1
|
Wang H, Shao L, Sun Y, Liu Y, Zou B, Zhao Y, Wang Y, Li X, Dai R. Recovery mechanisms of ohmic heating-induced sublethally injured Staphylococcus aureus: Changes in cellular structure and applications in pasteurized milk. Food Control 2025; 171:111086. [DOI: 10.1016/j.foodcont.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Zver M, Zaplotnik R, Mozetič M, Vesel A, Filipić A, Dobnik D, Marinho BA, Primc G. Vacuum ultraviolet radiation from gaseous plasma for destruction of water contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124396. [PMID: 39908620 DOI: 10.1016/j.jenvman.2025.124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Innovative technological solutions are needed for water decontamination to combat the diverse pollutants present in water systems, as no single optimal decontamination technique is appropriate for all circumstances. Vacuum-ultraviolet (V-UV) radiation is a source of energetic photons that break molecular bonds, producing a plethora of chemically reactive agents, most notably OH● radicals, which can cause the degradation of harmful pollutants. Low-pressure gaseous plasma is a good source of V-UV radiation; however, its application to liquid water poses challenges. We constructed an inductively coupled radiofrequency plasma to produce high-intensity V-UV radiation, which was applied to contaminated water via a V-UV-transparent window. Plasma was sustained in hydrogen, as it produces the highest V-UV intensity among all gases at selected discharge parameters. Bacteriophage MS2 was used as an indicator of microbial decontamination efficiency. Reactive oxygen and nitrogen species were measured at various treatment setups to quantify their effect on MS2 inactivation and elucidate the primary inactivation factors. At optimal conditions, the concentration of active virus dropped by 9 log10 PFU/mL in 60 s. The optimal experimental setup was then used to treat bacteria E. coli, S. aureus, antibiotic tetracycline, and synthetic dye methylene blue as representatives of other types of pollutants, all of which were effectively removed/degraded within 10 min of treatment. A comparison of energy efficiency (EEO) to other disinfection setups was made for bacteriophage inactivation. With a low EEO value, we showcase the potential of this technique for further work in this field.
Collapse
Affiliation(s)
- Mark Zver
- Department of Surface Engineering, Jozef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan Post Graduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Rok Zaplotnik
- Department of Surface Engineering, Jozef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jozef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Belisa Alcantara Marinho
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jozef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zhou Y, Zuo H, Dai Z, Guo Z, Holman BWB, Ding Y, Shi J, Ding X, Huang M, Mao Y. Changes to Pork Bacterial Counts and Composition After Dielectric Barrier Discharge Plasma Treatment and Storage in Modified-Atmosphere Packaging. Foods 2024; 13:4162. [PMID: 39767103 PMCID: PMC11675310 DOI: 10.3390/foods13244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of this study was to compare the succession of natural microbiota in pork held under refrigerated storage for up to 10 days after dielectric barrier discharge (DBD) plasma treatment. Two methods were used to assess the impact of DBD on microorganisms. Firstly, traditional selective media (SM) were employed to detect the bactericidal effects of DBD on Pseudomonas spp., Enterobacteriaceae, Lactic acid bacteria (LAB), and Brochothrix thermosphacta. Secondly, the thin agar layer (TAL) method was used to further evaluate the bactericidal effects of DBD. In addition, the Baranyi and Roberts model was applied to explore the kinetic parameters of Pseudomonas spp., Enterobacteriaceae, LAB, and B. thermosphacta during storage. Finally, the modified Lotka-Volterra model was used to describe the interactions between each microorganism. The study found that when using traditional selective media (SM), 85 kV DBD had a significant bactericidal effect on Pseudomonas spp., Enterobacteriaceae, LAB, and Brochothrix thermosphacta. However, when using the thin agar layer (TAL) method, the results suggested that DBD had no significant bactericidal effect, suggesting that DBD caused sublethal damage to the natural microorganisms on pork. Analysis with the Baranyi and Roberts model showed that DBD treatment significantly extended the lag phase of these four types of microorganisms and significantly reduced the μmax of all microorganisms except LAB. The analysis results of the modified Lotka-Volterra model showed that LAB had a greater impact on Pseudomonas spp., Enterobacteriaceae, and B. thermosphacta (a21 > a12). In conclusion, DBD treatment was shown to have a significant sublethal bactericidal effect that impacted both the count and composition of natural microorganisms found on pork.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Huixin Zuo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Zhaoqi Dai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zonglin Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Yanqin Ding
- College of Biotechnology, Shandong Agricultural University, Tai’an 271018, China;
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Xiaoxiao Ding
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Yanwei Mao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| |
Collapse
|
4
|
