1
|
Lauzier AM, Douette É, Labrie A, Jubinville É, Goulet-Beaulieu V, Hamon F, Jean J. Comparison of sample pretreatments used to distinguish between infectious and non-infectious foodborne viruses by RT-qPCR. J Virol Methods 2025; 335:115130. [PMID: 39993658 DOI: 10.1016/j.jviromet.2025.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
To detect viruses such as hepatitis A virus (HAV) and human norovirus (HuNoV) in foods, RT-qPCR or other molecular methods are used, which cannot distinguish between infectious and non-infectious virions. Samples can be pretreated to limit detection to intact and presumably infectious virions. We compared propidium monoazide (PMA or PMAxx), platinum (IV) chloride (PtCl4), magnetic silica beads and centrifugal filter using HAV or HuNoV inactivated by heat, pulsed light, or sodium hypochlorite (NaOCl). PMAxx completely or nearly eliminated (3.96 ± 1.24 log gc) the RT-qPCR signal of HAV inactivated at 100°C for 10 min. Pretreatments could not reduce significantly RT-qPCR signal of HAV after pulsed light (0.74 ± 0.36 log gc) and NaOCl (0.24 ± 0.14 log gc) inactivation. Enzymatic treatments did not improve the results obtained with PMAxx. The exudate of raspberry, strawberry or oyster used as food matrices needed dilution by at least tenfold for PMAxx to to yield results comparable to virions without a food matrix. Overall, PMAxx shows good potential to discriminate between infectious and non-infectious despite some remaining limitations.
Collapse
Affiliation(s)
- Anne-Marie Lauzier
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Émilie Douette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Antoine Labrie
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Éric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | | | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada.
| |
Collapse
|
2
|
Trudel-Ferland M, Collard MÈ, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Evaluation of a new automated viral RNA extraction platform for hepatitis A virus and human norovirus in testing of berries, lettuce, and oysters. Int J Food Microbiol 2024; 416:110664. [PMID: 38492524 DOI: 10.1016/j.ijfoodmicro.2024.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Collard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Wales SQ, Pandiscia A, Kulka M, Sanchez G, Randazzo W. Challenges for estimating human norovirus infectivity by viability RT-qPCR as compared to replication in human intestinal enteroids. Int J Food Microbiol 2024; 411:110507. [PMID: 38043474 DOI: 10.1016/j.ijfoodmicro.2023.110507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Viability RT-qPCR, a molecular detection method combining viability marker pre-treatment with RT-qPCR, has been proposed to infer infectivity of viruses which is particularly relevant for non-culturable viruses or sophisticated cell culture systems. Being human noroviruses (HuNoV) most frequently associated with foodborne outbreaks, this study compared different viability techniques and infectivity in human intestinal enteroids (HIE) to ultimately determine whether the molecular approaches could serve as rapid assays to predict HuNoV inactivation in high-risk food. To this end, the performance of three viability RT-qPCR assays with different intercalating markers ((Viability PCR Crosslinker Kit (CL), propidium monoazide (PMAxx™), and platinum chloride (PtCl4)) in estimating survival of HuNoV exposed to thermal and high pressure (HPP) treatments was compared to replication tested in the HIE cell culture model. A nearly full-length genomic molecular assay coupled with PMAxx™ to infer HuNoV thermal inactivation was also assessed. The experimental design included HuNoV genogroup I.3 [P13], GII.4 Sydney [P16], GII.6 [P7], along with Tulane virus (TV) serving as surrogate. Finally, viability RT-qPCR was tested in HPP-treated strawberry puree, selected as a food matrix with high viral contamination risk. PMAxx™ and CL performed evenly, while PtCl4 affected HuNoV infectivity. Taking all experimental data together, viability RT-qPCR was demonstrated to be an improved method over direct RT-qPCR to estimate viral inactivation at extreme thermal (95 °C) and HPP (450 MPa) exposures, but not under milder conditions as amplification signals were detected. Despite its complexity and limitations, the HIE demonstrated a more robust model than viability RT-qPCR to assess HuNoV infectivity.
