Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Via Gentile da Varano, 62032 Camerino, MC, Italy
| | - Lanjie Li
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
- Office of International Programs, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
15
|
Peng Z, Xiong T, Huang T, Xu X, Fan P, Qiao B, Xie M. Factors affecting production and effectiveness, performance improvement and mechanisms of action of bacteriocins as food preservative. Crit Rev Food Sci Nutr 2023; 63:12294-12307. [PMID: 35866501 DOI: 10.1080/10408398.2022.2100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern society is increasingly attracted with safe, natural, and additive-free food products, that gives preference to bacteriocins produced by General Recognized as Safe bacteria as a food preservative. Bacteriocins have been reported to be effective in extending shelf life of diverse foods such as meats, dairy products, wine, juice, and fruits and vegetables, whereas commercialized bacteriocins remain only nisin, pediocin, and Micocin. It is important that commercialized preservatives undergo an easy-to-handle manufacturing while maintaining high efficacy. Limited application of bacteriocins is most often caused by the absence of legislatives for use, low production, high cost and complicated purification process, reduced efficiency in the complex food matrix and insufficiently defined mechanism of action. Accordingly, this review provides an overview of bacteriocins, in relation to production stimulation, general purification scheme, impact of food matrix on bacteriocin effectiveness, and collaborative technology to improve bacteriocin performances. It is worth to note that purification and performance improvement technology remain the two challenging tasks in promoting bacteriocins as a widely used bio-preservative. Furthermore, this review for the first time divides bacteriocin receptors into specific classes (class I, II, III) and nonspecific class, to provide a basis for an in-depth understanding of the mechanism of action.
Collapse
Affiliation(s)
- Zhen Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Pengrong Fan
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Baoling Qiao
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
17
|
Wang L, Dekker M, Heising J, Zhao L, Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Crit Rev Food Sci Nutr 2023; 64:8963-8989. [PMID: 37154045 DOI: 10.1080/10408398.2023.2205937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antimicrobial agents are safe preservatives having the ability to protect foods from microbial spoilage and extend their shelf life. Many factors, including antimicrobials' chemical features, storage environments, delivery methods, and diffusion in foods, can affect their antimicrobial activities. The physical-chemical characteristics of the food itself play an important role in determining the efficacy of antimicrobial agents in foods; however the mechanisms behind it have not been fully explored. This review provides new insights and comprehensive knowledge regarding the impacts of the food matrix, including the food components and food (micro)structures, on the activities of antimicrobial agents. Studies of the last 10 years regarding the influences of the food structure on the effects of antimicrobial agents against the microorganisms' growth were summarized. The mechanisms underpinning the loss of the antimicrobial agents' activity in foods are proposed. Finally, some strategies/technologies to improve the protection of antimicrobial agents in specific food categories are discussed.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Jenneke Heising
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
18
|
Javadifard M, Khodanazary A, Hosseini SM. The effects of chitosan-nanoclay nanocomposite coatings incorporated with gallic acid on the shelf life of rainbow trout during storage in the refrigerator. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Qiu L, Zhang M, Chitrakar B, Adhikari B, Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
21
|
Influence of Gelatin-Chitosan-Glycerol Edible Coating Incorporated with Chlorogenic Acid, Gallic Acid, and Resveratrol on the Preservation of Fresh Beef. Foods 2022; 11:foods11233813. [PMID: 36496621 PMCID: PMC9737340 DOI: 10.3390/foods11233813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorogenic acid (CA), gallic acid (GA), and resveratrol (RES) were added to a gelatin (GEL)-chitosan (CHI)-glycerol (GLY) edible coating, and their effects on the coating of fresh beef preservation were investigated. The results revealed that CA had the most significant improvement effect on fresh beef preservation. The combination of GEL-CHI-GLY-CA preserved the color of the beef better and delayed the increase of the total volatile base nitrogen, even though its total phenolic content decreased at a faster rate during beef preservation. GA also improved the preservation effect as on the 12th day of storage, the beef samples treated with GEL-CHI-GLY-GA had the lowest thiobarbituric acid reactive substances (0.76 mg Malondialdehyde (MDA)/kg) and total viable count (6.0 log cfu/g). On the whole, though RES showed an improvement on beef preservation, the improvement was not as good as the other two polyphenols. After 12 days of storage, the beef samples treated with GEL-CHI-GLY-RES had a higher pH value (6.25) than the other two polyphenol treatmed groups. Overall, the three polyphenol-added combinations increased the shelf life of beef by approximately 3-6 days compared to the control group (treated GEL-CHI-GLY with distilled water).
