1
|
Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, Rastegar H, Mohammadi SA, Azadmard-Damirchi S. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications. J Appl Microbiol 2024; 135:lxae274. [PMID: 39496524 DOI: 10.1093/jambio/lxae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
Bacteriocins, natural antimicrobial peptides produced by bacteria, present eco-friendly, non-toxic, and cost-effective alternatives to traditional chemical antimicrobial agents in the food industry. This review provides a comprehensive update on the classification of bacteriocins in food preservation. It highlights the significant industrial potential of pediocin-like and two-peptide bacteriocins, emphasizing chemical synthesis methods like Fmoc-SPPS to meet the demand for bioactive bacteriocins. The review details the mode of action, focusing on mechanisms such as transmembrane potential disruption and pH-dependent effects. Furthermore, it addresses the limitations of bacteriocins in food preservation and explores the potential of nanotechnology-based encapsulation to enhance their antimicrobial efficacy. The benefits of nanoencapsulation, including improved stability, extended antimicrobial spectrum, and enhanced functionality, are underscored. This understanding is crucial for advancing the application of bacteriocins to ensure food safety and quality.
Collapse
Affiliation(s)
- Sara Bahrami
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Dadgarnejad
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ali Mohammadi
- Faculty of Nursing and Midwifery, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Hosseini H, Mahmoudi R, Pakbin B, Manafi L, Hosseini S, Pilevar Z, Brück WM. Effects of intrinsic and extrinsic growth factors on virulence gene expression of foodborne pathogens in vitro and in food model systems; a review. Food Sci Nutr 2024; 12:6093-6107. [PMID: 39554324 PMCID: PMC11561799 DOI: 10.1002/fsn3.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 11/19/2024] Open
Abstract
Since foodborne diseases are one of the major causes of human hospitalization and death, one of the main challenges to food safety is the elimination or reduction of pathogens from food products throughout the food production chain. Pathogens, such as Salmonella species, Escherichia coli, Bacillus cereus, Clostridium species, Staphylococcus aureus, Listeria monocytogenes, Campylobacter species, etc., enter the consumer's body through the consumption of contaminated food and eventually cause disease, disability, and death in humans. In particular, the expression of virulence genes of these pathogens in various food environments containing them has been repeatedly reported, which is a key issue for the survival and pathogenicity of the pathogen. Hence, in this review, the interventions to prevent and control foodborne diseases, such as the application of natural preservatives, redox potential, heat treatments, high-pressure processing, and gaseous atmosphere, are discussed based on the literature. Moreover, the effects of various environmental conditions on bacterial gene expression are comprehensively reviewed. In conclusion, the effects of intrinsic and extrinsic factors on the growth and pathogenicity of bacteria are very complicated. The information obtained from the current study can be used to develop new control strategies, improve food safety, and ensure human health.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Food Sciences & Technology Department, National Nutrition & Food Technology Research Institute, Faculty of Nutrition & Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Razzagh Mahmoudi
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Babak Pakbin
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSionSwitzerland
| | - Leila Manafi
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Setayesh Hosseini
- Department of Cell and Molecular Biology Sciences, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Pilevar
- School of HealthArak University of Medical SciencesArakIran
| | - Wolfram Manuel Brück
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSionSwitzerland
| |
Collapse
|
3
|
Guo P, Li Z, Cai T, Guo D, Yang B, Zhang C, Shan Z, Wang X, Peng X, Liu G, Shi C, Alharbi M, Alasmari AF. Inhibitory effect and mechanism of oregano essential oil on Listeria monocytogenes cells, toxins and biofilms. Microb Pathog 2024; 194:106801. [PMID: 39025378 DOI: 10.1016/j.micpath.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.
Collapse
Affiliation(s)
- Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China.