Collapse
Affiliation(s)
- Samantha Q Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain; Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, Bari, Valenzano 70010, Italy
| | - Michael Kulka
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Gloria Sanchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain.
| |
Collapse
|
4
|
Kim TY, Zhu X, Kim SM, Lim JA, Woo MA, Lim MC, Luo K. A review of nucleic acid-based detection methods for foodborne viruses: Sample pretreatment and detection techniques. Food Res Int 2023; 174:113502. [PMID: 37986417 DOI: 10.1016/j.foodres.2023.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Viruses are major pathogens that cause food poisoning when ingested via contaminated food and water. Therefore, the development of foodborne virus detection technologies that can be applied throughout the food distribution chain is essential for food safety. A common nucleic acid-based detection method is polymerase chain reaction (PCR), which has become the gold standard for monitoring food contamination by viruses due to its high sensitivity, and availability of commercial kits. However, PCR-based methods are labor intensive and time consuming, and are vulnerable to inhibitors that may be present in food samples. In addition, the methods are restricted with regard to site of analysis due to the requirement of expensive and large equipment for sophisticated temperature regulation and signal analysis procedures. To overcome these limitations, optical and electrical readout biosensors based on nucleic acid isothermal amplification technology and nanomaterials have emerged as alternatives for nucleic acid-based detection of foodborne viruses. Biosensors are promising portable detection tools owing to their easy integration into compact platforms and ability to be operated on-site. However, the complexity of food components necessitates the inclusion of tedious preprocessing steps, and the lack of stability studies on residual food components further restricts the practical application of biosensors as a universal detection method. Here, we summarize the latest advances in nucleic acid-based strategies for the detection of foodborne viruses, including PCR-based and isothermal amplification-based methods, gene amplification-free methods, as well as food pretreatment methods. The principles, strengths/disadvantages, and performance of each method, problems to be solved, and future prospects for the development of a universal detection method are discussed.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong-A Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
5
|
Locus T, Lambrecht E, Lamoral S, Willems S, Van Gucht S, Vanwolleghem T, Peeters M. A Multifaceted Approach for Evaluating Hepatitis E Virus Infectivity In Vitro: Cell Culture and Innovative Molecular Methods for Integrity Assessment. Vet Sci 2023; 10:676. [PMID: 38133227 PMCID: PMC10748075 DOI: 10.3390/vetsci10120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatitis E virus is a prominent cause of viral hepatitis worldwide. In Western countries, most infections are asymptomatic. However, acute self-limiting hepatitis and chronic cases in immunocompromised individuals can occur. Studying HEV is challenging due to its difficulty to grow in cell culture. Consequently, the detection of the virus mainly relies on RT-qPCR, which cannot differentiate between infectious and non-infectious particles. To overcome this problem, methods assessing viral integrity offer a possible solution to differentiate between intact and damaged viruses. This study aims at optimizing existing HEV cell culture models and RT-qPCR-based assays for selectively detecting intact virions to establish a reliable model for assessing HEV infectivity. In conclusion, these newly developed methods hold promise for enhancing food safety by identifying approaches for inactivating HEV in food processing, thereby increasing food safety measures.