Zhai Y, Wang Y, Wang B, Niu L, Xiang Q, Bai Y. Sublethal injury and recovery of Escherichia coli O157:H7 after dielectric barrier discharge plasma treatment. Arch Microbiol 2024; 206:465. [PMID: 39540944 DOI: 10.1007/s00203-024-04193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Dielectric barrier discharge (DBD) plasma can be used to control food spoilage and food pathogens. However, DBD plasma may induce sublethal injury in microorganisms, constituting a considerable risk to food safety. This research was designed to investigate the sublethal injury and recovery of Escherichia coli O157:H7 after DBD plasma treatment. The results indicated that the sublethal injury ratios of cells rose along with the augmentation of treatment time and input power of DBD plasma under mild treatment conditions, whereas injury accumulation ultimately culminated in cell death. The highest sublethal ratio of 99.3% was obtained after DBD plasma treatment at 18 W for 40 s. When solutions such as phosphate buffered saline (PBS), peptone water, glucose solution, and tryptic soy broth (TSB) were used for cell recovery, TSB was proven to be the most efficacious, facilitating the completion of recovery within 2 h. The repair ratio of injured cells increased as the recovery pH (3.0-7.0) and temperature (4-37 ºC) increased. Moreover, Mg2+ and Zn2+ were demonstrated to be necessary for the recovery process, while Ca2+ presented a weak effect. Understanding the sublethal injury of bacteria resulting from DBD plasma treatment and their repair conditions can provide useful insight into avoiding the occurrence of sublethal injury as well as inhibiting the occurrence of recovery during food processing and storage.
Collapse
Affiliation(s)
- Yafei Zhai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yuhao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bohua Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Wang H, Shao L, Liu Y, Sun Y, Zou B, Zhao Y, Wang Y, Li X, Dai R. Changes in stresses sensitivity of ohmic heating-induced sublethally injured Staphylococcus aureus during repair: Potential mechanisms at the cellular and molecular levels. Int J Food Microbiol 2024; 422:110814. [PMID: 38972103 DOI: 10.1016/j.ijfoodmicro.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Ohmic heating (OH), an emerging food processing technology employed in the food processing industry, raises potential food safety concerns due to the recovery of sublethally injured pathogens such as Staphylococcus aureus (S. aureus). In the present study, sensitivity to various stress conditions and the changes in cellular-related factors of OH-injured S. aureus during repair were investigated. The results indicated that liquid media differences (nutrient broth (NB), phosphate-buffered saline (PBS), milk, and cucumber juice) affected the recovery process of injured cells. Nutrient enrichment determines the bacterial repair rate, and the rates of repair for these media were milk > NB > cucumber juice > PBS. The sensitivity of injured cells to various stressors, including different acids, temperature, nisin, simulated gastric fluid, and bile salt, increased during the injury phase and subsequently diminished upon repair. Additionally, the intracellular ATP content, enzyme activities (Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and T-ATPase) and ion concentrations (Mg2+, K+, and Ca2+) gradually increased during repair. After 5 h of repair, the intracellular substances content of cell's was significantly higher than that of the injured bacteria without repair, while some indicators (e.g., Na+/K+-ATPase, K+, and Ca2+) were not restored to the untreated level. The results of this study indicated that OH-injured S. aureus exhibited strengthened resistance post-recovery, potentially due to the restoration of cellular structures. These findings have implications for optimizing food storage conditions and advancing OH processes in the food industry.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Lele Shao
- College of Tea & Food Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, PR China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
6
|
Zhai Y, Tian W, Chen K, Lan L, Kan J, Shi H. Flagella-mediated adhesion of Escherichia coli O157:H7 to surface of stainless steel, glass and fresh produces during sublethal injury and recovery. Food Microbiol 2024; 117:104383. [PMID: 37918998 DOI: 10.1016/j.fm.2023.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023]
Abstract
E. coli O157:H7 can be induced into sublethally injured (SI) state by lactic acid (LA) and regain activity in nutrient environments. This research clarified the role of flagella-related genes (fliD, fliS, cheA and motA) in adhesion of E. coli O157:H7 onto stainless steel, glass, lettuce, spinach, red cabbage and cucumber during LA-induced SI and recovery by plate counting. Results of adhesion showed improper flagellar rotation caused by the deletion of motA resulting in the decreased adhesion. Motility of wildtype determined by diameter of motility halo decreased in SI state and repaired with recovery time increasing, lagging behind changes in expression of flagella-related genes. Flagellar function-impaired strains all exhibited non-motile property. Thus, we speculated that flagella-mediated motility is critical in early stage of adhesion. We also found the effects of Fe2+, Ca2+ and Mn2+ on adhesion or motility of wildtype was independent of bacterial states. However, the addition of Ca2+ and Mn2+ did not affect motility of flagellar function-impaired strains as they did on wildtype. This research provides new insights to understand the role of flagella and cations in bacterial adhesion, which will aid in development of anti-adhesion agents to reduce bio-contamination in food processing.
