1
|
Melendez M, Dapana Durage TT, Benigno M, Hsu CI, Sathivel S. Assessment of antimicrobial properties of a curcumin-loaded nano-emulsion in reducing pathogen loads on cantaloupe surface (Cucumis melo L.). Food Microbiol 2025; 130:104766. [PMID: 40210395 DOI: 10.1016/j.fm.2025.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 04/12/2025]
Abstract
Curcumin (CUR) exhibits antimicrobial properties but is hindered by chemical instability, limiting its direct application. This study evaluated the efficacy of curcumin nanoemulsions (CUR-NE) in reducing pathogenic microorganisms on cantaloupe rind surfaces. Two CUR-NE formulations, 1CUR-NE (0.05% CUR, w/w) and 2CUR-NE (0.10% CUR, w/w), were prepared by mixing CUR with medium-chain triglyceride (MCT) oil (3% w/w), polysorbate 80 (2% w/w), and polyethylene glycol (10% w/w), followed by a 15-min ultrasound treatment (175 W). The antimicrobial effects were assessed against Listeria innocua B-33016, Escherichia coli ATCC25922, aerobic bacteria, and yeast and mold. Inoculated cantaloupe surfaces were treated with CUR-NE, and microbial counts were analyzed on days 1, 3, 6, 9, and 12. The viscosity of 1CUR-NE and 2CUR-NE was 0.0030 ± 0.0001 Pa s and 0.0027 ± 0.0006 Pa s, with droplet sizes of 122.47 ± 3.06 nm and 137.67 ± 1.36 nm, respectively. Treatment with 2CUR-NE significantly reduced L. innocua growth on day 6 (2.50 ± 1.00 log CFU/cm2), with E. coli showing significant reductions on days 6 (1.55 ± 0.40 log CFU/cm2), 9 (1.91 ± 0.36 log CFU/cm2), and 12 (0.72 ± 0.26 log CFU/cm2). Scanning electron microscopy revealed a substantial decrease in microbial load after treatment. The results suggest that CUR-NE, particularly 2CUR-NE, effectively reduces pathogenic contamination on cantaloupe and offers a potential alternative to synthetic antimicrobial agents in food safety applications. Further studies are needed to explore the long-term efficacy and broader applications of CUR-NE in food systems.
Collapse
Affiliation(s)
- Mario Melendez
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803-4300, USA
| | | | - Mariel Benigno
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803-4300, USA
| | - Chien-I Hsu
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803-4300, USA
| | - Subramaniam Sathivel
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803-4300, USA; Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803-4300, USA.
| |
Collapse
|
2
|
Abdeljelil N, Chatti A, Gillan D, Van Houdt R. Antimicrobial applications of inorganic radiosensitizers and their potential in biofilm control. World J Microbiol Biotechnol 2025; 41:130. [PMID: 40208389 DOI: 10.1007/s11274-025-04338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Biofilms are structured microbial communities embedded in a self-produced extracellular matrix. This lifestyle provides significant protection against environmental stressors such as desiccation, chemical treatments and even ionizing radiation. Radiation, while a well-established antibacterial strategy, can be less effective in biofilms. Biofilm superior resilience is due to several advantages such as the shielding provided by the matrix, the metabolic heterogeneity and adaptive stress responses of biofilm-associated cells. To address this challenge, researchers are increasingly employing combination strategies in antibiofilm treatment. Radiosensitizers, compounds originally developed to enhance the efficacy of radiation therapy in cancer treatment, have also garnered attention for their potential in antimicrobial applications. These compounds act by amplifying the effects of radiation, often through mechanisms such as increased oxidative stress or inhibition of DNA repair pathways. However, research on radiosensitizers in bacterial systems has focused on planktonic cultures, with limited studies exploring their effects on biofilms. Given the complexity and unique characteristics of biofilms, their response to radiosensitization remains poorly understood and requires further investigation. The use of radiosensitizers in conjunction with radiation presents a promising approach to overcome the inherent resilience of biofilms. By enhancing the susceptibility of biofilm-associated bacteria to radiation and simultaneously disrupting their protective structures, such approaches could lead to more effective and comprehensive solutions. Understanding the nuanced responses of biofilms to these combined treatments is essential for advancing both medical and environmental applications and addressing the challenge of biofilm persistence.
Collapse
Affiliation(s)
- Nissem Abdeljelil
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium.
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium.
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia.
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - David Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
3
|
Yang M, Chao H, Hou Z, Wang L, Xu W, Zhao X. Antimicrobial activity of octyl gallate nanoemulsion combined with photodynamic technology and its effect on food preservation. Int J Food Microbiol 2025; 429:111023. [PMID: 39693859 DOI: 10.1016/j.ijfoodmicro.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Photodynamic inactivation, as a safe and effective antimicrobial technology that does not damage the organoleptic properties of the food itself, decreases the use of preservatives and is gradually gaining attention in the food industry. This study selected octyl gallate (OG) as an antimicrobial photosensitizer with eucalyptus oil as the oil phase and prepared it as an octyl gallate nanoemulsion (OG-NE) to ensure the delivery of the photosensitizer. Escherichia coli and Staphylococcus aureus inactivation with the OG-NE combined with photodynamic technology, as well as the effect on the quality of food products, was investigated. The results showed the successful preparation and homogeneous distribution of the OG-NE with an encapsulation rate of 85.18 %. The OG-NE's ability to produce single oxygen (1O2) was significantly higher, as shown by 1O2 production. The OG-NE combined photodynamic technique confirmed the effectiveness of microbial removal, demonstrating a significant increase in reactive oxygen species (ROS) and the permeability of the cell membrane. The effect of the OG-NE combined photodynamic technology on perch (microbiology, pH, whiteness, water holding capacity, TVB-N and TBA) and litchi (weight loss, titratable acid and sugar content) preservation was assessed. Food preservation experiments revealed that the OG-NE combined photodynamic technology exhibited a positive effect on food quality. The results indicated that the combination of the OG-NE and photodynamic technology provided a new alternative strategy for the food industry in antimicrobial and preservation.
Collapse
Affiliation(s)
- Ming Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huijing Chao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zihan Hou
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingling Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weizhuo Xu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
da Silva RT, de Souza Pedrosa GT, Dos Santos Franco AJ, de Souza Grilo MM, de Lucena FA, Barão CE, Jung J, Schaffner DW, Magnani M. Transfer, survival and photoinactivation of Salmonella enterica on fresh produce and gloves. Int J Food Microbiol 2025; 431:111089. [PMID: 39904111 DOI: 10.1016/j.ijfoodmicro.2025.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
This study quantified the transfer of Salmonella between fruit (tomato and cucumber) and gloves (High-density polyethylene-HDPE, Vinyl-VY) after different contact time (2, 5, 10 and 30 s). The survival of Salmonella in discarded gloves and the photodynamic inactivation (PDI; curcumin 7.5 μM; 16.1, 20.2 and 24.2 J/cm2) of the pathogen were also evaluated. Scanning electronic micrographs showed the cell morphology of Salmonella on discarded HDPE and VY gloves. The highest transfer (p > 0.05) of Salmonella occurred after 30 s (4.0 %; -1.4 log %) from tomato to HDPE. Salmonella on contaminated gloves survived for up to 9 days (2.1-1.5 log CFU/sample). PDI reduced (p > 0.05) Salmonella counts ∼3.0 and 2.0 log CFU/sample after 12 min on tomato and cucumber, respectively. These results contribute important information about transfer and survival of Salmonella on gloves and fruit. The obtained data can be used to support the development of risk assessment models and measures to mitigate the risks of Salmonella contamination in fresh- produce.