Collapse
|
22
|
Singh AK, Kim JY, Lee YS. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022; 27:7513. [PMID: 36364340 PMCID: PMC9655785 DOI: 10.3390/molecules27217513] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.
Collapse
|
23
|
Hu H, Yong H, Zong S, Jin C, Liu J. Effect of chitosan/starch aldehyde-catechin conjugate composite coating on the quality and shelf life of fresh pork loins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5238-5249. [PMID: 35301727 DOI: 10.1002/jsfa.11877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fresh pork is susceptible to oxidation and spoilage. Edible coating containing antioxidant and antimicrobial agents can create moisture and oxygen barriers around pork and inhibit oxidation and microbial growth in the pork. In this study, chitosan in combination with starch aldehyde-catechin conjugate (SACC) was used as a novel edible coating material for preserving fresh pork loins at chilled storage (4 ± 1 °C) for 14 days. Effect of chitosan/SACC composite coating on the quality of pork loins including weight loss, colour, pH value, microbial spoilage, lipid oxidation, protein oxidation, texture and sensory attributes during chilled storage was determined. RESULTS Chitosan and SACC had synergistic antioxidant and antimicrobial actions. As compared with uncoated and chitosan coated pork loins, chitosan/SACC coated pork loins showed lower weight loss (7.16%), pH value (5.99), total viable count (7.11 log CFU g-1 ), total volatile base nitrogen content (130.2 mg kg-1 ), lipid oxidation level (0.47 mg malondialdehyde kg-1 ), protein oxidation level (0.047 mmol free thiol group g-1 ) and shear force (27.40 N) on day 14. Meanwhile, chitosan/SACC composite coating effectively maintained the colour, micro-structure and sensory attributes of pork loins throughout chilled storage period. The shelf life of pork loins was extended from 8 days (uncoated samples) to 14 days by chitosan/SACC composite coating. CONCLUSION Chitosan/SACC composite coating effectively retarded the oxidation and spoilage of pork loins during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
24
|
Yechuan H, Shuangli X. Effect of high‐pressure combined with coating on quality of sodium‐reduced sliced smoke‐cured bacon. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huang Yechuan
- College of Bioengineering Jingchu University of Technology Jingmen Hubei PR China
| | - Xiong Shuangli
- College of Food Science and Technology Sichuan Tourism University Chengdu Sichuan PR China
| |
Collapse
|
25
|
Mavalizadeh A, Fazlara A, PourMahdi M, Bavarsad N. The effect of separate and combined treatments of nisin, Rosmarinus officinalis essential oil (nanoemulsion and free form) and chitosan coating on the shelf life of refrigerated chicken fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Guo Z, Zuo H, Ling H, Yu Q, Gou Q, Yang L. A novel colorimetric indicator film based on watermelon peel pectin and anthocyanins from purple cabbage for monitoring mutton freshness. Food Chem 2022; 383:131915. [PMID: 35241304 DOI: 10.1016/j.foodchem.2021.131915] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Novel films based on watermelon peel pectin (WMP) incorporated with purple cabbage extract (PCE) were developed for monitoring the freshness of mutton. The FTIR result showed that WMP and PCE interacted through hydrogen bonds. Low PCE content (≤1.5%) could be well dispersed in the film matrix, resulting in an enhancement in light transmittance, mechanical properties, barrier properties, and thermal stability. Excessive addition of PCE destroyed the compact structure of the film and decreased the comprehensive properties. The antioxidant and antimicrobial activity of WMP/PCE films were proportional to the amount of incorporated PCE. Moreover, the color of the film deepened as the PCE content increased. The film had excellent color stability and pH response properties. The WMP/PCE1.5 film color varied from mauve to baby blue according to the quality of mutton (fresh to spoiled). Our results suggested that the WMP/PCE film might have great potential for monitoring the freshness of mutton.