Collapse
Affiliation(s)
- Tatjana Locus
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Ellen Lambrecht
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
| | - Sophie Lamoral
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Sjarlotte Willems
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
| | - Steven Van Gucht
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Thomas Vanwolleghem
- Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Michael Peeters
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| |
Collapse
|
6
|
Péloquin L, Goetz C, Jubinville E, Jean J. Protective Effect of Select Bacterial Species Representative of Fresh Produce on Human Norovirus Surrogates Exposed to Disinfecting Pulsed Light. Appl Environ Microbiol 2023; 89:e0004323. [PMID: 37154750 PMCID: PMC10231187 DOI: 10.1128/aem.00043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Contamination of berries and leafy greens with human norovirus (HuNoV) is a major cause of outbreaks of epidemic gastroenteritis worldwide. Using murine norovirus type 1 (MNV-1) and Tulane virus, we studied the possible extension of HuNoV persistence by biofilm-producing epiphytic bacteria on fresh produce. Nine bacterial species frequently found on the surface of berries and leafy greens (Bacillus cereus, Enterobacter cloacae, Escherichia coli, Kocuria kristinae, Lactobacillus plantarum, Pantoea agglomerans, Pseudomonas fluorescens, Raoultella terrigena, and Xanthomonas campestris) were evaluated for the ability to form biofilms in the MBEC Assay Biofilm Inoculator and in 96-well microplates. The biofilm-forming bacteria were further tested for binding MNV-1 and Tulane virus and the ability to protect them against loss of capsid integrity upon exposure to disinfecting pulsed light at a fluence of 11.52 J/cm2. Based on viral reductions, MNV-1 did not benefit from attachment to biofilm whereas Tulane virus was significantly more resistant than the control when attached to biofilms of E. cloacae (P ≤ 0.01), E. coli (P ≤ 0.01), K. kristinae (P ≤ 0.01), P. agglomerans (P ≤ 0.05), or P. fluorescens (P ≤ 0.0001). Enzymatic dispersion of biofilm and microscopic observations suggest that the biofilm matrix composition may contribute to the virus resistance. Our results indicate that direct virus-biofilm interaction protects Tulane virus against disinfecting pulsed light, and that HuNoV on fresh produce therefore might resist such treatment more than suggested by laboratory tests so far. IMPORTANCE Recent studies have shown that bacteria may be involved in the attachment of HuNoV to the surface of fresh produce. Because these foods are difficult to disinfect by conventional methods without compromising product quality, nonthermal nonchemical disinfectants such as pulsed light are being investigated. We seek to understand how HuNoV interacts with epiphytic bacteria, particularly with biofilms formed by bacterial epiphytes, with cells and extracellular polymeric substances, and to determine if it thus escapes inactivation by pulsed light. The results of this study should advance understanding of the effects of epiphytic biofilms on the persistence of HuNoV particle integrity after pulsed light treatment and thus guide the design of novel pathogen control strategies in the food industry.
Collapse
Affiliation(s)
- Laurence Péloquin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Coralie Goetz
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Eric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Isothermal nucleic acid amplification technology for rapid detection of virus. Crit Rev Biotechnol 2023; 43:415-432. [PMID: 35156471 DOI: 10.1080/07388551.2022.2030295] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/31/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.
Collapse
Affiliation(s)
- Zhenting Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Xiaowen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Huhu Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Fanpu Ji
- Department of Infectious Diseases, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Nanchong, China
| | - Dan Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
| | - Xiaoping Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanchong, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Nanchong, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanchong, China
| |
Collapse
|
8
|
Raymond P, Paul S, Guy RA. Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods 2023; 12:foods12040826. [PMID: 36832901 PMCID: PMC9957022 DOI: 10.3390/foods12040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Human norovirus (HuNoV) is the leading pathogen responsible for food-borne illnesses. However, both infectious and non-infectious HuNoV can be detected by RT-qPCR. This study evaluated the efficiency of different capsid integrity treatments coupled with RT-qPCR or a long-range viral RNA (long RT-qPCR) detection to reduce the recovery rates of heat inactivated noroviruses and fragmented RNA. The three capsid treatments evaluated (RNase, the intercalating agent PMAxx and PtCl4) reduced the recovery of heat inactivated HuNoV and murine norovirus (MNV) spiked on lettuce, when combined with the ISO 15216-1:2017 extraction protocols. However, PtCl4 also reduced non-heat-treated noroviruses recovery as estimated by RT-qPCR. The PMAxx and RNase treatments had a similar effect on MNV only. The most efficient approaches, the RNase and PMAxx treatments, reduced the heat-inactivated HuNoV recovery rates estimated using RT-qPCR by 2 and >3 log, respectively. The long RT-qPCR detection approach also reduced the recovery rates of heat inactivated HuNoV and MNV by 1.0 and 0.5 log, respectively. Since the long-range viral RNA amplification could be applied to verify or confirm RT-qPCR results, it also provides some advantages by reducing the risk of false positive HuNoV results.