Collapse
Affiliation(s)
- Yujun Zhai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Weina Tian
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Linshu Lan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Zhao W, Gao Q, Cao Y, Meng Y, He J. Kinetics of sterilization of atomized slightly acidic electrolyzed water on tableware. Heliyon 2024; 10:e24721. [PMID: 38312634 PMCID: PMC10835237 DOI: 10.1016/j.heliyon.2024.e24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
The aim of this study was to elucidate the kinetics of atomization of slightly acidic electrolyzed water (SAEW) for use in sterilization of secondary contaminated tableware surfaces. The sterilization efficacy of SAEW was assessed on the basis of the change in the total number of colonies with different contamination levels (101 CFU/mL and 102 CFU/mL), atomization time (10, 20, 30, 40, and 50 s), atomizing distance (5, 10, 15, 20, 25, and 30 cm), and available chlorine concentration (ACC; 25.2, 30.2, 34.9, 40.5, 44.8, and 53.3 mg/L) as the main influencing factors. According to the relationship among flux, atomization area, and time, a kinetic model of SAEW atomization for the sterilization of tableware surfaces was established. The results indicated that the sterilization efficacy of SAEW gradually improved with decreased contamination levels (12.69 %-15.74 %), extended atomization time (13.68 %-46.58 %), and increased ACC (36.89 %-95.14 %). Based on the kinetics analysis, the change law of the kinetic model of SAEW atomization and sterilization of tableware surfaces with secondary pollution was found to be consistent with the change law of sterilization (r2 > 0.8). The results of this study provide a theoretical basis for SAEW atomization for sterilization of secondary contaminated tableware surfaces and also contributes to the improvement of technological theory of SAEW sterilization.
Collapse
Affiliation(s)
| | | | - Yu Cao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuanyan Meng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
8
|
Shao L, Zou B, Zhao Y, Sun Y, Li X, Dai R. Inactivation effect and action mode of ohmic heating on
Staphylococcus aureus
in phosphate‐buffered saline. J Food Saf 2023. [DOI: 10.1111/jfs.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Yu M, Jiang C, Meng Y, Wang F, Qian J, Fei F, Yin Z, Zhao W, Zhao Y, Liu H. Effect of low temperature on the resistance of Listeria monocytogenes and Escherichia coli O157:H7 to acid electrolyzed water. Food Res Int 2023; 168:112776. [PMID: 37120223 DOI: 10.1016/j.foodres.2023.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Low temperature can affect the resistance of pathogenic bacteria to other external stress. The present study was envisaged to assess the tolerance of L. monocytogenes and E. coli O157:H7 to acidic electrolyzed water (AEW) under low temperature stress. AEW treatment caused a damage to cell membrane of the pathogenic bacteria, which led to protein leakage and DNA damage. Compared with the pathogenic bacteria cultured at 37 °C (pure culture), the L. monocytogenes and E. coli O157:H7 cells cultivated at low temperature presented a less damage and had a higher survival rate when exposed to AEW. Therefore, 4 °C or 10 °C grown bacteria were less susceptible to AEW than those cultured at 37 °C. And this phenomenon was verified when AEW was used to treat the pathogenic bacteria inoculated in salmon. In addition, transcriptomic sequencing technology (RNA-seq) was used to reveal the mechanism of AEW tolerance of L. monocytogenes under low temperature stress. Transcriptomic analysis showed the expression of the cold shock protein, regulation of DNA-templated transcription, ribosome pathway, phosphotransferase system (PTS), bacteria chemotaxis, SOS response and DNA repair were involved in the resistance of L. monocytogenes to AEW. We speculated that the direct modulation of the expression of cold shock protein CspD, the indirect effect on the expression of cspD by inhibiting the expression of Crp/Fnr family transcriptional regulator or enhancing the level of cAMP by regulating PTS could reduce the resistance of L. monocytogenes cultivated at 4 °C to AEW. Our study contributes to solving the problem of the reduced bacteriostatic effect in cold storage environment.