Collapse
Affiliation(s)
- Zonglin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Huixin Zuo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Han Ling
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qiaomin Gou
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lihua Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
27
|
Luciano CG, Tessaro L, Bonilla J, Balieiro JCDC, Trindade MA, Sobral PJDA. Application of bi-layers active gelatin films for sliced dried-cured Coppa conservation. Meat Sci 2022; 189:108821. [PMID: 35421736 DOI: 10.1016/j.meatsci.2022.108821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
Processed meat products have been increasingly consumed, a highlight being dried-cured coppa, commonly purchased sliced, making it more susceptible to bacterial deterioration and lipid oxidation. The aim of this work was to produce and apply bi-layers films based on gelatin (in both layers) with addition of nisin and/or Pitanga leaf hydroethanolic extract (PLHE) only in the food contact thinner layer, in order to evaluate their effect on the refrigerated storage of sliced dried-cured coppa. Dried-cured coppa slices covered with active films were vacuum-packaged and stored under refrigeration for 120 days. Every 30 days, samples were tested for moisture content, water activity, pH, color parameters, lipid oxidation by TBARS and peroxide index methods, and microbiological analysis. The different film formulations presented no influence on the water activity, pH and color parameters of sliced dried-cured coppa. However, they significantly affected moisture content, bacterial count and lipid oxidation. The addition of both active compounds - nisin and PLHE - in the food contact thinner layer was observed to have the most favorable effect.
Collapse
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Jeannine Bonilla
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Júlio César de Carvalho Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marco Antonio Trindade
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C; 05508-080 São Paulo (SP), Brazil.
| |
Collapse
|
28
|
Correlating in silico elucidation of interactions between hydroxybenzoic acids and casein with in vitro release kinetics for designing food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Wang X, Xie X, Zhang T, Zheng Y, Guo Q. Effect of edible coating on the whole large yellow croaker (Pseudosciaena crocea) after a 3-day storage at −18 °C: With emphasis on the correlation between water status and classical quality indices. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Dai Z, Han L, Li Z, Gu M, Xiao Z, Lu F. Combination of Chitosan, Tea Polyphenols, and Nisin on the Bacterial Inhibition and Quality Maintenance of Plant-Based Meat. Foods 2022; 11:foods11101524. [PMID: 35627094 PMCID: PMC9140481 DOI: 10.3390/foods11101524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plant-based meat products have gained attention in the food industry and with consumers. Plant-based meat products primarily comprise plant proteins and are rich in nutrients. However, the products are highly susceptible to bacterial contamination during storage. Biological preservatives are easily degradable alternatives to chemical preservatives and can preserve different kinds of food. In order to investigate the preservation properties of chitosan (CS), tea polyphenols (TPs), and nisin treatments on plant-based meats, the sensory evaluation, color difference, pH, TBARS, and the total plate count of E. coli, S. aureus, and Salmonella, indicators of the biological preservative-treated plant-based meat, were determined in this study. The experiment involved blank control- and biological preservative-treated samples. We found that the total microbial count exceeded the national standard provisions in the control samples stored for 14 days. The colors, tissue structures, and flavors of plant-based meat have gradually deteriorated, with the sensory score dropping from 90 to 52. The sample had a loose tissue structure and an obvious sour taste. However, the shelf life of the plant-based meat samples treated with different combinations of the biological preservatives increased compared to the shelf life of the control samples. After 56 d of storage, 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin sensory reduction to 56, the total number of colonies and S. aureus were 4.91 and 2.95 lg CFU/g, approaching the national standard threshold; E. coli was 2 lg CFU/g, reaching the national standard threshold. Thus, the samples treated with 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin had the longest shelf life (56 days) among all experimental groups. Hence, this study reveals that a combination of biological preservatives may be a non-toxic alternative for the efficient preservation of plant-based meat products.