Collapse
Affiliation(s)
- Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Geany Targino de Souza Pedrosa
- Food Technology Academic Unit, Agrifood Science and Technology Center, Federal University of Campina Grande, Campus Pombal, 58840-000 Pombal, Brazil
| | - Alyson José Dos Santos Franco
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Maria Mayara de Souza Grilo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Fernando Azevedo de Lucena
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Carlos Eduardo Barão
- Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná 87703-536, Brazil
| | - Jiin Jung
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil.
| |
Collapse
|
5
|
Ji S, Zheng R, Kang J, Zhi Y, Xiong S, Liu Y. Antibacterial mechanism of vitamin K 3-mediated photodynamic inactivation against Pseudomonas fluorescens and its influences on blunt bream (Megalobrama amblycephala) quality. Food Res Int 2025; 200:115494. [PMID: 39779135 DOI: 10.1016/j.foodres.2024.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK3-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P. fluorescens. The inhibition efficiency and photosensitization mechanism were investigated under different VK3 concentrations and UV-A light time conditions. The results showed that PDI could significantly inactivate P. fluorescens >7.0 log10 cfu/ml with 1 mM VK3 and 45 min of UV-A irradiation. Type I and type II photoresponses could co-occur in VK3-mediated PDI by quantitatively analyzing the photoresponse product ROS (OH, H2O2, 1O2). It was observed by SEM and TEM that the combined treatment of VK3 and UV-A disrupted the cellular integrity of P. fluorescens, leading to leakage of cell contents. Meanwhile, it degraded intracellular proteins and destroys genomic DNA, ultimately leading to bacterial death. In addition, the PDI system slowed down P. fluorescens' proliferation during the blunt bream storage at 4 °C. The PDI system effectively killed 59 % of P. fluorescens on the blunt bream fillets under 1.5 mM VK3 and 60 min of UV-A irradiation. The VK3-mediated PDI delayed pH change and TVB-N production, inhibited protein degradation and fat oxidation, and ultimately maintained the quality of fish fillets. This study provides a promising PDI system for controlling food microbial contamination and maintaining the storage quality of aquatic products.
Collapse
Affiliation(s)
- Shuiqing Ji
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China
| | - Renyu Zheng
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China
| | - Jiajia Kang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China
| | - Yuzhu Zhi
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China
| | - Youming Liu
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
6
|
Olszewska MA, Draszanowska A, Zimińska A, Starowicz M. Improvement of Selected Quality and Safety Traits in Turmeric-Enriched Kale Pesto Using Blue Light and Sous-Vide. Molecules 2024; 29:5831. [PMID: 39769920 PMCID: PMC11728637 DOI: 10.3390/molecules29245831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The potential of blue light (BL) and sous-vide (S-V) as a novel approach for food preservation was investigated via measurements of the total phenolic content (TPC), antioxidative activity, color, and their antibacterial effect on Listeria monocytogenes in two versions of laboratory-prepared kale pesto, with and without the addition of turmeric. The TPC ranged from 85 to 208 mg/100 g GAE d.m. and 57 to 171 mg/100 g GAE d.m., respectively. In both versions, the highest TPC was in the blue light-sous-vide samples, while the lowest was after the sous-vide, with a loss of polyphenols of almost 40% during storage when turmeric was absent. Antioxidative capabilities of the pesto were initially estimated at 54.07 and 7.46 µmol TE/g d.m., respectively, indicating significant bioactivity enhancement by turmeric. In turmeric-enriched pesto, sous-vide decreased the antioxidative activity levels by 12% in fresh pesto and by 45% during storage. Meanwhile, blue light compensated for the losses caused by the sous-vide treatment. Although the hue angle (h°) of sous-vide pesto was lower than that of blue light pesto in most samples, sequential BL and S-V ultimately yielded the lowest h°. The sequential BL and S-V treatment resulted in a 1.7 log reduction in the L. monocytogenes population, whereas adding turmeric increased the treatment efficacy by another 2.0 logs. Thus, as a source of photosensitizing molecules, turmeric was highly antibacterial after photothermal activation with blue light and sous-vide. This study suggests that blue light could be an effective (pre)treatment used on pesto sauces to preserve bioactivity and to improve safety when enriched with a natural additive like turmeric.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland
| | - Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Juliana Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
7
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
8
|
Peng S, Li Q, Wei H, Li P, Liu S, Nie L, Leng Y, Huang X. Highly Efficient AIE-Active palmatine photosensitizer for photodynamic inactivation of Listeria monocytogenes in apple juice preservation. Food Res Int 2024; 197:115253. [PMID: 39593335 DOI: 10.1016/j.foodres.2024.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Photodynamic sterilization is a promising alternative to conventional antibacterial approaches with merits of high efficiency and safety. The exploration of aggregation-induced emission (AIE)-type photosensitizers from natural sources is highly valued by researchers and food industry. Herein, the use of palmatine (PA), an aggregation-induced emission-active natural product from traditional Chinese medicine, as photosensitizers for photodynamic inactivation of a tenacious foodborne pathogen of Listeria monocytogenes is investigated. Antibacterial and antibiofilm activity against L. monocytogenes of PA-mediated photodynamic process were first assessed. The results showed that PA-mediated photodynamic process could inhibit the growth of L. monocytogenes, and the minimum bactericidal concentration was determined as 80 μM. At this PA dosing level, well-established biofilms of L. monocytogenes can be effectively destroyed under light irritation. Afterward, cell- and gene-level investigations were conducted to explore the antibacterial mechanism. It is concluded that the exceptional photodynamic antibacterial activity of PA against L. monocytogenes is attributed to the disruption of the cell wall and membrane, increased cell permeability, leakage of functional proteins, and damage to DNA structure. Subsequently, PA-mediated photodynamic process was applied to reduce bacterial activity in apple juice while preserving its quality. Overall, this work highlights the significant potential of PA-mediated photodynamic strategy for controlling foodborne pathogens in food systems.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hui Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shuyuan Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Lijuan Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| | - Yuankui Leng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| |
Collapse
|
9
|
Jiao L, Li Y, Tian M, Zhao S, Zhang X, Benjakul S, Zhang B. Novel Halogenated Curcumin-Mediated Photodynamic Inactivation for the Preservation of Small Yellow Croaker ( Larimichthys polyactis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18720-18730. [PMID: 39068643 DOI: 10.1021/acs.jafc.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A novel class of halogenated curcumin, X-Cur (X = F, Cl, or Br), was synthesized, and its photosensitivity was evaluated. The results showed that Br-Cur with the highest singlet oxygen (1O2) generation capacity exhibited a better photodynamic inactivation (PDI) effect on the small yellow croaker (Larimichthys polyactis) than curcumin. This was attributed to the heavy atom effect of Br, which resulted in Br-Cur having the smallest singlet-triplet energy difference ΔEst(S1-T3) (0.140 eV) and the largest spin-orbit coupling value (0.642262 cm-1). When L. polyactis was treated with 0.025 wt % Br-Cur and exposed to blue LED irradiation (450 nm, 20 mW/cm2) for 20 min, the increase in the total volatile basic nitrogen content (28.23 ± 2.38 mg/100 g on day 6), pH, and total viable count (6.13 ± 0.06 log CFU/g on day 6) could be effectively controlled. Accordingly, Br-Cur is a promising photosensitizer for PDI preservation.