Collapse
|
10
|
Shao L, Sun Y, Zou B, Zhao Y, Li X, Dai R. Sublethally injured microorganisms in food processing and preservation: Quantification, formation, detection, resuscitation and adaption. Food Res Int 2023; 165:112536. [PMID: 36869540 DOI: 10.1016/j.foodres.2023.112536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Sublethally injured state has been recognized as a survival strategy for microorganisms suffering from stressful environments. Injured cells fail to grow on selective media but can normally grow on nonselective media. Numerous microorganism species can form sublethal injury in various food matrices during processing and preservation with different techniques. Injury rate was commonly used to evaluate sublethal injury, but mathematical models for the quantification and interpretation of sublethally injured microbial cells still require further study. Injured cells can repair themselves and regain viability on selective media under favorable conditions when stress is removed. Conventional culture methods might underestimate microbial counts or present a false negative result due to the presence of injured cells. Although the structural and functional components may be affected, the injured cells pose a great threat to food safety. This work comprehensively reviewed the quantification, formation, detection, resuscitation and adaption of sublethally injured microbial cells. Food processing techniques, microbial species, strains and food matrix all significantly affect the formation of sublethally injured cells. Culture-based methods, molecular biological methods, fluorescent staining and infrared spectroscopy have been developed to detect the injured cells. Cell membrane is often repaired first during resuscitation of injured cells, meanwhile, temperature, pH, media and additives remarkably influence the resuscitation. The adaption of injured cells negatively affects the microbial inactivation during food processing.
Collapse
Affiliation(s)
- Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Bo Zou
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
11
|
NMR-based metabolomic investigation on antimicrobial mechanism of Salmonella on cucumber slices treated with organic acids. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Zhang HC, Zhang R, Shi H. The effect of manganese and iron on mediating resuscitation of lactic acid-injured Escherichia coli. Lett Appl Microbiol 2022; 75:161-170. [PMID: 35395105 DOI: 10.1111/lam.13715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023]
Abstract
Lactic acid can induce sublethal injury of E. coli through oxidative stress. In this study, we investigated changes in SOD activity, CAT activity, GSH production and ROS production during sublethal injury and resuscitation of E. coli. Then, the effect of manganese and iron during resuscitation were studied. Both cations (≥1 mmol l-1 ) significantly promoted the resuscitation of sublethally injured E. coli induced by lactic acid and shortened the repair time (P < 0·05). Conversely, addition of N,N,N',N'-tetrakis (2-pyridylmethyl) which is a metal chelator extended the repair time. Compared with minA, manganese and iron significantly improved SOD activity at 40, 80 and 120 min and decreased ROS production at 40 and 80 min, thereby recovering injured E. coli quickly (P < 0·05). The deletion of sodA encoding Mn-SOD, sodB encoding Fe-SOD or gshA/gshB encoding GSH significantly strengthened sublethal injury and extended the repair time (P < 0·05). It meant these genes-related oxidative stress played important roles in the acid resistance of E. coli and recovery of sublethal injury. Therefore, manganese and iron can promote the recovery of lactic-injured E. coli by the way of increasing SOD activity, scavenging ROS, and relieving oxidative stress.