Collapse
Affiliation(s)
- Zenghui Dai
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Linna Han
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
31
|
Dong B, Yu C, Lin Y, Zhou G, Sun C, Wang J, Wu T. Antimicrobial property of Pichia pastoris-derived natto peptide against foodborne bacteria and its preservative potential to maintain pork quality during refrigerated storage. Food Sci Nutr 2022; 10:914-925. [PMID: 35282007 PMCID: PMC8907714 DOI: 10.1002/fsn3.2722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Pork spoilage caused by foodborne bacteria contamination always leads to substantial economic loss in the meat industry. The toxicity and drug resistance of chemical preservatives have raised public concerns about their safety and stability. In this study, natto peptide from Pichia pastoris was prepared using DNA recombinant technology. It showed an excellent antibacterial effect against Gram-positive and -negative bacteria, with minimum inhibitory concentrations (MICs) ranging from 6 to 30 μg/ml. Of note, natto peptide exhibited low cytotoxicity and hemolytic activity. The application of natto peptide on pork during refrigerated storage dramatically decreased the growth of Staphylococcus spp., Escherichia spp., and Pseudomonas spp. The bactericidal properties remained in force when natto peptide was used in pork models contaminated with artificial bacteria. Moreover, the application of natto peptide (90 μg/ml) inhibited the increase in pH variation and drip loss, decreased the generation of total volatile basic nitrogen (TVB-N) and thiobarbituric acid reactive substances (TBARS), and maintained a high sensory quality score during pork storage. These results implied that P. pastoris-derived natto peptide could extend the storage time of pork, and it has the potential to be a promising antiseptic biopreservative to replace chemical preservatives.
Collapse
Affiliation(s)
- Bin Dong
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Cailing Yu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Yanjun Lin
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Guowen Zhou
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Chunlong Sun
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Jun Wang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Tao Wu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| |
Collapse
|
32
|
Kazemzadeh S, Abed‐Elmdoust A, Mirvaghefi A, Hosseni S, Abdollahikhameneh H. Physicochemical evaluations of chitosan/nisin nanocapsulation and its synergistic effects in quality preservation in tilapia fish sausage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shirin Kazemzadeh
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | - Amirreza Abed‐Elmdoust
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | - Alireza Mirvaghefi
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | - Seyed Vali Hosseni
- Department of Fisheries Sciences, Faculty of Natural Resources University of Tehran Karaj Iran
| | | |
Collapse
|
33
|
Zhang H, Li X, Kang H, Peng X. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and
Schizonepeta tenuifolia
essential oil in fresh pork. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Xinling Li
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Huaibin Kang
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Xinyan Peng
- College of Life Science Yantai University Yantai China
| |
Collapse
|
34
|
Zixiang W, Jingjing Z, Huachen Z, Ning Z, Ruiyan Z, Lanjie L, Guiqin L. Effect of nanoemulsion loading a mixture of clove essential oil and carboxymethyl chitosan‐coated ε‐polylysine on the preservation of donkey meat during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zixiang
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Jingjing
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Huachen
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Ning
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Ruiyan
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Li Lanjie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Liu Guiqin
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| |
Collapse
|
35
|
Song X, Liu L, Wu X, Liu Y, Yuan J. Chitosan-Based Functional Films Integrated with Magnolol: Characterization, Antioxidant and Antimicrobial Activity and Pork Preservation. Int J Mol Sci 2021; 22:ijms22157769. [PMID: 34360535 PMCID: PMC8345937 DOI: 10.3390/ijms22157769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The aims of this study were to develop the magnolol-chitosan films and study the positive effect of the combination of magnolol and chitosan. The addition of magnolol made the magnolol-chitosan films exhibit higher density (1.06-1.87 g/cm3), but the relatively lower water vapor permeability (12.06-7.36 × 10-11·g·m-1·s-1·Pa-1) and water content (16.10-10.64%). The dense and smooth surface and cross-section of magnolol-chitosan films were observed by environmental scanning electron microscopy (ESEM) images. The interaction of magnolol and chitosan was observed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). After the addition of magnolol, the antioxidant capacity of magnolol-chitosan films was increased from 18.99 to 82.00%, the growth of P. aeruginosa was inhibited and the inhibition percentage of biofilm formation was increased from 30.89 to 86.04%. We further verified that the application of magnolol-chitosan films on chilled pork significantly reduced the increases in pH value, inhibited the growth of microorganisms and extended the shelf life. Results suggest that magnolol had a positive effect on magnolol-chitosan films and could be effectively applied to pork preservation.