Collapse
Affiliation(s)
- Long Jiao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuwei Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mingyu Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Shuyi Zhao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoye Zhang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
10
|
Li Y, Wang J, Zeng QH, Wang L, Wang JJ, Li S, Zhu J, Zeng XA. Novel thawing method of ultrasound-assisted slightly basic electrolyzed water improves the processing quality of frozen shrimp compared with traditional thawing approaches. ULTRASONICS SONOCHEMISTRY 2024; 107:106931. [PMID: 38823084 PMCID: PMC11176819 DOI: 10.1016/j.ultsonch.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Thawing is the primary step in handling frozen aquatic products, which directly determines their end-product quality. This study firstly constructed a novel thawing method of ultrasound-assisted slightly basic electrolyzed water (UST), and its influences on the physicochemical and histological properties of shrimp, as well as the structural of myofibrillar proteins (MPs) in shrimp were evaluated. Results indicated that the UST treatment greatly reduced 48.9 % thawing time of frozen shrimp compared to traditional thawing approaches. Meanwhile, the UST effectively decreased the generation of malondialdehyde (MDA), total volatile basic nitrogen (TVB-N), and carbonyl compounds in the thawed shrimps. In addition, it significantly preserved the elasticity and integrity of muscle fiber. Notably, the UST reduced the damage of thawing to the spatial structures of MPs, thereby greatly keeping the stability of protein. All these favorable changes maintained the water holding capacity (WHC) and quality of shrimp. Therefore, the UST is a promising non-thermal thawing technology for aquatic products.
Collapse
Affiliation(s)
- Yufeng Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jinsong Wang
- Institute of Agricultural and Biotechnology, Jingchu Institute of Technology, Hubei, Jingmen 448000, China
| | - Qiao-Hui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| | - Langhong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jing Jing Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Shaojie Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 201306, China
| | - Jiahui Zhu
- China Certification & Inspection Group Ningxia Co., LTD., Yinchuan 750000, Ningxia, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
11
|
da Rosa Pinheiro T, Urquhart CG, Dantas GA, Cargnelutti JF, da Silva RB, de Souza PR, de Oliveira TE, Santos RCV, Iglesias BA. In vitro antimicrobial, antibiofilm photodynamic activity, and molecular dynamic simulations of tetra-cationic porphyrinmembrane interactions against foodborne microorganisms. World J Microbiol Biotechnol 2024; 40:248. [PMID: 38904740 DOI: 10.1007/s11274-024-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 μM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.
Collapse
Affiliation(s)
- Ticiane da Rosa Pinheiro
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Carolina Gonzalez Urquhart
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Gabrielle Aguiar Dantas
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | | | | | - Paulo Ricardo de Souza
- Department of Physics, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | | | | | - Bernardo Almeida Iglesias
- Bioinorganic and Porphyrin Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
12
|
Kaavya R, Rajasekaran B, Shah K, Nickhil C, Palanisamy S, Palamae S, Chandra Khanashyam A, Pandiselvam R, Benjakul S, Thorakattu P, Ramesh B, Aurum FS, Babu KS, Rustagi S, Ramniwas S. Radical species generating technologies for decontamination of Listeria species in food: a recent review report. Crit Rev Food Sci Nutr 2024; 65:1974-1998. [PMID: 38380625 DOI: 10.1080/10408398.2024.2316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.
Collapse
Affiliation(s)
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Suguna Palanisamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Priyamavada Thorakattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Fawzan Sigma Aurum
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
13
|
Zimińska A, Lipska I, Gajewska J, Draszanowska A, Simões M, Olszewska MA. Antibacterial and Antibiofilm Effects of Photodynamic Treatment with Curcuma L. and Trans-Cinnamaldehyde against Listeria monocytogenes. Molecules 2024; 29:685. [PMID: 38338429 PMCID: PMC10856099 DOI: 10.3390/molecules29030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.
Collapse
Affiliation(s)
- Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| | - Izabela Lipska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| | - Joanna Gajewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland;
| | - Manuel Simões
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Magdalena A. Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| |
Collapse
|
14
|
Prasad A, Wynands E, Roche SM, Romo-Bernal C, Allan N, Olson M, Levengood S, Andersen R, Loebel N, Sabino CP, Ross JA. Photodynamic Inactivation of Foodborne Bacteria: Screening of 32 Potential Photosensitizers. Foods 2024; 13:453. [PMID: 38338588 PMCID: PMC10855769 DOI: 10.3390/foods13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The development of novel antimicrobial technologies for the food industry represents an important strategy to improve food safety. Antimicrobial photodynamic disinfection (aPDD) is a method that can inactivate microbes without the use of harsh chemicals. aPDD involves the administration of a non-toxic, light-sensitive substance, known as a photosensitizer, followed by exposure to visible light at a specific wavelength. The objective of this study was to screen the antimicrobial photodynamic efficacy of 32 food-safe pigments tested as candidate photosensitizers (PSs) against pathogenic and food-spoilage bacterial suspensions as well as biofilms grown on relevant food contact surfaces. This screening evaluated the minimum bactericidal concentration (MBC), minimum biofilm eradication concentration (MBEC), and colony forming unit (CFU) reduction against Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas fragi, and Brochothrix thermosphacta. Based on multiple characteristics, including solubility and the ability to reduce the biofilms by at least 3 log10 CFU/sample, 4 out of the 32 PSs were selected for further optimization against S. enterica and MRSA, including sunset yellow, curcumin, riboflavin-5'-phosphate (R-5-P), and erythrosin B. Optimized factors included the PS concentration, irradiance, and time of light exposure. Finally, 0.1% w/v R-5-P, irradiated with a 445 nm LED at 55.5 J/cm2, yielded a "max kill" (upwards of 3 to 7 log10 CFU/sample) against S. enterica and MRSA biofilms grown on metallic food contact surfaces, proving its potential for industrial applications. Overall, the aPDD method shows substantial promise as an alternative to existing disinfection technologies used in the food processing industry.
