1
|
Ju Y, Liu H, Niu S, Kang L, Ma L, Li A, Zhao Y, Yuan Y, Zhao D. Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition. Food Chem 2025; 467:142286. [PMID: 39642418 DOI: 10.1016/j.foodchem.2024.142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five cultivars in two regions between 2020 and 2022, which was based on 67 indices, including nutrients, bioactives, elements and stable isotopes. Twelve variables (fructose, δ2H, glucose, tartaric acid, Mo, Na, Sr, His, Phe, Mn, Lys and Rb) were selected to refine models that could distinguish Lycium barbarum origin without being impacted by cultivar or year. The model of training set and testing set samples had discrimination rates of 100 % and 94.71 % to 98.28 %, suggesting an optimized multi-variate analysis strategy using OPLS-DA model could correctly predict the origin of blind Lycium barbarum samples. This study provides new evidence for constructing a reliable traceability model for the geographical origins of Lycium barbarum.
Collapse
Affiliation(s)
- Yanjun Ju
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Hejiang Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Shuhui Niu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Lu Kang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Lei Ma
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - An Li
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuwei Yuan
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Duoyong Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China.
| |
Collapse
|
2
|
Lee A, Kwon J, Ahn SJ, Lee J, Kim HJ. Geographical differentiation between South Korean and Chinese onions using stable isotope ratios and mineral content analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:281-292. [PMID: 39836815 DOI: 10.1080/19440049.2025.2451629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Geographical origin authentication of onions has become significant owing to origin labelling fraud in South Korea. Various analytical techniques based on stable isotope ratios, organic and inorganic constituents, or their combinations, can distinguish agricultural products geographically. However, studies on the geographical classification of South Korean and Chinese onions using stable isotopes and minerals remain scarce. This study aimed to discriminate geographically between South Korean and Chinese onions using stable isotope ratios (δ13C, δ15N, and δ34S) and mineral contents (K, Ca, Mg, Na, P, Fe, Zn, Mn, Cu, and Sr) combined with multivariate statistical analysis. Fifty-eight onion samples cultivated in South Korea and China were collected in 2023. The two stable isotope ratios (δ15N and δ34S) and six minerals (K, Ca, Na, Fe, Zn, and Sr) significantly differed between these onions. These variables were applied in orthogonal partial least squares discriminant analysis to classify the onion samples regionally. The predictive ability and goodness-of-fit parameters (R2X and R2Y) were 0.671, 0.383, and 0.677, respectively. K, Sr, δ34S, and Na served as potential markers contributing to the classification. Therefore, stable isotopes and mineral elements may serve as effective indicators for the geographical discrimination of South Korean and Chinese onion samples using multivariate analyses.
Collapse
Affiliation(s)
- Ayoung Lee
- Forensic Toxicology Division, National Forensic Service, Wonju, South Korea
| | - Jeongeun Kwon
- Forensic Toxicology Division, National Forensic Service, Wonju, South Korea
| | - Su-Jin Ahn
- Forensic Toxicology Division, National Forensic Service, Wonju, South Korea
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Jaesin Lee
- Forensic Toxicology Division, National Forensic Service, Wonju, South Korea
| | - Hyung Joo Kim
- Forensic Toxicology Division, National Forensic Service, Wonju, South Korea
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
3
|
Jang HY, Kim MJ, Jeong JY, Hwang IM, Lee JH. Exploring the influence of garlic on microbial diversity and metabolite dynamics during kimchi fermentation. Heliyon 2024; 10:e24919. [PMID: 38312694 PMCID: PMC10835354 DOI: 10.1016/j.heliyon.2024.e24919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Garlic (Allium sativum) is a key ingredient in Korean cuisine, particularly in the preparation of kimchi, contributing to its flavor and taste. Garlic has been a potential resource for lactic acid bacteria (LAB) in kimchi. However, the mechanism by which it influences microbial diversity and metabolite production is unclear. This study investigated the effect of garlic on the bacterial composition of and metabolite changes in kimchi. To achieve this, four separate batches of kimchi were prepared with varying garlic concentrations (w/w): 0 %, 1 %, 2 %, and 4 %, and the bacterial communities and metabolite production were monitored. In the early stages of fermentation, the count of LAB, operational taxonomic units (OTUs), and Shannon index increased linearly with the increase in garlic content. This indicated that garlic is a rich resource and contributes to the diversity of LAB during kimchi fermentation. Compared with the kimchi samples with a lower garlic content, those with a high garlic content (≥2 %) exhibited increased abundance of Lactobacillus and Leuconostoc as well as noticeable differences in functional diversity, including carbohydrate, amino acid, and energy metabolisms. Correlation analysis between sugars, organic acids, and predominant LAB in the garlic-containing kimchi samples suggested that in kimchi samples with high garlic content, LAB played a significant role in the fermentation process by metabolizing sugars and producing organic acids. Overall, this study demonstrated that the addition of garlic has a positive impact on the bacterial diversity and metabolite production during kimchi fermentation, potentially affecting the fermentation process and flavor profile of kimchi.