Collapse
|
36
|
Meng DM, Sun SN, Shi LY, Cheng L, Fan ZC. Application of antimicrobial peptide mytichitin-CB in pork preservation during cold storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Incorporation of salmon bone gelatine with chitosan, gallic acid and clove oil as edible coating for the cold storage of fresh salmon fillet. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Song X, Wang L, Liu T, Liu Y, Wu X, Liu L. Mandarin (Citrus reticulata L.) essential oil incorporated into chitosan nanoparticles: Characterization, anti-biofilm properties and application in pork preservation. Int J Biol Macromol 2021; 185:620-628. [PMID: 34216663 DOI: 10.1016/j.ijbiomac.2021.06.195] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Mandarin (Citrus reticulata L.) essential oil (MEO) reportedly displays excellent antimicrobial properties. In this study, MEO was loaded into chitosan nanoparticles (CSNPs). The characteristics, antibacterial properties and benefit in pork preservation of MEO-CSNPs were evaluated. The MEO-CSNPs displayed an excellent encapsulation efficiency (EE) (67.32%-82.35%), the particle size values of 131.3 nm-161.9 nm, and the absolute zeta potential values above 30 mV. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, and thermogravimetric analysis (TGA) revealed that the MEO was incorporated into CSNPs without requiring a chemical reaction, the antibacterial activity of the MEO remained. Furthermore, the damage of MEO-chitosan nanoemulsions (MEO-CSs) to the cell membranes of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was confirmed by the change of bacterial cell morphology. The anti-biofilm assays verified that the MEO-CSs substantially inhibited biofilm formation and destroyed the mature biofilms. MEO-CSs were also applied to pork, proving a great potential for pork preservation. This study provides a potential approach for developing and utilizing MEO-CSs as natural antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Xueying Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lei Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ting Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoxia Wu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
39
|
Wang G, Liu Y, Yong H, Zong S, Jin C, Liu J. Effect of Ferulic Acid-Grafted-Chitosan Coating on the Quality of Pork during Refrigerated Storage. Foods 2021; 10:foods10061374. [PMID: 34198567 PMCID: PMC8231958 DOI: 10.3390/foods10061374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
Pork is perishable due to oxidation and microbial spoilage. Edible coating based on biopolymers and phenolic compounds is an effective way to preserve the quality of pork. In this study, ferulic acid-grafted-CS (ferulic acid-g-CS) with strong antioxidant and antimicrobial activities was synthesized through a carbodiimide-mediated coupling reaction. The obtained ferulic acid-g-CS was used as an edible coating material for fresh pork. The effect of ferulic acid-g-CS coating on the quality of pork during storage was investigated at 4 °C for 8 days. As compared to the uncoated pork, pork coated with CS and ferulic acid-g-CS showed lower total viable counts, total volatile basic nitrogen values, pH values, thiobarbituric acid reactive substances, and drip losses. Besides, pork coated with CS and ferulic acid-g-CS presented more compact microstructures than the uncoated pork at the eighth day. Sensory evaluation assay showed pork coated with CS and ferulic acid-g-CS had better color, odor, and over acceptance in comparison with the uncoated pork. Ferulic acid-g-CS coating, due to its relatively higher antioxidant and antimicrobial activities compared to CS coating, had a better performance in refrigerated pork preservation. Ferulic acid-g-CS coating effectively extended the shelf life of refrigerated pork to 7 days. This study revealed ferulic acid-g-CS coating was a promising technology for refrigerated pork preservation.
Collapse
Affiliation(s)
- Guotian Wang
- Laboratory and Equipment Management Office, Yangzhou University, Yangzhou 225009, China;
| | - Yunpeng Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
- Correspondence:
| |
Collapse
|
40
|
Vargas Romero E, Lim LT, Suárez Mahecha H, Bohrer BM. The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods 2021; 10:foods10051110. [PMID: 34067772 PMCID: PMC8156044 DOI: 10.3390/foods10051110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Fresh meat products are highly perishable and require optimal packaging conditions to maintain and potentially extend shelf-life. Recently, researchers have developed functional, active packaging systems that are capable of interacting with food products, package headspace, and/or the environment to enhance product shelf-life. Among these systems, antimicrobial/antioxidant active packaging has gained considerable interest for delaying/preventing microbial growth and deteriorative oxidation reactions. This study evaluated the effectiveness of active linear low-density polyethylene (LLDPE) films coated with a polycaprolactone/chitosan nonwoven (Film 1) or LLDPE films coated with a polycaprolactone/chitosan nonwoven fortified with Colombian propolis extract (Film 2). The active LLDPE films were evaluated for the preservation of fresh pork loin (longissimus dorsi) chops during refrigerated storage at 4 °C for up to 20 d. The meat samples were analyzed for pH, instrumental color, purge loss, thiobarbituric acid reactive substances (TBARS), and microbial stability (aerobic mesophilic and psychrophilic bacteria). The incorporation of the propolis-containing nonwoven layer provided antioxidant and antimicrobial properties to LLDPE film, as evidenced by improved color stability, no differences in lipid oxidation, and a delay of 4 d for the onset of bacteria growth of pork chops during the refrigerated storage period.