Collapse
Affiliation(s)
- Amritha Prasad
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Erin Wynands
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Steven M. Roche
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Cristina Romo-Bernal
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicholas Allan
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Merle Olson
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Sheeny Levengood
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Roger Andersen
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicolas Loebel
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Caetano P. Sabino
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo 05508-000, SP, Brazil
| | - Joseph A. Ross
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| |
Collapse
|
15
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue-Light-Emitting Diodes to Control Salmonella Contamination Adhered to Dry Stainless Steel Surfaces. Microorganisms 2024; 12:103. [PMID: 38257930 PMCID: PMC10819507 DOI: 10.3390/microorganisms12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Controlling Salmonella contamination in dry food processing environments represents a significant challenge due to their tolerance to desiccation stress and enhanced thermal resistance. Blue light is emerging as a safer alternative to UV irradiation for surface decontamination. In the present study, the antimicrobial efficacy of ultra-high irradiance (UHI) blue light, generated by light-emitting diodes (LEDs) at wavelengths of 405 nm (841.6 mW/cm2) and 460 nm (614.9 mW/cm2), was evaluated against a five-serovar cocktail of Salmonella enterica dry cells on clean and soiled stainless steel (SS) surfaces. Inoculated coupons were subjected to blue light irradiation treatments at equivalent energy doses ranging from 221 to 1106 J/cm2. Wheat flour was used as a model food soil system. To determine the bactericidal mechanisms of blue light, the intracellular concentration of reactive oxygen species (ROS) in Salmonella cells and the temperature changes on SS surfaces were also measured. The treatment energy dose had a significant effect on Salmonella inactivation levels. On clean SS surfaces, the reduction in Salmonella counts ranged from 0.8 to 7.4 log CFU/cm2, while, on soiled coupons, the inactivation levels varied from 1.2 to 4.2 log CFU/cm2. Blue LED treatments triggered a significant generation of ROS within Salmonella cells, as well as a substantial temperature increase in SS surfaces. However, in the presence of organic matter, the oxidative stress in Salmonella cells declined significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold the antimicrobial effectiveness observed on clean SS. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. These results indicate that LEDs emitting UHI blue light could represent a novel cost- and time-effective alternative for controlling microbial contamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
16
|
Chen HM, Zhou Q, Huang LJ, Lin J, Liu JF, Huang ZY, Zhang RL, Wang JJ, Zhao Y, Wu YN, Yang XF, Wu WL. Curcumin-mediated photodynamic treatment extends the shelf life of salmon (Salmo salar) sashimi during chilled storage: Comparisons of preservation effects with five natural preservatives. Food Res Int 2023; 173:113325. [PMID: 37803636 DOI: 10.1016/j.foodres.2023.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Quan Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Jun Huang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Lin
- Huadu District Center for Disease Control and Prevention, Guangzhou 510803, PR China
| | - Jia-Fei Liu
- Waters Technologies (Shanghai) Limited, Shanghai 200080, PR China
| | - Zi-Yong Huang
- Waters Technologies (Shanghai) Limited, Shanghai 200080, PR China
| | - Rong-Lin Zhang
- Guangxi-Asean Food Inspection Center, Nanning 530007, PR China
| | - Jing-Jing Wang
- School of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yong Zhao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yong-Ning Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| | - Wei-Liang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
17
|
Ye Y, Yan W, Wang T, Zhang C, Wang K, Lu Y, Zheng H, Tao Y, Cao X, He S, Li Y. Dual-channel biosensor for simultaneous detection of S. typhimurium and L. monocytogenes using nanotags of gold nanoparticles loaded metal-organic frameworks. Anal Chim Acta 2023; 1279:341816. [PMID: 37827621 DOI: 10.1016/j.aca.2023.341816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
Simultaneous detection of multiple foodborne pathogens is of great importance for ensuring food safety. Herein, we present a sensitive dual-channel electrochemical biosensor based on copper metal organic frameworks (CuMOF) and lead metal organic framework (PbMOF) for simultaneous detection of Salmonella typhimurium (S. typhimurium) and Listeria monocytogenes (L. monocytogenes). The MOF-based nanotags were prepared by functionalizing gold nanoparticles loaded CuMOF (Au@CuMOF) and PbMOF (Au@PbMOF) with signal DNA sequences 1 (sDNA1) and sDNA2, respectively. By selecting invA of S. typhimurium and inlA gene of L. monocytogenes as targe sequences, a sandwich-typed dual-channel biosensor was developed on glassy carbon electrodes (GCE) through hybridization reactions. The sensitive detection of S. typhimurium and L. monocytogenes was achieved by the direct differential pulse voltametric (DPV) signals of Cu2+ and Pb2+. Under optimal conditions, channel 1 of the biosensor showed linear range for invA gene of S. typhimurium in 1 × 10-14-1 × 10-8 M with low detection limit (LOD) of 3.42 × 10-16 M (S/N = 3), and channel 2 of the biosensor showed linear range for inlA gene of L. monocytogenes in 1 × 10-13-1 × 10-8 M with LOD of 6.11 × 10-15 M (S/N = 3). The dual-channel biosensor showed good selectivity which were used to detect S. typhimurium with linear range of 5-1.0 × 104 CFU mL-1 (LOD of 2.33 CFU mL-1), and L. monocytogenes with linear range of 10 - 1.0 × 104 CFU mL-1 (LOD of 6.61 CFU mL-1).
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Wuwen Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chenlu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kaicheng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuexi Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haisong Zheng
- Technology Center of Hefei Customs District, Hefei, 230022, China
| | - Yunlai Tao
- Anhui Institute of Food and Drug Inspection, Hefei 230051, China
| | - Xiaodong Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yunfei Li
- Technology Center of Hefei Customs District, Hefei, 230022, China.