Collapse
Affiliation(s)
- Philippe Raymond
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
- Correspondence:
| | - Sylvianne Paul
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
| | - Rebecca A. Guy
- National Microbiology Laboratory, Division of Enteric Diseases, Public Health Agency of Canada (PHAC), Guelph, ON N1G 3W4, Canada
| |
Collapse
|
9
|
Kim KH, Kang G, Woo WS, Sohn MY, Son HJ, Park CI. Development of a Propidium Monoazide-Based Viability Quantitative PCR Assay for Red Sea Bream Iridovirus Detection. Int J Mol Sci 2023; 24:ijms24043426. [PMID: 36834834 PMCID: PMC9958570 DOI: 10.3390/ijms24043426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Red sea bream iridovirus (RSIV) is an important aquatic virus that causes high mortality in marine fish. RSIV infection mainly spreads through horizontal transmission via seawater, and its early detection could help prevent disease outbreaks. Although quantitative PCR (qPCR) is a sensitive and rapid method for detecting RSIV, it cannot differentiate between infectious and inactive viruses. Here, we aimed to develop a viability qPCR assay based on propidium monoazide (PMAxx), which is a photoactive dye that penetrates damaged viral particles and binds to viral DNA to prevent qPCR amplification, to distinguish between infectious and inactive viruses effectively. Our results demonstrated that PMAxx at 75 μM effectively inhibited the amplification of heat-inactivated RSIV in viability qPCR, allowing the discrimination of inactive and infectious RSIV. Furthermore, the PMAxx-based viability qPCR assay selectively detected the infectious RSIV in seawater more efficiently than the conventional qPCR and cell culture methods. The reported viability qPCR method will help prevent the overestimation of red sea bream iridoviral disease caused by RSIV. Furthermore, this non-invasive method will aid in establishing a disease prediction system and in epidemiological analysis using seawater.
Collapse
|
10
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
11
|
Mertens B, Moore MD, Jaykus LA, Velev OD. Efficacy and Mechanisms of Copper Ion-Catalyzed Inactivation of Human Norovirus. ACS Infect Dis 2022; 8:855-864. [PMID: 35315654 PMCID: PMC9003239 DOI: 10.1021/acsinfecdis.1c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The antinoroviral effect of copper ions is well known, yet most of this work has previously been conducted in copper and copper alloy surfaces, not copper ions in solution. In this work, we characterized the effects that Cu ions have on human norovirus capsids' and surrogates' integrity to explain empirical data, indicating virus inactivation by copper alloy surfaces, and as means of developing novel metal ion-based virucides. Comparatively high concentrations of Cu(II) ions (>10 mM) had little effect on the infectivity of human norovirus surrogates, so we used sodium ascorbate as a reducing agent to generate unstable Cu(I) ions from solutions of copper bromide. We found that significantly lower concentrations of monovalent copper ions (∼0.1 mM) compared to divalent copper ions cause capsid protein damage that prevents human norovirus capsids from binding to cell receptors in vitro and induce a greater than 4-log reduction in infectivity of Tulane virus, a human norovirus surrogate. Further, these Cu(I) solutions caused reduction of GII.4 norovirus from stool in suspension, producing about a 2-log reduction of virus as measured by a reverse transcriptase-quantitative polymerase chain reaction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) data indicate substantial major capsid protein cleavage of both GI.7 and GII.4 norovirus capsids, and TEM images show the complete loss of capsid integrity of GI.7 norovirus. GII.4 virus-like particles (VLPs) were less susceptible to inactivation by copper ion treatments than GI.7 VLPs based upon receptor binding and SDS-PAGE analysis of viral capsids. The combined data demonstrate that stabilized Cu(I) ion solutions show promise as highly effective noroviral disinfectants in solution that can potentially be utilized at low concentrations for inactivation of human noroviruses.