Collapse
Affiliation(s)
- H C Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - R Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - H Shi
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Meng L, Ma J, Liu C, Mao X, Li J. The microbial stress responses of Escherichia coli and Staphylococcus aureus induced by chitooligosaccharide. Carbohydr Polym 2022; 287:119325. [DOI: 10.1016/j.carbpol.2022.119325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022]
|
14
|
Hao J, Zhang J, Zheng X, Zhao D. Bactericidal efficacy of slightly acidic electrolyzed water (SAEW) against Listeria monocytogenes planktonic cells and biofilm on food-contact surfaces. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In the present study, the bactericidal efficacy of slightly acidic electrolyzed water (SAEW) against L. monocytogenes planktonic cells and biofilm on food-contact surfaces including stainless steel and glass was systematically evaluated. The results showed that SAEW (pH of 5.09 and available chlorine concentration (ACC) of 60.33 mg/L) could kill L. monocytogenes on food-contact surfaces completely in 30 s, whose disinfection efficacy is equal to that of NaClO solutions (pH of 9.23 and ACC of 253.53 mg/L). The results showed that long exposure time and high ACC contributed to the enhancement of the disinfection efficacy of SAEW on L. monocytogenes on food-contact surfaces. Moreover, the log reduction of SAEW treatment presented an increasing tendency within the prolonging of treatment time when SAEW was used to remove the L. monocytogenes biofilm formed on stainless steel and glass surfaces, which suggested that SAEW could remove L. monocytogenes biofilm effectively and its disinfection efficacy is equal to (in case of stainless steel) or higher than (in case of glass) that of high ACC of NaClO solutions. In addition, the results of the crystal violet staining and scanning electron microscopy (SEM) also demonstrated that SAEW treatment could remove the L. monocytogenes biofilm on food-contact surfaces.
Collapse
Affiliation(s)
- Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, P. R. China
| | - Junyi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, P. R. China
| | - Xueqi Zheng
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, P. R. China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, P. R. China
| |
Collapse
|
15
|
New insights into the formation and recovery of sublethally injured Escherichia coli O157:H7 induced by lactic acid. Food Microbiol 2021; 102:103918. [PMID: 34809944 DOI: 10.1016/j.fm.2021.103918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022]
Abstract
Escherichia coli O157:H7 can be injured by the action of lactic acid (LA) and injured cells can be recovered under suitable condition. In this study, RNA sequencing analysis revealed the overall genes change of sublethally injured (4 mM LA, 60 min; SI) and initial recovered (minA, 20 min; R) cells. Compared with untreated samples, 53 up-regulated and 98 down-regulated differentially expressed genes (DEGs; Padj < 0.05, change fold ≥2) were found in SI. Meanwhile, Genes related to carbohydrate transport and metabolic were up-regulated and the addition of carbohydrate increased cells resistance to LA. Genes involved in osmotic stress response and cell membrane integrity were down-regulated and E. coli O157:H7 cells were sensitive to osmotic stress during sublethal injury. Genes related to iron stress response and cation transport were changed and cation may affect sublethal injury formation by influencing production of ROS and cellular processes. In R, 1370 up-regulated and 1110 down-regulated DEGs were subdivided into various GO terms and membrane, biological adhesion, cell projection, oxidation-reduction process and catalytic activity, etc., showed significant enrichment (corrected P < 0.05). Particularly, genes related to fimbrial, flagellum and type III secretion system were up-regulated, which may improve infection ability and virulence property during recovery of injured cells. These findings provide novel insights into formation and recovery of sublethally injured E. coli O157:H7 induced by LA.
Collapse
|
16
|
Recovery and virulence factors of sublethally injured Staphylococcus aureus after ohmic heating. Food Microbiol 2021; 102:103899. [PMID: 34809931 DOI: 10.1016/j.fm.2021.103899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
Ohmic heating (OH) is an alternative thermal processing technique, which is widely used to pasteurize or sterilize food. However, sublethally injured Staphylococcus aureus induced by OH is a great concern to food safety. The recovery of injured S. aureus by OH and virulence factor changes during recovery were investigated in this study. The liquid media (phosphate-buffered saline, buffered peptone water and nutrient broth (NB)), temperature (4, 25 and 37 °C) and pH (6.0, 7.2 and 8.0) influenced the recovery rate and the injured cells completely repaired in NB at 37 °C, pH 7.2 with the shortest time of 2 h. The biofilm formation ability, mannitol fermentation, hemolysis, and coagulase activities decreased in injured S. aureus and recovered during repair process. Quantitative real-time PCR showed the expression of sek, clfB and lukH involved in virulence factors increased during recovery. The results indicated that the virulence factors of injured S. aureus recovered after repair.