| |
Collapse
|
18
|
Chen L, Zhao Y, Wu W, Zeng Q, Wang JJ. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Compr Rev Food Sci Food Saf 2023; 22:3814-3846. [PMID: 37530552 DOI: 10.1111/1541-4337.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Weiliang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| |
Collapse
|
19
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
20
|
Cheng S, Li Z, Bai X, Feng J, Su R, Song L, Yang H, Zhan X, Xia X, Lü X, Shi C. The biochemical characteristics of viable but nonculturable state Yersinia enterocolitica induced by lactic acid stress and its presence in food systems. Food Res Int 2023; 170:113024. [PMID: 37316087 DOI: 10.1016/j.foodres.2023.113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The viable but nonculturable (VBNC) state is adopted by many foodborne pathogenic bacteria to survive in adverse conditions. This study found that lactic acid, a widely used food preservative, can induce Yersinia enterocolitica to enter a VBNC state. Y. enterocolitica treated with 2 mg/mL lactic acid completely lost culturability within 20 min, and 10.137 ± 1.693 % of the cells entered a VBNC state. VBNC state cells could be recovered (resuscitated) in tryptic soy broth (TSB), 5 % (v/v) Tween80-TSB, and 2 mg/mL sodium pyruvate-TSB. In the VBNC state of Y. enterocolitica induced by lactic acid, the intracellular adenosine triphosphate (ATP) concentration and various enzyme activities were decreased, and the reactive oxygen species (ROS) level was elevated, compared with uninduced cells. The VBNC state cells were significantly more resistant to heat and simulated gastric fluid than uninduced cells, but their ability to survive in a high-osmotic-pressure environment was significantly less than that of uninduced cells. The VBNC state cells induced by lactic acid changed from long rod-like to short rod-like, with small vacuoles at the cell edges; the genetic material was loosened and the density of cytoplasm was increased. The VBNC state cells had decreased ability to adhere to and invade Caco-2 (human colorectal adenocarcinoma) cells. The transcription levels of genes related to adhesion, invasion, motility, and resistance to adverse environmental stress were downregulated in VBNC state cells relative to uninduced cells. In meat-based broth, all nine tested strains of Y. enterocolitica entered the VBNC state after lactic acid treatment; among these strains, only VBNC state cells of Y. enterocolitica CMCC 52207 and Isolate 36 could not be recovered. Therefore, this study is a wake-up call for food safety problems caused by VBNC state pathogens induced by lactic acid.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingqi Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Zhu X, Yan H, Cui Z, Li H, Zhou W, Liu Z, Zhang H, Manoli T, Mo H, Hu L. Ultrasound-assisted blue light killing Vibrio parahaemolyticus to improve salmon preservation. ULTRASONICS SONOCHEMISTRY 2023; 95:106389. [PMID: 37003214 PMCID: PMC10457575 DOI: 10.1016/j.ultsonch.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Vibrio parahaemolyticus is a typical marine bacterium, which often contaminates seafood and poses a health risk to consumers. Some non-thermal sterilization technologies, such as ultrasonic field (UF) and blue light (BL) irradiation, have been widely used in clinical practice due to their efficiency, safety, and avoidance of drug resistance, but their application in food preservation has not been extensively studied. This study aims to investigate the effect of BL on V. parahaemolyticus in culture media and in ready-to-eat fresh salmon, and to evaluate the killing effectiveness of the UF combined with BL treatment on V. parahaemolyticus. The results showed that BL irradiation at 216 J/cm2 was effective in causing cell death (close to 100%), cell shrinkage and reactive oxygen species (ROS) burst in V. parahaemolyticus. Application of imidazole (IMZ), an inhibitor of ROS generation, attenuated the cell death induced by BL, indicating that ROS were involved in the bactericidal effects of BL on V. parahaemolyticus. Furthermore, UF for 15 min enhanced the bactericidal effect of BL at 216 J/cm2 on V. parahaemolyticus, with the bactericidal rate of 98.81%. In addition, BL sterilization did not affect the color and quality of salmon, and the additive UF treatment for 15 min did not significant impact on the color of salmon. These results suggest that BL or UF combined with BL treatment has potential for salmon preservation, however, it is crucial to strictly control the intensity of BL and the duration of UF treatment to prevent reducing the freshness and brightness of salmon.
Collapse
Affiliation(s)
- Xiaolin Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Han Yan
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; College of Applied Technology, Hezhou University, Hezhou, Guangxi 542899, China
| | - Zhenkun Cui
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Tatiana Manoli
- Department of Meat, Fish and Seafood Technology, Odessa National Academy of Food Technologies, Odessa 65039, Ukraine
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
22
|
Chen Q, Zhang X, Wang Q, Yang J, Zhong Q. The mixed biofilm formed by Listeria monocytogenes and other bacteria: Formation, interaction and control strategies. Crit Rev Food Sci Nutr 2023; 64:8570-8586. [PMID: 37070220 DOI: 10.1080/10408398.2023.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen. It can adhere to food or food contact surface for a long time and form biofilm, which will lead to equipment damage, food deterioration, and even human diseases. As the main form of bacteria to survive, the mixed biofilms often exhibit higher resistance to disinfectants and antibiotics, including the mixed biofilms formed by L. monocytogenes and other bacteria. However, the structure and interspecific interaction of the mixed biofilms are very complex. It remains to be explored what role the mixed biofilm could play in the food industry. In this review, we summarized the formation and influence factors of the mixed biofilm developed by L. monocytogenes and other bacteria, as well as the interspecific interactions and the novel control measures in recent years. Moreover, the future control strategies are prospected, in order to provide theoretical basis and reference for the research of the mixed biofilms and the targeted control measures.
Collapse
Affiliation(s)
- Qingying Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xingguo Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingqing Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jingxian Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
24
|
Li Y, Tan L, Liu F, Li M, Zeng S, Gui Y, Zhao Y, Wang JJ. Effects of soluble Antarctic krill protein-curcumin complex combined with photodynamic inactivation on the storage quality of shrimp. Food Chem 2023; 403:134388. [DOI: 10.1016/j.foodchem.2022.134388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022]
|
25
|
Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers (Basel) 2023; 15:polym15041023. [PMID: 36850306 PMCID: PMC9967877 DOI: 10.3390/polym15041023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A biodegradable photodynamic antibacterial film (PS-CF) was prepared using the casting method, with κ-Carrageenan (κ-Car) as the film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. Chilled pork samples were coated with PS-CF and stored at 4 °C to investigate the effects of PS-CF combined with LED light irradiation (425 nm, 45 min) (PS+L+) on pork preservation during 10 days of storage. The total viable count (TVC) of bacteria, total volatile basic nitrogen value (TVB-N) and the pH of pork treated with PS+L+ were all lower than the control, and the water-holding capacity (WHC) was higher. Ten days later, the TVB-N value was 12.35 ± 0.57 mg/100 g and the TVC value was 5.78 ± 0.17 log CFU/g, which was within the acceptable range. Sensory evaluation determined that the color, odor, and overall acceptability of pork treated with PS+L+ were significantly better than the control. These findings suggest that PS+L+ treatment effectively extended the shelf life of chilled pork from ~4-5 to 10 days. Correlation analysis showed that the sensory quality of the chilled pork significantly correlated with total bacterial counts, TVB-N and thiobarbituric acid reactive substances (TBARS) (p < 0.05), suggesting that these biomarkers could be used as standard indicators for evaluating the freshness of chilled pork. These findings demonstrate the effectiveness of Cur-β-CD photodynamic antibacterial film for the preservation of chilled pork and provide a theoretical basis for the application of the film for the preservation of fresh food in general.