Collapse
Affiliation(s)
- Emeli Vargas Romero
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (E.V.R.); (H.S.M.)
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON N1G-2W1, Canada;
| | - Héctor Suárez Mahecha
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (E.V.R.); (H.S.M.)
| | - Benjamin M. Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-247-4951
| |
Collapse
|
41
|
The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods 2021; 10:foods10051009. [PMID: 34066353 PMCID: PMC8148156 DOI: 10.3390/foods10051009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
The demand for natural antimicrobials as food preservatives has increased due to the growing interest of the population for a healthy lifestyle. The application of screening methods to identify the antimicrobial activity of natural compounds is of great importance. The in vitro determination of antimicrobial activity requires determining their minimum inhibitory concentrations to assess microbial susceptibility. This study aimed to evaluate the minimum inhibitory concentrations of three natural antimicrobial compounds—chitosan, ethanolic propolis extract, and nisin—against 37 microorganisms (different pathogens and spoilage microorganisms) by the methods of agar dilution and drop diffusion on agar. Culture media at different pH values were used for both methods to simulate different food products. Most of the microorganisms were inhibited by chitosan (0.5% w/v) and propolis (10 mg/mL), and most of the Gram-positive bacteria by nisin (25 μg/mL). Different pH values and the in vitro method used influenced the inhibition of each compound. Generally, lower minimum inhibitory concentrations were observed at lower pH values and for the agar dilution method. Furthermore, some microorganisms inhibited by the compounds on the agar dilution method were not inhibited by the same compounds and at the same concentrations on the drop diffusion technique. This study reinforces the need for using defined standard methods for the in vitro determination of minimum inhibitory concentrations. Natural compounds with potential antimicrobial action are a bet on food preservation. The use of standard techniques such as those used for antimicrobials of clinical applications are crucial to compare results obtained in different studies and different matrices.
Collapse
|
42
|
Antimicrobial Polyamide-Alginate Casing Incorporated with Nisin and ε-Polylysine Nanoparticles Combined with Plant Extract for Inactivation of Selected Bacteria in Nitrite-Free Frankfurter-Type Sausage. Foods 2021; 10:foods10051003. [PMID: 34064386 PMCID: PMC8147807 DOI: 10.3390/foods10051003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
The effects of combining a polyamide-alginate casing incorporated with nisin (100 ppm and 200 ppm) and ε-polylysine (500 ppm and 1000 ppm) nanoparticles and a mixed plant extract as ingredient in sausage formulation (500 ppm; composed of olive leaves (OLE), green tea (GTE) and stinging nettle extracts (SNE) in equal rates) were studied to improve the shelf life and safety of frankfurter-type sausage. The film characteristics and microbiological properties of sausage samples were evaluated. Sausage samples were packaged in polyethylene bags (vacuum condition) and analysed during 45 days of storage at 4 °C. Control sausages were also treated with 120 ppm sodium nitrite. Polyamide-alginate films containing 100 ppm nisin and 500 ε-PL nanoparticles had the highest ultimate tensile strength compared to other films. However, 100 ppm nisin and 500 ε-PL nanoparticles decreased water vapour permeability of films. The results also revealed that nisin nanoparticles had significantly (p < 0.05) low inhibitory effects against Escherichia coli, Staphylococcus aureus, molds and yeasts and total viable counts compared to control and ε-PL nanoparticles. Furthermore, 1000 ppm ε-PL nanoparticles displayed the highest antimicrobial activity. Based on the obtained results, the films containing ε-PL nanoparticle could be considered as a promising packaging for frankfurter-type sausages.