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong, 518057, China.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Hosseini H, Abdollahzadeh E, Pilevar Z. Addition of lime juice and NaCl to minced seafood may stimulate the expression of Listeria monocytogenes virulence, adhesion, and stress response genes. Food Sci Nutr 2024; 12:4615-4622. [PMID: 39055235 PMCID: PMC11266898 DOI: 10.1002/fsn3.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 07/27/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic bacterium responsible for deadly listeriosis outbreaks. This pathogen has been recognized as a significant food-borne pathogen in seafood products. The present study aimed to investigate the transcript levels of virulence, adhesion, and stress response genes of L. monocytogenes upon exposure to sublethal levels of lime juice and NaCl in shrimp matrix. For this purpose, minced and broth shrimp samples (control, 2% NaCl, 5% NaCl, 25 μL/mL lime, and 50 μL/mL lime, as well as 2% NaCl+25 μL/mL lime) were inoculated with approximately 107 CFU/g or ml of L. monocytogenes, and subsequently, the samples were stored at 12°C or 37°C. For the minced samples, the transcription of one stress-related (sigB), two adhesion (imo1634 and imo1847), and four virulence (hly, prf, intA, and plc) genes was assessed by RT-qPCR after different storage times (0 and 48 h). Results showed that the transcript levels of sigB, imo1847, and imo1634 genes increased with increasing storage temperatures of shrimp broth (12°C to 37°C). At the beginning, the transcription of the studied genes decreased in all treatments of minced shrimp; however, after 48 h of storage at 12°C, the transcript levels of hly, prf, imo1847, imo1634, and intA genes were significantly upregulated up to 0.5-9 log2 fold-change in all treatments compared to the control group (p < .05). These results highlight that the survived L. monocytogenes after exposure to moderate salt content or lime juice could represent enhanced virulence and adhesion capabilities, posing a significant public health risk.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnoloyShahid Beheshti University of Medical SciencesTehranIran
| | - Esmail Abdollahzadeh
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural ResearchEducation and Extension Organization (AREEO)RashtIran
| | - Zahra Pilevar
- School of HealthArak University of Medical SciencesArakIran
| |
Collapse
|
5
|
Fakhri Y, Mehri F, Pilevar Z, Moradi M. Concentration of steroid hormones in sediment of surface water resources in China: systematic review and meta-analysis with ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2724-2751. [PMID: 37870963 DOI: 10.1080/09603123.2023.2269880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
The risk quotient (RQ) related to Estrone (E1), 17β-E2 (E2), Estriol (E3) and 17α-ethynylestradiol (EE2) in sediment of water resources in China was calculated using Monte Carlo Simulation (MCS) method. Fifty-four papers with 64 data-reports included in our study. The rank order of steroid hormones in sediment based on log-normal distribution in MCS was E1 (3.75 ng/g dw) > E3 (1.53 ng/g dw) > EE2 (1.38 ng/g dw) > E2 (1.17 ng/g dw). According to results, concentration of steroid hormones including E1, E2 and E3 in sediment of Erhai lake, northern Taihu lake and Dianchi river was higher than other locations. The rank order of steroid hormones based on percentage high risk (RQ > 1) was EE2 (87.00%) > E1 (70.00%) > E2 (62.99%) > E3 (11.11%). Hence, contamination control plans for steroid hormones in sediment of water resources in China should be conducted continuously.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mahboobeh Moradi
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
6
|
Byun KH, Ha Han S, Woo Choi M, Kim BH, Ha SD. Control of Listeria monocytogenes in food industry by a combination treatment of natural aromatic compound with Listeria-specific bacteriophage cocktail. Food Res Int 2024; 177:113859. [PMID: 38225132 DOI: 10.1016/j.foodres.2023.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Most Listeria monocytogenes found in the food industry are listeriosis-causing pathogens and possess the ability to form biofilms on food and food contact materials (FCMs). This study aims to evaluate the efficacy of the combination treatment of natural aromatic compounds (thymol, eugenol, carvacrol, and citral) with a Listeria-specific phage cocktail in mitigating the threat posed by L. monocytogenes in the food industry. In vitro combination treatment of 1 minimal inhibitory concentration (MIC) of natural aromatic compound with phage cocktail at multiplicity of infection (MOI) 100 reduced more than 4 log CFU/mL of L. monocytogenes planktonic cells and inhibited biofilm formation. In addition, the expression of virulence-related genes (flaA, motB, hlyA, prfA, and actA) and the stress response (sigB) gene were significantly downregulated. The combination of natural aromatic compound with phage cocktail reduced the biofilm cell population on contaminated celery by more than 2 log CFU/g and by more than 2 log CFU/cm2 on already-formed biofilm on FCMs, but it was less effective on chicken meat, with an approximate reduction of only 1 log CFU/g. The antibiofilm activity toward preformed L. monocytogenes biofilms was also observed using field-emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). COMSTAT analysis of the structural change of biofilms revealed that major biofilm structure parameters (biovolume, thickness, diffusion distance, and microcolonies at substratum) were reduced after treatment. Our findings suggest that the combination of natural aromatic compounds with a phage cocktail has enormous potential as an antimicrobial and antibiofilm agent for controlling L. monocytogenes in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea; Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|