Collapse
|
26
|
An Overview of Potential Natural Photosensitizers in Cancer Photodynamic Therapy. Biomedicines 2023; 11:biomedicines11010224. [PMID: 36672732 PMCID: PMC9855789 DOI: 10.3390/biomedicines11010224] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. There are several different types of cancer recognized thus far, which can be treated by different approaches including surgery, radiotherapy, chemotherapy or a combination thereof. However, these approaches have certain drawbacks and limitations. Photodynamic therapy (PDT) is regarded as an alternative noninvasive approach for cancer treatment based on the generation of toxic oxygen (known as reactive oxygen species (ROS)) at the treatment site. PDT requires photoactivation by a photosensitizer (PS) at a specific wavelength (λ) of light in the vicinity of molecular oxygen (singlet oxygen). The cell death mechanisms adopted in PDT upon PS photoactivation are necrosis, apoptosis and stimulation of the immune system. Over the past few decades, the use of natural compounds as a photoactive agent for the selective eradication of neoplastic lesions has attracted researchers' attention. Many reviews have focused on the PS cell death mode of action and photonanomedicine approaches for PDT, while limited attention has been paid to the photoactivation of phytocompounds. Photoactivation is ever-present in nature and also found in natural plant compounds. The availability of various laser light setups can play a vital role in the discovery of photoactive phytocompounds that can be used as a natural PS. Exploring phytocompounds for their photoactive properties could reveal novel natural compounds that can be used as a PS in future pharmaceutical research. In this review, we highlight the current research regarding several photoactive phytocompound classes (furanocoumarins, alkaloids, poly-acetylenes and thiophenes, curcumins, flavonoids, anthraquinones, and natural extracts) and their photoactive potential to encourage researchers to focus on studies of natural agents and their use as a potent PS to enhance the efficiency of PDT.
Collapse
|
27
|
Chen L, Shi Q, Dong Q, Du Y, Peng Z, Zeng Q, Lin Z, Qiu J, Zhao Y, Wang JJ. Covalent Grafting of 5-Aminolevulinic Acid onto Polylactic Acid Films and Their Photodynamic Potency in Preserving Salmon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:905-919. [PMID: 36548110 DOI: 10.1021/acs.jafc.2c08340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel photodynamic inactivation (PDI)-mediated antimicrobial film of polylactic acid/5-aminolevulinic acid (PLA/ALA) was successfully fabricated by a covalent grafting method using low-temperature plasma. The chemical structure, surface morphology, hydrophilic ability, and mechanical and barrier properties of the films were characterized, and their antibacterial, anti-biofilm potency and preservation effects on ready-to-eat salmon were investigated during storage. Results showed that the amino group of ALA was covalently grafted with the carboxyl group on the surface of PLA after the plasma treatment, with the highest grafting rate reaching ∼50%. The fabricated PLA/ALA films displayed an enhanced barrier ability against water vapor and oxygen. Under blue light-emitting diode illumination, the PLA/ALA films generated massive reactive oxygen species from the endogenous porphyrins in cells induced by ALA and then fatally destroyed the cell wall of planktonic cells and the architectural structures of sessile biofilms of the pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and spoilage bacterium (Shewanella putrefaciens). More importantly, the PDI-mediated PLA/ALA films potently inhibited 99.9% native bacteria on ready-to-eat salmon and significantly suppressed the changes of its drip loss, pH, and lipid oxidation (MDA) during storage, and on this basis, the shelf life of salmon was extended by 4 days compared with that of the commercial polyethylene film. Therefore, the PDI-mediated PLA/ALA films are valid in inactivating harmful bacterial and preserving the quality of seafood.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Qiandai Shi
- School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai200136, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Zihao Lin
- Guang Zhou Institute for Food Inspection, Guangzhou511410, China
| | - Jieer Qiu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| |
Collapse
|
28
|
Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Basic Electrolyzed Water Coupled with Ultrasonic Treatment Improves the Functional Properties and Digestibility of Antarctic Krill Proteins. Food Res Int 2022; 162:112201. [DOI: 10.1016/j.foodres.2022.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
30
|
Pang J, Zhang F, Wang Z, Wu Q, Liu B, Meng X. Inhibitory effect and mechanism of curcumin-based photodynamic inactivation on patulin secretion by Penicillium expansum. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Wang Z, Zeng Q, Wu S, Guo M, Li Z, Xue Y, Xue C, Wang Z, Tang Q. Effects of curcumin‐based photodynamic treatment combined with low‐temperature storage on shelf life and purine content of
Litopenaeus vannamei. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiguang Wang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | | | - Shuangjie Wu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Min Guo
- Hefei Hualing Co. Ltd Hefei City P.R. China
| | - Zhaojie Li
- Laboratory of Food Science and Human Health, College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Yong Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Zhe Wang
- Hefei Hualing Co. Ltd Hefei City P.R. China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| |
Collapse
|
33
|
Sahoo M, Panigrahi C, Aradwad P. Management strategies emphasizing advanced food processing approaches to mitigate food borne zoonotic pathogens in food system. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Monalisa Sahoo
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Chirasmita Panigrahi
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Pramod Aradwad
- Division of Agricultural Engineering Indian Agricultural Research Institute New Delhi India
| |
Collapse
|
34
|
Preparation of chitosan-cellulose-benzyl isothiocyanate nanocomposite film for food packaging applications. Carbohydr Polym 2022; 285:119234. [DOI: 10.1016/j.carbpol.2022.119234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/20/2023]
|
35
|
Zhang L, Zhang M, Devahastin S, Liu K. Fabrication of curcumin encapsulated in casein-ethyl cellulose complexes and its antibacterial activity when applied in combination with blue LED irradiation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Zhang X, Lu N, Li Z, Meng X, Cao W, Xue Y, Xue C, Tang Q. Effects of curcumin-mediated photodynamic treatment on lipid degradation of oysters during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1978-1986. [PMID: 34519034 DOI: 10.1002/jsfa.11536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oyster's lipid degradation leads to a decrease in edible and nutritional value. Curcumin-mediated photodynamic treatment (PDT) is an innovative non-thermal technology, although evaluation of the oyster's lipid degradation has been scarce. In the present study, we investigated peroxide value, thiobarbituric acid reactive substance, triacylglycerol and free fatty acids to evaluate the effect of curcumin-mediated PDT on lipid degradation of oysters during refrigerated storage. RESULTS The results showed that curcumin-mediated PDT could delay oyster's lipid degradation. Next, the activities of enzymes were detected to determine the mechanisms behind the effects of curcumin-mediated PDT. It was revealed that the activities of lipase, phospholipase A2 (PLA2 ), phospholipase C (PLC), phospholipase D (PLD) and lipoxygenase (LOX) were significantly inhibited after curcumin-mediated PDT (P < 0.05). Furthermore, 16 s rRNA analysis established that the relative abundances of Pseudoalteromonas and Psychrilyobacter were reduced by 51.58% and 43.82%, respectively, after curcumin-mediated PDT. CONCLUSION Curcumin-mediated PDT could delay oyster's lipid degradation by inhibiting the activities of lipase, PLA2 , PLC, PLD and LOX, as well as by changing the oyster's microbial composition, reducing the relative abundance of Pseudoalteromonas and Psychrilyobacter. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Na Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wanxiu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
Munir Z, Banche G, Cavallo L, Mandras N, Roana J, Pertusio R, Ficiarà E, Cavalli R, Guiot C. Exploitation of the Antibacterial Properties of Photoactivated Curcumin as ‘Green’ Tool for Food Preservation. Int J Mol Sci 2022; 23:ijms23052600. [PMID: 35269742 PMCID: PMC8910554 DOI: 10.3390/ijms23052600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
In the search for non-chemical and green methods to counteract the bacterial contamination of foods, the use of natural substances with antimicrobial properties and light irradiation at proper light waves has been extensively investigated. In particular, the combination of both techniques, called photodynamic inactivation (PDI), is based on the fact that some natural substances act as photosensitizers, i.e., produce bioactive effects under irradiation. Notably, curcumin is a potent natural antibacterial and effective photosensitizer that is able to induce photodynamic activation in the visible light range (specifically for blue light). Some practical applications have been investigated with particular reference to food preservation from bacterial contaminants.