Collapse
|
17
|
The Bactericidal Efficacy and the Mechanism of Action of Slightly Acidic Electrolyzed Water on Listeria monocytogenes' Survival. Foods 2021; 10:foods10112671. [PMID: 34828952 PMCID: PMC8621911 DOI: 10.3390/foods10112671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
In the present work, the bactericidal efficacy and mechanism of slightly acidic electrolyzed water (SAEW) on L. monocytogenes were evaluated. The results showed that the strains of L. monocytogenes were killed completely within 30 s by SAEW whose available chlorine concentration (ACC) was higher than 12 mg/L, and it was confirmed that ACC is the main factor affecting the disinfection efficacy of SAEW. Moreover, our results demonstrated that SAEW could destroy the cell membrane of L. monocytogenes, which was observed by SEM and FT-IR, thus resulting in the leakage of intracellular substances including electrolyte, protein and nucleic acid, and DNA damage. On the other hand, the results found that SAEW could disrupt the intracellular ROS balance of L. monocytogenes by inhibiting the antioxidant enzyme activity, thus promoting the death of L. monocytogenes. In conclusion, the bactericidal mechanism of SAEW on L. monocytogenes was explained from two aspects including the damage of the cell membrane and the breaking of ROS balance.
Collapse
|
18
|
The Effect of Pulsed Electric Fields (PEF) Combined with Temperature and Natural Preservatives on the Quality and Microbiological Shelf-Life of Cantaloupe Juice. Foods 2021; 10:foods10112606. [PMID: 34828887 PMCID: PMC8622698 DOI: 10.3390/foods10112606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Pulsed electric field (PEF) is an innovative, non-thermal technology for food preservation with many superiorities. However, the sub-lethally injured microorganisms caused by PEF and their recovery provide serious food safety problems. Our study examined the effects of pH, temperature and natural preservatives (tea polyphenols and natamycin) on the recovery of PEF-induced, sub-lethally injured Saccharomyces cerevisiae cells, and further explored the bactericidal effects of the combined treatments of PEF with the pivotal factors in cantaloupe juice. We first found that low pH (pH 4.0), low temperature (4 °C), tea polyphenols and natamycin inhibited the recovery of injured S. cerevisiae cells. Then, the synergistic effects of PEF, combined with cold-temperature storage (4 °C), a mild treatment temperature (50 and 55 °C), tea polyphenols or natamycin, on the inactivation of S. cerevisiae in cantaloupe juice were evaluated. Our results showed that the combination of PEF and heat treatment, tea polyphenols or natamycin enhanced the inactivation of S. cerevisiae and reduced the level of sub-lethally injured cells. Moreover, PEF combined with 55 °C heat treatment or tea polyphenols was applied for cantaloupe juice. In the practical application, the two combined PEF methods displayed a comparable inactivation heat pasteurization ability, prolonged the shelf life of juice compared with PEF treatment alone, and better preserved the physicochemical properties and vitamin C levels of cantaloupe juice. These results provide valuable information to inhibit the recovery of PEF-injured microbial cells and shed light on the combination of PEF with other factors to inactivate microorganisms for better food preservation.