7
|
Cai T, Li Z, Guo P, Guo J, Wang R, Guo D, Yu J, Lü X, Xia X, Shi C. Antimicrobial and Antibiofilm Efficacy and Mechanism of Oregano Essential Oil Against Shigella flexneri. Foodborne Pathog Dis 2023; 20:209-221. [PMID: 37335913 DOI: 10.1089/fpd.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The aim of this study was to assess the antimicrobial activity of oregano essential oil (OEO) against Shigella flexneri and eradication efficacy of OEO on biofilm. The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of OEO against S. flexneri were 0.02% (v/v) and 0.04% (v/v), respectively. OEO effectively killed S. flexneri in Luria-Bertani (LB) broth and contaminated minced pork (the initial population of S. flexneri was about 7.0 log CFU/mL or 7.2 log CFU/g), and after treatment with OEO at 2 MIC in LB broth or at 15 MIC in minced pork, the population of S. flexneri decreased to an undetectable level after 2 or 9 h, respectively. OEO increased intracellular reactive oxygen species concentration, destroyed cell membrane, changed cell morphology, decreased intracellular ATP concentration, caused cell membrane depolarization, and destroyed proteins or inhibited proteins synthesis of S. flexneri. In addition, OEO effectively eradicated the biofilm of S. flexneri by effectively inactivating S. flexneri in mature biofilm, destroying the three-dimensional structure, and reducing exopolysaccharide biomass of S. flexneri. In conclusion, OEO exerts its antimicrobial action effectively and also has a valid scavenging effect on the biofilm of S. flexneri. These findings suggest that OEO has the potential to be used as a natural antibacterial and antibiofilm material in the control of S. flexneri in meat product supply chain, thereby preventing meat-associated infections.
Collapse
Affiliation(s)
- Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jialu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Schneider G, Steinbach A, Putics Á, Solti-Hodován Á, Palkovics T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023; 11:1364. [PMID: 37374865 DOI: 10.3390/microorganisms11061364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, the causative agent of listeriosis. Infections typically occur through consumption of foods, such as meats, fisheries, milk, vegetables, and fruits. Today, chemical preservatives are used in foods; however, due to their effects on human health, attention is increasingly turning to natural decontamination practices. One option is the application of essential oils (EOs) with antibacterial features, since EOs are considered by many authorities as being safe. In this review, we aimed to summarize the results of recent research focusing on EOs with antilisterial activity. We review different methods via which the antilisterial effect and the antimicrobial mode of action of EOs or their compounds can be investigated. In the second part of the review, results of those studies from the last 10 years are summarized, in which EOs with antilisterial effects were applied in and on different food matrices. This section only included those studies in which EOs or their pure compounds were tested alone, without combining them with any additional physical or chemical procedure or additive. Tests were performed at different temperatures and, in certain cases, by applying different coating materials. Although certain coatings can enhance the antilisterial effect of an EO, the most effective way is to mix the EO into the food matrix. In conclusion, the application of EOs is justified in the food industry as food preservatives and could help to eliminate this zoonotic bacterium from the food chain.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Ákos Putics
- Central Laboratory, Aladár Petz Teaching Hospital, Vasvári Pál Street 2-4, H-9024 Győr, Hungary
| | - Ágnes Solti-Hodován
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Tamás Palkovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| |
Collapse
|
9
|
Zhang X, Yang C, Yang K. Novel Antibacterial Metals as Food Contact Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3029. [PMID: 37109867 PMCID: PMC10145333 DOI: 10.3390/ma16083029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Food contamination caused by microorganisms is a significant issue in the food field that not only affects the shelf life of food, but also threatens human health, causing huge economic losses. Considering that the materials in direct or indirect contact with food are important carriers and vectors of microorganisms, the development of antibacterial food contact materials is an important coping strategy. However, different antibacterial agents, manufacturing methods, and material characteristics have brought great challenges to the antibacterial effectiveness, durability, and component migration associated with the use security of materials. Therefore, this review focused on the most widely used metal-type food contact materials and comprehensively presents the research progress regarding antibacterial food contact materials, hoping to provide references for exploring novel antibacterial food contact materials.