Collapse
Affiliation(s)
- Zunaira Munir
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
| | - Giuliana Banche
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
| | - Lorenza Cavallo
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
| | - Narcisa Mandras
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
- Correspondence: (N.M.); (E.F.)
| | - Janira Roana
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
| | - Raffaele Pertusio
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
| | - Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
- Correspondence: (N.M.); (E.F.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
| |
Collapse
|
38
|
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants (Basel) 2022; 11:459. [PMID: 35326110 PMCID: PMC8944601 DOI: 10.3390/antiox11030459] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100193, China;
| | - Zhangqi Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Qi M, Liu Q, Liu Y, Yan H, Zhang Y, Yuan Y. Staphylococcus aureus biofilm inhibition by high voltage prick electrostatic field (HVPEF) and the mechanism investigation. Int J Food Microbiol 2022; 362:109499. [PMID: 34906789 DOI: 10.1016/j.ijfoodmicro.2021.109499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
The study was to investigate the inhibitory effect and mechanism of high voltage prick electrostatic field (HVPEF) on Staphylococcus aureus biofilms. Results showed that HVPEF effectively inactivated 24-h and 48-h established S. aureus biofilms, and the effect was verified on different food-contact materials. Confocal laser scanning microscopy and scanning electron microscopy analysis suggested that HVPEF disintegrated the established biofilms by killing the embedded bacteria, but it hardly reduced the bacteria adhesion. HVPEF also effectively inhibit the formation of S. aureus biofilms, the effects varied with electric voltage, treatment time and biofilm culture conditions. The direct effect of HVPEF on planktonic S. aureus was a possible mode of biofilm formation inhibition. HVPEF also suppressed biofilm formation by reducing the release of key compositions of extracellular polymeric substance, including extracellular DNA (eDNA), protein and polysaccharide intercellular adhesion (PIA), and regulating the expression of biofilm formation related genes (icaA, ebh, cidA, sarA, icaR and sigB). We propose HVPEF as a novel method to inhibit bacteria biofilm, based on the results, HVPEF has positive effects to prevent biofilm-associated contamination of S. aureus.
Collapse
Affiliation(s)
- Mengyuan Qi
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qingyan Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Zhang
- College of Physics, Jilin University, Changchun 130062, China.
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
40
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Shi Q, Wang JJ, Chen L, Peng Z, Zeng QH, Zhu Y, Zhao Y. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application. Food Res Int 2022; 151:110847. [PMID: 34980385 DOI: 10.1016/j.foodres.2021.110847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022]
Abstract
Photodynamic inactivation (PDI) is an effective alternative to traditional antibiotics to broadly kill bacteria. This study aimed to develop a potent PDI system by coupling calcinated melamine sponges (CMSs) with the Fenton reaction. The results showed that CMS calcined at 350 ℃ was successfully carbonized with intact and porous structures, and it possessed excellent hydrophilicity and photothermal conversion performance. When Fe2+ was added and internalized, the Fenton reaction in which Fe2+ reacted with H2O2 in cells occurred to produce reactive oxygen species (ROS) (OH, OOH, etc.) and O2, and notably, the O2 molecules could serve as a raw material to absorb the photothermal energy of CMS to generate highly reactive 1O2. Under synergistic effects, CMS-350 coupled with Fe2+ potently inactivated > 6 Log CFU/mL (>99.9999%) of Salmonella under 201.6 J/cm2 blue LED illumination by destroying Na+/K+-ATPase and Ca2+/Mg2+-ATPase, DNA synthesis-related enzymes, cell membranes, etc. Meanwhile, the composite photocatalyst was proven to be nontoxic and could inactivate Salmonella in various foods, including vegetables (Brassica chinensis L), eggs and fresh cucumber juice. As a result, CMS coupled with the Fenton reaction greatly improves the inactivation potency of PDI against harmful bacteria.
Collapse
Affiliation(s)
- Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 350108, China.
| | - Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 350108, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
42
|
Shi YG, Zhu CM, Li DH, Shi ZY, Gu Q, Chen YW, Wang JQ, Ettelaie R, Chen JS. New Horizons in Microbiological Food Safety: Ultraefficient Photodynamic Inactivation Based on a Gallic Acid Derivative and UV-A Light and Its Application with Electrospun Cyclodextrin Nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14961-14974. [PMID: 34843236 DOI: 10.1021/acs.jafc.1c04827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An excellent bactericidal effect of octyl gallate (OG)-mediated photodynamic inactivation (PDI) against foodborne pathogens (Escherichia coli and Staphylococcus aureus) was evaluated in relation to the mode of action. UV-A irradiation (wavelength, 365 nm; irradiance, 8.254 ± 0.18 mW/cm2) of the bacterial suspension containing 0.15 mM OG could lead to a >5-log reduction of viable cell counts within 30 min for E. coli and only 5 min for S. aureus. Reactive oxygen species (ROS) formation was considered the main reason for the bactericidal effect of OG + UV-A light treatment because toxic ROS induced by OG-mediated PDI could attack the cellular wall, proteins, and DNA of microbes. Moreover, the bactericidal effect, as well as the yields of ROS, depended on OG concentrations, irradiation time, and laser output power. Furthermore, we prepared an edible photodynamic antimicrobial membrane comprising electrospun cyclodextrin nanofibers (NFs) by embedding OG. The resultant OG/HPβCD NFs (273.6 μg/mL) under UV-A irradiation for 30 min (14.58 J/cm) could cause a great reduction (>5-log) of viable bacterial counts of E. coli. The in situ photodynamic antibacterial activity of OG/HPβCD NF-based packaging was evaluated during the Chinese giant salamander storage. Overall, this research highlights the dual functionalities (antibacterial and photodynamic properties) of OG as both an antibacterial agent and photosensitizer and the effectiveness of electrospun NFs containing OG as an active antibacterial packaging material for food preservation upon UV light illumination.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Dong-Hui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Ze-Yu Shi
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Jie-Qian Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| |
Collapse
|
43
|
Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A, Valliammai A, Jothi R, Pandian S. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics 2021; 13:2102. [PMID: 34959384 PMCID: PMC8703330 DOI: 10.3390/pharmaceutics13122102] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a yellow-colored molecule derived from the rhizome of Curcuma longa, has been identified as the bioactive compound responsible for numerous pharmacological activities of turmeric, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antidiabetic, etc. Nevertheless, the clinical application of curcumin is inadequate due to its low solubility, poor absorption, rapid metabolism and elimination. Advancements in recent research have shown several components and techniques to increase the bioavailability of curcumin. Combining with adjuvants, encapsulating in carriers and formulating in nanoforms, in combination with other bioactive agents, synthetic derivatives and structural analogs of curcumin, have shown increased efficiency and bioavailability, thereby augmenting the range of applications of curcumin. The scope for incorporating biotechnology and nanotechnology in amending the current drawbacks would help in expanding the biomedical applications and clinical efficacy of curcumin. Therefore, in this review, we provide a comprehensive overview of the plethora of therapeutic potentials of curcumin, their drawbacks in efficient clinical applications and the recent advancements in improving curcumin's bioavailability for effective use in various biomedical applications.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | | | - Pandiyan Muthuramalingam
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Chandran Sivasankar
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India;
| | - Anthonymuthu Selvaraj
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA;
| | - Alaguvel Valliammai
- Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Beersheba 84990, Israel;
| | - Ravi Jothi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India; (A.P.); (P.M.); (R.J.)