Collapse
|
19
|
Wu J, Zhao L, Lai S, Yang H. NMR-based metabolomic investigation of antimicrobial mechanism of electrolysed water combined with moderate heat treatment against Listeria monocytogenes on salmon. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Bhullar MS, Shaw A, Mendonca A, Monge A, Nabwire L, Thomas-Popo E. Shiga Toxin-Producing Escherichia coli in the Long-Term Survival Phase Exhibit Higher Chlorine Tolerance and Less Sublethal Injury Following Chlorine Treatment of Romaine Lettuce. Foodborne Pathog Dis 2021; 18:276-282. [PMID: 33471590 DOI: 10.1089/fpd.2020.2873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extent of chlorine inactivation and sublethal injury of stationary-phase (STAT) and long-term survival-phase (LTS) cells of Shiga toxin-producing Escherichia coli (STEC) in vitro and in a lettuce postharvest wash model was investigated. Four STEC strains were cultured in tryptic soy broth supplemented with 0.6% (w/v) yeast extract (TSBYE; 35°C) for 24 h and 21 d to obtain STAT and LTS cells, respectively. Minimum bactericidal concentration (MBC) and dose-response assays were performed to determine chlorine's antibacterial efficacy against STAT and LTS cells. Chlorine solutions (pH 6.5) and romaine lettuce were each inoculated with STAT and LTS cells to obtain initial populations of ∼7.8 log colony-forming units (CFU)/mL. Survivors in chlorine solutions were determined after 30 s. Inoculated lettuce samples were held at 22°C ± 1°C for 2 h or 20 h and then exposed to chlorine (10-40 ppm) for 60 s. Survivors were enumerated on nonselective and selective agar media following incubation (35°C, 48 h). The MBC for STAT and LTS cells was 0.04 and 0.08 ppm, respectively. Following exposure (30 s) to chlorine at 2.5, 5.0, and 10 ppm, STAT cells were reduced to <1.0 log CFU/mL, whereas LTS survivors were at 5.10 (2.5 ppm), 3.71 (5.0 ppm), and 2.55 (10 ppm) log CFU/mL. At 20 and 40 ppm chlorine, greater log CFU reductions of STAT cells (1.64 and 1.85) were observed compared with LTS cells (0.94 and 0.83) after 2 h of cell contact with lettuce (p < 0.05), but not after 20 h. Sublethal injury in STEC after chlorine (40 ppm) treatment was lower in LTS compared with STAT survivors (p < 0.05). Compared with STAT cells, LTS cells of STEC seem to have higher chlorine tolerance as planktonic cells and as attached cells depending on cell contact time on lettuce. In addition, a higher percentage of LTS cells, compared with STAT cells, survive in a noninjured state after chlorine (40 ppm) treatment of lettuce.
Collapse
Affiliation(s)
- Manreet Singh Bhullar
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Angela Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Ana Monge
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Lillian Nabwire
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Emalie Thomas-Popo
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
21
|
|
22
|
Cui H, Li H, Abdel-Samie MA, Surendhiran D, Lin L. Anti-Listeria monocytogenes biofilm mechanism of cold nitrogen plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Wohlgemuth F, Gomes RL, Singleton I, Rawson FJ, Avery SV. Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Front Microbiol 2020; 11:575157. [PMID: 33101251 PMCID: PMC7546784 DOI: 10.3389/fmicb.2020.575157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023] Open
Abstract
We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with benefits for water resilience. The strategy involved finding quenchers of antimicrobial activity then antimicrobial mode of action, by identifying key chemical reaction partners starting from complex matrices, narrowing down reactivity to specific organic molecules within cells. The sanitizer electrolyzed-water (EW) retained partial fungicidal activity against the food-spoilage fungus Aspergillus niger at high levels of added soils (30–750 mg mL–1), commonly associated with harvested produce. Soil with high organic load (98 mg g–1) gave stronger EW inactivation. Marked inactivation by a complex organics mix (YEPD medium) was linked to its protein-rich components. Addition of pure proteins or amino acids (≤1 mg mL–1) fully suppressed EW activity. Mechanism was interrogated further with the yeast model, corroborating marked suppression of EW action by the amino acid methionine. Pre-culture with methionine increased resistance to EW, sodium hypochlorite, or chlorine-free ozonated water. Overexpression of methionine sulfoxide reductases (which reduce oxidized methionine) protected against EW. Fluoroprobe-based analyses indicated that methionine and cysteine inactivate free chlorine species in EW. Intracellular methionine oxidation can disturb cellular FeS-clusters and we showed that EW treatment impairs FeS-enzyme activity. The study establishes the value of a top-down approach for multi-level characterization of sanitizer efficacy and action. The results reveal proteins and amino acids as key quenchers of EW activity and, among the amino acids, the importance of methionine oxidation and FeS-cluster damage for antimicrobial mode-of-action.
Collapse
Affiliation(s)
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|