Collapse
|
10
|
Guan H, Sun Y, Hou W, Zhao W, Wang P, Zhao S, Zhao X, Wang D. Infection behavior of Listeria monocytogenes on iceberg lettuce (Lactuca sativa var. capitata). Food Res Int 2023; 165:112487. [PMID: 36869448 DOI: 10.1016/j.foodres.2023.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Iceberg lettuce among leafy vegetables is susceptible to contamination with foodborne pathogens, posing a risk of food microbial safety. Listeria monocytogenes (L. monocytogenes) is a highly lethal pathogen that can survive and proliferate on leafy vegetables. In this paper, the contamination stage, attachment site, internalization pathway, proliferation process, extracellular substance secretion and virulence factors expression of L. monocytogenes on iceberg lettuce were researched. Results showed that the contamination stage of L. monocytogenes on iceberg lettuce was 0-20 min, the proliferation stage was after 20 min. The attachment tissues were stomata and winkles. The internalization distance of L. monocytogenes in the midrib was farther than that in the leaf blade. They enhanced the movement ability of cells by up-regulating the expression of flaA and motA genes, and enhanced the adhesion ability of cells by up-regulating the expression of actA and inla genes, which was beneficial to the proliferation. During proliferation, cells gradually secreted extracellular substances to promote the biofilm formation on iceberg lettuce. The formation of biofilms experienced: individual bacteria, cell aggregation and biofilm maturation. Biofilms were more likely to form on the leaf blade of iceberg lettuce.
Collapse
Affiliation(s)
- Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wanfu Hou
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
11
|
Mohammadi M, Hosseini H, Shahraz F, Hosseini SM, Alizadeh AM, Taghizadeh M, Mohammadi A, Shojaee-Aliabadi S. Effect of sage seed gum film incorporating Zataria multiflora Boiss essential oil on the storage quality and biogenic amine content of refrigerated Otolithes ruber fillets. Int J Biol Macromol 2023; 238:123711. [PMID: 36801301 DOI: 10.1016/j.ijbiomac.2023.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The effect of an edible film based on sage seed gum (SSG) incorporating 3 % Zataria multiflora Boiss essential oil (ZEO) was investigated on the storage quality and shelf life of tiger-tooth croaker (Otolithes ruber) fillets during storage at 4 ± 1 °C compared to the control film (SSG film without ZEO) and the Cellophane. The SSG-ZEO film significantly decelerated microbial growth (evaluated by total viable count, total psychrotrophic count, pH, TVBN) and lipid oxidation (evaluated by TBARS) compared to the others (P ˂ 0.05). The antimicrobial activity of ZEO was the highest and the lowest on E. aerogenes (MIC: 0.196 μL/mL) and P. mirabilis (MIC: 0.977 μL/mL), respectively. E. aerogenes was identified as an indicator biogenic amine-producer in O. ruber fish at refrigerated temperature. The active film significantly lowered biogenic amine accumulation in the samples inoculated with E. aerogenes. A clear relationship was observed between the release of ZEO's phenolic compounds from the active film to the headspace and the reduction of microbial growth, lipid oxidation, and biogenic amine production in the samples. Consequently, SSG film containing 3 % ZEO is proposed as a biodegradable antimicrobial-antioxidant packaging to extend the shelf life and decrease the biogenic amine production in refrigerated seafood.
Collapse
Affiliation(s)
- Mansoureh Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shahraz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Taghizadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties. Processes (Basel) 2022. [DOI: 10.3390/pr10091787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this research, the extraction with supercritical carbon dioxide (SC-CO2) and the subsequent impregnation of the extracted bioactive compounds from Zataria multiflora Boiss (Z. multiflora) into polylactic acid (PLA) films was investigated. The effects of temperature (318 and 338 K), pressure (15 and 25 MPa) and cosolvent presence (0 and 3 mol%) on the extraction yield were studied. The SC-CO2 assisted impregnation runs were carried out in a discontinuous mode at different pressure (15 and 25 MPa), temperature (318 and 328 K), and time (2 and 8 h) values, using 0.5 MPa min−1 as a constant value of depressurization rate. ANOVA results confirmed that pressure, temperature, and time influenced the extraction yield. Moreover, antioxidant activities of extracts of Z. multiflora were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. In addition, the antibacterial activities of the extracts were screened against standard strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results of this investigation indicated that extracts obtained from the aerial parts of Z. multiflora possessed antioxidant and antibacterial properties. The impregnated samples presented strong antibacterial activity against the selected microorganisms.