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
44
|
Zhang Z, Huang Z, Tong J, Wu Q, Pan Y, Malakar PK, Zhao Y. An outlook for food sterilization technology: targeting the outer membrane of foodborne gram-negative pathogenic bacteria. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
46
|
Shi YG, Jiang L, Lin S, Jin WG, Gu Q, Chen YW, Zhang K, Ettelaie R. Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens. Food Chem 2021; 374:131585. [PMID: 34802804 DOI: 10.1016/j.foodchem.2021.131585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Pseudomonas fluorescens is a Gram-negative spoilage bacterium and dense biofilm producer, causing food spoilage and persistent contamination. Here, we report an ultra-efficient photodynamic inactivation (PDI) system based on blue light (BL) and octyl gallate (OG) to eradicate bacteria and biofilms of P. fluorescens. OG-mediated PDI could lead to a > 5-Log reduction of viable cell counts within 15 min for P. fluorescens. The activity is exerted through rapid penetration of OG towards the cells with the generation of a high-level toxic reactive oxygen species triggered by BL irradiation. Moreover, OG plus BL irradiation can efficiently not only prevent the formation of biofilms but also scavenge the existing biofilms. Additionally, it was shown that the combination of OG/poly(lactic acid) electrospun nanofibers and BL have great potential as antimicrobial packagings for maintaining the freshness of the salamander storge. These prove that OG-mediated PDI can provide a superior platform for eradicating bacteria and biofilm.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Lai Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Gang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
47
|
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry-A Review. Foods 2021; 10:2587. [PMID: 34828868 PMCID: PMC8621587 DOI: 10.3390/foods10112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilms cause problems in the food industry due to their persistence and incompetent hygiene processing technologies. Interest in photodynamic inactivation (PDI) for combating biofilms has increased in recent years. This technique can induce microbial cell death, reduce cell attachment, ruin biofilm biomolecules and eradicate structured biofilms without inducing microbial resistance. This review addresses microbial challenges posed by biofilms in food environments and highlights the advantages of PDI in preventing and eradicating microbial biofilm communities. Current findings of the antibiofilm efficiencies of this technique are summarized. Additionally, emphasis is given to its potential mechanisms and factors capable of influencing biofilm communities, as well as promising hurdle strategies.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Emmanuel Kyere
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
48
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
49
|
Liu D, Gu W, Wang L, Sun J. Photodynamic inactivation and its application in food preservation. Crit Rev Food Sci Nutr 2021; 63:2042-2056. [PMID: 34459290 DOI: 10.1080/10408398.2021.1969892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Food incidents caused by various foodborne pathogenic bacteria are posing a major threat to human health. The traditional thermal and chemical-based procedures applied for microbial control in the food industry cause adverse effects on food quality and bacterial resistance. As a new means of innovative sterilization technology, photodynamic inactivation (PDI) has gained significant attention due to excellent sterilization effect, environmental friendliness, safety, and low cost. This review analyses new developments in recent years for PDI systems applied to the food preservation. The fundamentals of photosensitization mechanism, the development of photosensitizers and light source selection are discussed. The application of PDI in food preservation are presented, with the main emphasis on the natural photosensitizers and its application to inactivate in vitro and in vivo microorganisms in food matrixes such as fresh vegetable, fruits, seafood, and poultry. The challenges and future research directions facing the application of this technology to food systems have been proposed. This review will provide reference for combating microbial contamination in food industry.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| |
Collapse
|
50
|
Yang W, Wang Z, Li Q, Jia Y, Song S, Ma Z, Liu J, Wang J. Photodynamic Inactivation Using Natural Bioactive Compound Prevents and Disrupts the Biofilm Produced by Staphylococcus saprophyticus. Molecules 2021; 26:molecules26164713. [PMID: 34443301 PMCID: PMC8399054 DOI: 10.3390/molecules26164713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Staphylococcus saprophyticus, the food-borne bacteria present in dairy products, ready-to-eat food and environmental sources, has been reported with antibiotic resistance, raising concerns about food microbial safety. The antimicrobial resistance of S. saprophyticus requires the development of new strategies. Light- and photosensitizer-based antimicrobial photodynamic inactivation (PDI) is a promising approach to control microbial contamination, whereas there is limited information regarding the effectiveness of PDI on S. saprophyticus biofilm control. In this study, PDI mediated by natural bioactive compound (curcumin) associated with LED was evaluated for its potential to prevent and disrupt S. saprophyticus biofilms. Biofilms were treated with curcumin (50, 100, 200 µM) and LED fluence (4.32 J/cm2, 8.64 J/cm2, 17.28 J/cm2). Control groups included samples treated only with curcumin or light, and samples received neither curcumin nor light. The action was examined on biofilm mass, viability, cellular metabolic activity and cytoplasmic membrane integrity. PDI using curcumin associated with LED exhibited significant antibiofilm activities, inducing biofilm prevention and removal, metabolic inactivation, intracellular membrane damage and cell death. Likewise, scanning electronic microscopy observations demonstrated obvious structural injury and morphological alteration of S. saprophyticus biofilm after PDI application. In conclusion, curcumin is an effective photosensitizer for the photodynamic control of S. saprophyticus biofilm.
Collapse
Affiliation(s)
- Wei Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
- College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
- Correspondence: (Z.W.); (J.W.)
| | - Qing Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
| | - Yating Jia
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
| | - Shuimiao Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
| | - Zichu Ma
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (W.Y.); (Q.L.); (Y.J.); (S.S.); (Z.M.); (J.L.)
- Correspondence: (Z.W.); (J.W.)
| |
Collapse
|