Collapse
|
43
|
Wang S, Guan R, Huang H, Yang K, Cai M, Chen D. Effects of Different Smoking Materials and Methods on the Quality of Chinese Traditional Bacon (Larou). J Food Prot 2021; 84:359-367. [PMID: 33038238 DOI: 10.4315/jfp-20-223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
ABSTRACT Larou is a traditional smoked meat product in China. In this experiment, larou was processed with different smoking materials and methods to determine whether differences in processing methods would affect the quality of the larou and the concentrations of carcinogens. Pork bellies were marinated, dried, and divided into four groups and then directly smoked with four different smoking materials for 40 min. The smoking material for larou that was most effective was then used with an indirect smoking device with an nano-activated carbon fiber filter and evaluated as a single-factor variable. The surface area of the nano-activated carbon filter was 978.00 m2/g, and this filter effectively adsorbed the ash particles from the smoke. For the group smoked with pomelo skins (PS), the highest concentrations and number of phenols were 4.48% and 11, respectively, which increased the smoke flavor significantly. The moisture was 32.64%, and the Staphylococcus, lactic acid bacteria, and yeast and mold levels were 0.98, 1.10, and 0.59 log CFU/g, indicating inhibition of harmful bacteria and a beneficial microbial environment for larou fermentation. The benzo[a]pyrene (B[a]P) concentration in PS smoke determined with the indirect smoking device was 1.82 μg/kg, whereas that determined with the direct smoking device was 36.1 μg/kg, a significant difference (P < 0.01). These findings suggested that indirect smoking with PS could effectively maintain microbial quality and reduce the B[a]P[mc] concentrations in larou. This processing method can be used for the production of this meat product. HIGHLIGHTS
Collapse
Affiliation(s)
- Sijia Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China.,College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-2717-0996 [R.G.])
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dandan Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
44
|
Song S, Zhu Y, Huang Z, Lin Y, Shi X, Guo H. Isolation, identification and thermal inactivation of dominant spoilage bacteria in egg curds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Yildiz E, Bayram I, Sumnu G, Sahin S, Ibis OI. Development of pea flour based active films produced through different homogenization methods and their effects on lipid oxidation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Yu D, Yu Z, Zhao W, Regenstein JM, Xia W. Advances in the application of chitosan as a sustainable bioactive material in food preservation. Crit Rev Food Sci Nutr 2021; 62:3782-3797. [PMID: 33401936 DOI: 10.1080/10408398.2020.1869920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chitosan is obtained from chitin and considered to be one of the most abundant natural polysaccharides. Due to its functional activity, chitosan has received intense and growing interest in terms of applications for food preservation over the last half-century. Compared with earlier studies, recent research has increasingly focused on the exploration of preservation mechanism as well as the targeted inhibition with higher efficiency, which is fueled by availability of more active composite ingredients and integration of more technologies, and gradually perceived as "chitosan-based biofilm preservation." In this Review, we comprehensively summarize the potential antimicrobial mechanisms or hypotheses of chitosan and its widely compounded ingredients, as well as their impacts on endogenous enzymes, oxidation and/or gas barriers. The strategies used for enhancing active function of the film-forming system and subsequent film fabrication processes including direct coating, bioactive packaging film and layer-by-layer assembly are introduced. Finally, future development of chitosan-based bioactive film is also proposed to broaden its application boundaries. Generally, our goal is that this Review is easily accessible and instructive for whose new to the field, as well as hope to advance to the filed forward.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijuan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenyu Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
47
|
Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Xiong Y, Li S, Warner RD, Fang Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107226] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Zhang H, Liang Y, Li X, Kang H. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat Sci 2020; 166:108137. [DOI: 10.1016/j.meatsci.2020.108137] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
|
50
|
He F, Kong Q, Jin Z, Mou H. Developing a unidirectionally permeable edible film based on ĸ-carrageenan and gelatin for visually detecting the freshness of grass carp fillets. Carbohydr Polym 2020; 241:116336. [DOI: 10.1016/j.carbpol.2020.116336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
|