Collapse
|
13
|
Mousavi M, Hosseini SM, Hosseini H, Abedi AS, Khani M, Heshmati A, Abhari K, Shahraz F, Taghizadeh M, Akhavan A. Gliding Arc Plasma Discharge Conditions on Microbial, Physicochemical, and Sensory Properties of Shrimp (Litopenaeus vannamei): In Vivo and In Vitro Studies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure. Food Res Int 2022; 157:111367. [DOI: 10.1016/j.foodres.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
|
15
|
Yousefi M, Nematollahi A, Shadnoush M, Mortazavian AM, Khorshidian N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front Nutr 2022; 9:828065. [PMID: 35308287 PMCID: PMC8931696 DOI: 10.3389/fnut.2022.828065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The production of safe and healthy foodstuffs is considered as one of the most important challenges in the food industry, and achieving this important goal is impossible without using various processes and preservatives. However, recently, there has been a growing concern about the use of chemical preservatives and attention has been focused on minimal process and/or free of chemical preservatives in food products. Therefore, researchers and food manufacturers have been induced to utilize natural-based preservatives such as antimicrobial enzymes in their production. Lactoperoxidase, as an example of antimicrobial enzymes, is the second most abundant natural enzyme in the milk and due to its wide range of antibacterial activities, it could be potentially applied as a natural preservative in various food products. On the other hand, due to the diffusion of lactoperoxidase into the whole food matrix and its interaction and/or neutralization with food components, the direct use of lactoperoxidase in food can sometimes be restricted. In this regard, lactoperoxidase can be used as a part of packaging material, especially edible and coating, to keep its antimicrobial properties to extend food shelf-life and food safety maintenance. Therefore, this study aims to review various antimicrobial enzymes and introduce lactoperoxidase as a natural antimicrobial enzyme, its antimicrobial properties, and its functionality in combination with an edible film to extend the shelf-life of food products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Nasim Khorshidian
| |
Collapse
|
16
|
Mehdizadeh A, Shahidi SA, Shariatifar N, Shiran M, Ghorbani-HasanSaraei A. Physicochemical characteristics and antioxidant activity of the chitosan/zein films incorporated with Pulicaria gnaphalodes L. extract-loaded nanoliposomes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Rahmani S, Azimi S. Fumigant toxicity of three Satureja species on tomato leafminers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1767651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shima Rahmani
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz Azimi
- Department of Plant Protection, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
18
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front Microbiol 2021; 12:709959. [PMID: 34603234 PMCID: PMC8486284 DOI: 10.3389/fmicb.2021.709959] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7-17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at -80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
20
|
Motavaf F, Mirvaghefi A, Farahmand H, Hosseini SV. Effect of Zataria multiflora essential oil and potassium sorbate on inoculated Listeria monocytogenes, microbial and chemical quality of raw trout fillet during refrigerator storage. Food Sci Nutr 2021; 9:3015-3025. [PMID: 34136167 PMCID: PMC8194907 DOI: 10.1002/fsn3.2259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/27/2021] [Accepted: 03/14/2021] [Indexed: 01/29/2023] Open
Abstract
Human listeriosis is predominantly associated with contaminated food consumption, including seafood, shrimp, and RTE foods. Listeria monocytogenes is a foodborne pathogen that is mainly found in freshwater, seawater, and fish mucus. Seafood contamination can occur during food processing. L.monocytogenes levels of below 100 cfu/g can be found in seafood samples. The present study was conducted to investigates the effect of Zataria multiflora essential oil (ZEO) and potassium sorbate (PS) on microbial and chemical changes in raw rainbow trout at 4°C to extent shelf life and improve food safety. First, the chemical compositions of ZEO were identified. Then, different percentage of ZEO (1.5, 0.8, and 0.5%) and PS (2%) were inoculated in raw fish fillets and analyzed for TVC, TBA, TVB-N, pH, sensory attributes, Pseudomonas aeruginosa, and inoculated L. monocytogenes (1 × 105 cfu/g) survival at 4°C for 12 days. The best sensory evaluation score was observed for the samples treated with 0.8% and 1.5% ZEO. Overall, this study results indicated that the treatment of rainbow trout fillet with 1.5% ZEO is the best method for controlling the growth of L. monocytogenes at refrigerator temperature without any undesirable sensory effects.