Collapse
Affiliation(s)
- Brittany
S. Mertens
- Department
of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina 27606, United States
| | - Matthew D. Moore
- Department
of Food, Bioprocessing, and Nutrition Sciences, NC State University, Raleigh, North Carolina 27606, United States
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lee-Ann Jaykus
- Department
of Food, Bioprocessing, and Nutrition Sciences, NC State University, Raleigh, North Carolina 27606, United States
| | - Orlin D. Velev
- Department
of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Jama-Kmiecik A, Sarowska J, Wojnicz D, Choroszy-Król I, Frej-Mądrzak M. Natural Products and Their Potential Anti-HAV Activity. Pathogens 2021; 10:1095. [PMID: 34578128 PMCID: PMC8469781 DOI: 10.3390/pathogens10091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The role of purified natural products in the prevention and treatment of countless diseases of bacterial, fungal, and viral origin cannot be overestimated. New antiviral drugs have been obtained from natural sources and transformed into preparations for prophylactic and therapeutic purposes. Flavonoids, polyphenols, saponins, proanthocyanins, polysaccharides, organic acids, proteins, polypeptides, and essential oils derived from plants, animals, or microorganisms can control and combat foodborne viral infections, including hepatitis A. The components of essential oils are characterized by numerous therapeutic and antioxidant properties and exhibit a broad spectrum of antimicrobial and antiviral activity. Due to these properties, they can be used to preserve meat, fruit, vegetables, and their products. Over the past two decades, much effort has been made to identify natural products, mostly of plant origin, to combat foodborne viruses. Natural plant extracts have several potential uses, not limited to increasing the safety of food products and improving their quality, but also as natural antiviral agents.
Collapse
Affiliation(s)
- Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Medical Biology and Parasitology, Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland;
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (A.J.-K.); (J.S.); (I.C.-K.)
| |
Collapse
|
14
|
Raymond P, Paul S, Perron A, Deschênes L. Norovirus Extraction from Frozen Raspberries Using Magnetic Silica Beads. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:248-258. [PMID: 33651330 PMCID: PMC8116234 DOI: 10.1007/s12560-021-09466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Human noroviruses (HuNoV) are among the main causes of acute gastroenteritis worldwide. Frozen raspberries have been linked to several HuNoV food-related outbreaks. However, the extraction of HuNoV RNA from frozen raspberries remains challenging. Recovery yields are low, and real-time quantitative reverse transcriptase PCR (RT-qPCR) inhibitors limit the sensitivity of the detection methodologies. A new approach using fine magnetic silica beads was developed for the extraction of HuNoV spiked on frozen raspberries. Relatively low recovery yields were observed with both the magnetic silica bead and the reference ISO 15216-1:2017 methods. High RT-qPCR inhibition was observed with the ISO 15216-1:2017 recommended amplification kit but could be reduced by using an alternative kit. Reducing RT-qPCR inhibition is important to limit the number of inconclusive HuNoV assays thus increasing the capacity to assess the HuNoV prevalence in frozen raspberries.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Laboratory (CFIA), St. Hyacinthe Laboratory, Food Virology, Saint Hyacinthe, QC, Canada.
| | - Sylvianne Paul
- Canadian Food Inspection Laboratory (CFIA), St. Hyacinthe Laboratory, Food Virology, Saint Hyacinthe, QC, Canada
| | - André Perron
- Canadian Food Inspection Laboratory (CFIA), St. Hyacinthe Laboratory, Food Virology, Saint Hyacinthe, QC, Canada
| | - Louise Deschênes
- Agriculture and Agri-Food Canada (AAFC), St. Hyacinthe Research and Development Centre, Saint Hyacinthe, QC, Canada
| |
Collapse
|
15
|
Gao S, Sun C, Hong H, Gooneratne R, Mutukumira A, Wu X. Rapid detection of viable Cronobacter sakazakii in powdered infant formula using improved propidium monoazide (PMAxx) and quantitative recombinase polymerase amplification (qRPA) assay. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Zhang J, Fang X, Mao Y, Qi H, Wu J, Liu X, You F, Zhao W, Chen Y, Zheng L. Real-time, selective, and low-cost detection of trace level SARS-CoV-2 spike-protein for cold-chain food quarantine. NPJ Sci Food 2021; 5:12. [PMID: 34075052 PMCID: PMC8357935 DOI: 10.1038/s41538-021-00094-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023] Open
Abstract
Due to the friendly temperature for virus survival, SARS-CoV-2 is frequently found in cold-chain foods, posing a serious threat to public health. Utilizing an interdigitated microelectrode chip modified with an antibody probe and integrating dielectrophoresis enrichment with interfacial capacitance sensing, a strategy is presented for the detection of trace level spike-protein from SARS-CoV-2. It achieves a limit of detection as low as 2.29 × 10-6 ng/mL in 20 s, with a wide linear range of 10-5-10-1 ng/mL and a selectivity of 234:1. The cost for a single test can be controlled to ~1 dollar. This strategy provides a competitive solution for real-time, sensitive, selective, and large-scale application in cold-chain food quarantine.