Collapse
Affiliation(s)
- Forough Motavaf
- Department of FisheriesFaculty of Natural ResourcesUniversity of TehranKarajIran
| | - Alireza Mirvaghefi
- Department of FisheriesFaculty of Natural ResourcesUniversity of TehranKarajIran
| | - Hamid Farahmand
- Department of FisheriesFaculty of Natural ResourcesUniversity of TehranKarajIran
| | - Seyed Vali Hosseini
- Department of FisheriesFaculty of Natural ResourcesUniversity of TehranKarajIran
| |
Collapse
|
21
|
Hosseini S, Abdollahzadeh E, Ranaei V, Mahmoudzadeh M, Pilevar Z. Effect of Zataria multiflora Boiss. essential oil, NaCl, acid, time, and temperature on the growth of Listeria monocytogenes strains in broth and minced rainbow trout. Food Sci Nutr 2021; 9:2290-2298. [PMID: 33841845 PMCID: PMC8020953 DOI: 10.1002/fsn3.2208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/03/2023] Open
Abstract
The small outbreaks of listeriosis as one of the leading causes of food poisoning-associated deaths occur more than previously reported. In current study, the growth ability of Listeria monocytogenes strains isolated from different sources of food and human origin was measured under salt stress (0.5%, 2.5%, 5%, 7.5%, and 10%) and acid environments (pH = 6.64 and 5.77) for 96 hr by using a Bioscreen C microbiology reader at 37°C. In further steps of this study, after analysis of constituents of Zataria multiflora Boiss. essential oil (ZMEO), the sensory evaluation of the treated fish meat with ZMEO was performed. Then, the fish isolate of L. monocytogenes was exposed to sensory acceptable and subminimum inhibitory concentrations (subMICs) of ZMEO in fish broth and minced fish meat during incubation at abuse (12°C), room (22°C), and optimum (37°C) temperatures for 48 hr. The MIC of NaCl against four strains of L. monocytogenes was 10% at 37°C. The maximum optical densities (ODs) and under curve areas (AUC) of growth patterns in higher pH value and lower contents of NaCl followed the order of 21C > 6F > 66C > 22C of L. monocytogenes strains, while the lag time was prolonged in the reverse order. The maximum OD, growth, and lag times of samples treated with higher contents of NaCl and lower pH value were affected in a different order. The organoleptic evaluation showed that the fish meat treated with less than 0.5% of ZMEO was sensory acceptable. The population of L. monocytogenes remained relatively constant at the inoculation level of 107 cfu/ml (or g) at 12°C in broth and minced fish mediums. The inhibitory antilisterial activity of essential oil as an extensive-used plant for food and pharmacological applications is negligible due to possible adverse sensory and toxic effects at relevant high doses.
Collapse
Affiliation(s)
- Setayesh Hosseini
- Department of Cell and Molecular Biology SciencesSchool of BiologyCollege of ScienceUniversity of TehranTehranIran
| | - Esmail Abdollahzadeh
- International Sturgeon Research InstituteAgricultural Research, Education and Extension Organization (AREEO)RashtIran
| | - Vahid Ranaei
- Social Determinants in Health Promotion research CenterHormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and TechnologyFaculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| | - Zahra Pilevar
- Department of Food Sciences & TechnologyFaculty of Nutrition Sciences and Food TechnologyNational Nutrition & Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
22
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Bahrami A, Davis S, Mousavi Khaneghah A, Williams L. The efficiency of technologies used for epidemiological characterization of Listeria monocytogenes isolates : an update. Crit Rev Food Sci Nutr 2020; 62:1079-1091. [PMID: 33092402 DOI: 10.1080/10408398.2020.1835816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The characterization of pathogenic bacteria by providing information regarding the identification and source-tracking of the causes of outbreaks is vital for the epidemiological investigations of foodborne diseases. The knowledge of transmission of Listeria monocytogenes (L. monocytogenes) strains from the environment, directly or indirectly (through food processing facilities) to the final food products, due to the complexity of evaluating numerous, affecting parameters is quite limited. The food trade globalization also adds difficulties in tracking the association between the infection occurrence and causative pathogens, aiming to prevent their spread. The occurrence of listeriosis, a notifiable disease throughout the world, can either be sporadic or outbreak-related. Due to the importance of foodborne outbreaks from a public health aspect and its correspondence enormous economic losses, cross-linked surveillance studies regarding the contamination of foods by L. monocytogenes, besides identifying clusters and tracing the sources of infections on an international-scale to prevent and control L. monocytogenes outbreaks sounds very crucial. Contrary to the conventional typing methods, molecular-based techniques, such as whole-genome sequencing, owing to the capacity to discriminate L. monocytogenes strains down to single nucleotide differences, provide an accurate characterization of strains and tracking the causes of outbreaks. However, routinely using molecular-based methods depends on the required improvements in the affordability, proper timing, and preparing reliable, standardized bioinformatics facilities. This work was conducted to critically review the practical potential of diverse typing methods have been used for the characterization of L. monocytogenes and discuss how they might change the future of efforts for control of listeriosis.
Collapse
Affiliation(s)
- Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Shurrita Davis
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
24
|
Mahmoudzadeh M, Hosseini H, Mahmoudzadeh L, Mazaheri Nezhad Fard R. Comparative Effects of Carum copticum Essential Oil on Bacterial Growth and Shiga-Toxin Gene Expression of Escherichia coli O157:H7 at Abused Refrigerated Temperatures. Curr Microbiol 2020; 77:1660-1666. [PMID: 32285153 DOI: 10.1007/s00284-020-01987-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Abused refrigerated temperatures are described as unacceptable deviations from the optimal temperature, occurring frequently during transportation of food products. Escherichia coli O157:H7 is a serious contaminant of meats and meat products due to its ability to grow at abused temperatures (> 10 °C). The aim of this study was to evaluate the antibacterial activity of Carum copticum essential oil for the control of Escherichia coli O157:H7 using laboratory media and minced beef at severe abused refrigerated temperature (15 °C). A comparative quantitative reverse transcription real-time PCR was used to assess effects of temperature and Carum copticum essential oil at sub-minimum inhibitory concentrations on bacterial growth and Shiga-toxin gene (stx1A and stx2A) expression. Results indicated that Carum copticum essential oil inhibited growth of E. coli O157:H7 in tryptone soy broth (TSB) media at all sub-MIC values until Hour 48. However, bacterial population increased progressively until Hour 72 at essential oil concentration of 0.75% (ml g-1) and reached 8.6 log CFU g-1 in minced beef. The essential oil at concentration of 0.005% (ml g-1) increased stx gene expression at all times, but increased stx gene expression (0.015%) at Hour 24 in TSB media. The expression rate of stx1A in minced beef decreased progressively (10.39 and 7.67 folds for 0.5 and 0.75%, respectively) and expression of stx2A was variable in minced beef during storage. In conclusion, results from this study have shown that effects of Carum copticum essential oil on growth and virulence gene expression are not necessarily correlated and temperature, essential oil concentration, investigated gene type, and bacterial growth environment (in vivo or in vitro) are effective as well.
Collapse
Affiliation(s)
- Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Ramin Mazaheri Nezhad Fard
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv Colloid Interface Sci 2020; 278:102140. [PMID: 32171115 DOI: 10.1016/j.cis.2020.102140] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing the demands of consumers for organic and safer foods has led to applying new technologies for food preservation. Active packaging (AP) containing natural antimicrobial agents is a good candidate for promoting the shelf life of food products. The efficiency of AP has been enhanced through nanoencapsulation methods, in which antimicrobial-loaded nanocarriers could provide a controlled release of antimicrobial active packaging for keeping the quality of foods during storage. The main objective of this review is to introduce common methods for designing novel encapsulation delivery systems offering controlled release of antimicrobials in the AP systems. The common nanocarriers for enveloping antimicrobial agents are described and the current state of art in the application of nanoencapsulated antimicrobials in development of antimicrobial APs have been summarized and tabulated. Incorporation of a carrier loaded with natural antimicrobial agents is the most effective method for developing AP in the food packaging sector which has become possible by using nanoencapsulated antimicrobials in films or coating structures, instead of using their free form. Nanoencapsulation approaches provide many advantages including protection against environmental stresses, release control, and improving the solubility and absorption of natural antimicrobials in AP, which are the main achievements overcoming the barriers for using natural antimicrobials in food packaging.
Collapse
|