Collapse
Affiliation(s)
- Jian Zhang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xin Fang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haochen Qi
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China.
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, USA.
| | - Xiaoru Liu
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China
| | - Fangshuo You
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China
| | - Wenci Zhao
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China
| | - Ying Chen
- Agro-product Safety Research Centre, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
17
|
Sun C, Chen J, Li H, Fang L, Wu S, Jayavanth P, Tang S, Sanchez G, Wu X. One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry. Food Microbiol 2021; 94:103653. [PMID: 33279078 DOI: 10.1016/j.fm.2020.103653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
The study was designed to develop a sensitive one-step duplex reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) to detect norovirus genogroup I and II (NoV GI and GII) in lettuce and strawberry. The specificity, sensitivity, repeatability and robustness of the assay was compared with RT-qPCR. The lowest concentration detected by RT-ddPCR for NoV GI and NoV GII were 4.68 and 8.47 copies/μL respectively, much lower than that of RT-qPCR with a number of 46.8 and 84.7 copies/μL, respectively. Lettuce and strawberry samples were artificially contaminated with NoV GI and GII suspensions, with inoculum size of 3.00 × 106 to 1.70 × 108 copies and 4.80 × 105 to 2.50 × 107 copies, respectively. Strawberry spiked with low inoculum size revealed positive results by RT-ddPCR, while recorded negative by RT-qPCR. Meanwhile, RT-ddPCR also showed a higher average recovery rate for NoV in lettuce and strawberry than RT-qPCR.The limit of detection (LoDs) of RT-ddPCR for NoVs in lettuce was 2.32 × 104 copies/25g (NoV GI) and 2.36 × 104 ciopies/25g (NoV GII), and that in strawberry was 2.56 × 104 copies/25g (NoV GI) and 2.64 × 104 ciopies/25g (NoV GII), which were 10 folds lower than that of RT-qPCR. The developed duplex RT-ddPCR assay exhibited stability and increased capacity to resist inhibitors in food samples with low concentration of NoV, making it a reliable method to avoid false negative result as opposed to RT-qPCR. In conclusion, one-step RT-ddPCR method developed in this study is pertinent in detecting foodborne virus such as NoV.
Collapse
Affiliation(s)
- Chongzhen Sun
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Jiayin Chen
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Hui Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Guangzhou, 511430, China.
| | - Ling Fang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Guangzhou, 511430, China
| | - Shiwei Wu
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Guangzhou, 511430, China
| | - Pallavi Jayavanth
- International School, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Shuze Tang
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Gloria Sanchez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. AgustÍn Escardino 7, 46980, Paterna, Valencia, Spain
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Puente H, Randazzo W, Falcó I, Carvajal A, Sánchez G. Rapid Selective Detection of Potentially Infectious Porcine Epidemic Diarrhea Coronavirus Exposed to Heat Treatments Using Viability RT-qPCR. Front Microbiol 2020; 11:1911. [PMID: 32973701 PMCID: PMC7472829 DOI: 10.3389/fmicb.2020.01911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) cause severe respiratory, enteric, and systemic infections in a wide range of hosts, including humans and animals. Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of porcine epidemic diarrhea (PED), a highly contagious intestinal disease affecting pigs of all ages. In this study, we optimized a viability real-time reverse transcriptase polymerase chain reaction (RT-qPCR) for the selective detection of infectious and heat-inactivated PEDV. PEMAX™, EMA™, and PMAxx™ photoactivable dyes along with PtCl4 and CDDP platinum compounds were screened as viability markers using two RT-qPCR assays: firstly, on PEDV purified RNA, and secondly on infectious and thermally inactivated virus suspensions. Furthermore, PMAxx™ pretreatment matched the thermal inactivation pattern obtained by cell culture better than other viability markers. Finally, we further optimized the pretreatment by coupling viability markers with Triton X-100 in inoculated serum resulting in a better estimation of PEDV infectivity than RT-qPCR alone. Our study has provided a rapid analytical tool based on viability RT-qPCR to infer PEDV infectivity with potential application for feed and feed ingredients monitoring in swine industry. This development would allow for greater accuracy in epidemiological surveys and outbreak investigations.
Collapse
Affiliation(s)
- Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
19
|
Randazzo W, Costantini V, Morantz EK, Vinjé J. Human Intestinal Enteroids to Evaluate Human Norovirus GII.4 Inactivation by Aged-Green Tea. Front Microbiol 2020; 11:1917. [PMID: 32973702 PMCID: PMC7461803 DOI: 10.3389/fmicb.2020.01917] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses are the leading cause of epidemic and sporadic acute gastroenteritis worldwide and the most common cause of foodborne illness in the United States. Several natural compounds, such as aged-green tea extract (aged-GTE), have been suggested as ingestible antiviral agents against human norovirus based on data using murine norovirus and feline calicivirus as surrogates. However, in vitro data showing their effectiveness against infectious human norovirus are lacking. We tested the activity of aged-GTE to inhibit human norovirus in a human intestinal enteroids (HIEs) model and Tulane virus in LLC-monkey kidney (LLC-MK2) cell culture. HIE monolayers pretreated with aged-GTE at different temperatures showed complete inhibition of human norovirus GII.4 replication at concentrations as low as 1.0 mg/ml for 37°C, 1.75 mg/ml for 21°C, and 2.5 mg/ml for 7°C. In contrast, a moderate decrease in Tulane virus infectivity of 0.85, 0.75, and 0.65 log TCID50/ml was observed for 2.5 mg/ml aged-GTE at 37, 21, and 7°C, respectively. Our findings demonstrate that GTE could be an effective natural compound against human norovirus GII.4, while only minimally effective against Tulane virus.
Collapse
Affiliation(s)
- Walter Randazzo
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Veronica Costantini
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Esther K Morantz
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Cherokee Nation Assurance, Arlington, VA, United States
| | - Jan Vinjé
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
20
|
Falcó I, Díaz-Reolid A, Randazzo W, Sánchez G. Green tea extract assisted low-temperature pasteurization to inactivate enteric viruses in juices. Int J Food Microbiol 2020; 334:108809. [PMID: 32799118 DOI: 10.1016/j.ijfoodmicro.2020.108809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
The current popularity of minimally processed foods is an opportunity for natural antimicrobial agents to be combined with mild heat treatments to act synergistically in reducing viral foodborne pathogens. Viral inactivation by heat-treatments (at 25, 40, 50 and 63 °C for 30 min) combined with aged green tea extract (aged-GTE) was initially evaluated in phosphate buffered saline (PBS) against murine norovirus (MNV-1) and hepatitis A virus (HAV) by cell culture, and against human norovirus by in situ capture RT-qPCR. The combination of aged-GTE and heat treatment at 50 °C for 30 min exerted strong antiviral activity, reducing by more than 5 log MNV-1 infectivity in PBS. Heating at 40 °C for 30 min reduced the binding of norovirus to porcine gastric mucine (PGM) to 41.5% and the addition of aged-GTE further decreased the binding to 4.7%. Additionally, the reduction of MNV-1 and HAV infectivity was investigated in two different types of juices exposed to mild heat treatments alone, and combined with aged-GTE. The addition of aged-GTE increased to more than 4 log the inactivation of MNV-1 in juices exposed to 50 °C for 30 min. However, this synergistic effect of aged-GTE combined with heat treatments was not observed for HAV in any of the juices. Aged-GTE, then, could be considered as an additional control measure to improve the food safety of mild heat pasteurized juices.
Collapse
Affiliation(s)
- Irene Falcó
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
21
|
Randazzo W, Sánchez G. Hepatitis A infections from food. J Appl Microbiol 2020; 129:1120-1132. [DOI: 10.1111/jam.14727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- W. Randazzo
- Department of Preservation and Food Safety Technologies IATA‐CSIC Valencia Spain
- Department of Microbiology and Ecology University of Valencia Valencia Spain
| | - G. Sánchez
- Department of Preservation and Food Safety Technologies IATA‐CSIC Valencia Spain
| |
Collapse
|