Collapse
Affiliation(s)
- Ha-Young Jang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
4
|
Cui YW, Liu LX, Zhang LY, Liu J, Gao CJ, Liu YG. Geographical differentiation of garlic based on HS-GC-IMS combined with multivariate statistical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:465-473. [PMID: 38167895 DOI: 10.1039/d3ay01802d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Garlic is famous for its unique flavor and health benefits. An effective means of authenticating garlic's origin is through the implementation of the Protected Geographical Indication (PGI) scheme. However, the prevalence of fraudulent behavior raises concerns regarding the reliability of this system. In this study, garlic samples from six distinct production areas (G1: Cangshan garlic, G2: Qixian garlic, G3: Dali single clove garlic, G4: Jinxiang garlic, G5: Yongnian garlic, and G6: Badong garlic) underwent analysis using HS-GC-IMS. A total of 26 VOCs were detected in the samples. The differences in VOCs among the different garlic samples were visually presented in a two-dimensional topographic map and fingerprint map. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to demonstrate the capacity of the HS-GC-IMS method for effectively distinguishing garlic samples from different geographical sources. Further screening based on the p-value and VIP score threshold identified 12 different aroma substances, which can be utilized for the identification of garlic from different producing areas. The fusion of HS-GC-IMS with multivariate statistical analysis proved to be a rapid, intuitive, and efficient approach for identifying and categorizing garlic VOCs, offering a novel strategy for ascertaining garlic origin and ensuring quality control.
Collapse
Affiliation(s)
- Ya-Wei Cui
- College of Life Sciences, Linyi University, Linyi, Shandong 276000, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830002, China
| | - Ling-Xiao Liu
- Linyi Academy of Agricultural Sciences, Linyi, Shandong 276000, China
| | - Le-Yi Zhang
- Shandong Medical College, Linyi, Shandong 276000, China
| | - Jun Liu
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830002, China
| | - Cui-Juan Gao
- College of Life Sciences, Linyi University, Linyi, Shandong 276000, China.
| | - Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi, Shandong 276000, China.
| |
Collapse
|
5
|
Sim KS, Kim H, Hur SH, Na TW, Lee JH, Kim HJ. Geographical origin discriminatory analysis of onions: Chemometrics methods applied to ICP-OES and ICP-MS analysis. Food Res Int 2024; 175:113676. [PMID: 38129025 DOI: 10.1016/j.foodres.2023.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Geographical origin is an important determinant of agricultural product quality and safety. Herein, inductively coupled plasma (ICP) analysis was applied to determine the inorganic elemental content of onions and identify their geographical origin (Korean or Chinese). Chemometric, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least square discriminant analysis (OPLS-DA) were applied to the ICP results. OPLS-DA distinguished each group, and 17 elements with variable importance in projection (VIP) values of ≥ 1 were selected. The receiver operating characteristic (ROC) curve had an area under the curve (AUC) of 1, indicating excellent discriminatory power. Differences in elemental content between groups were visually observed in a heatmap, and the country of origin was determined with 100% accuracy using canonical discriminant analysis (CDA). This method accurately distinguishes between Korean and Chinese onions and is expected to be beneficial for identifying agricultural products.
Collapse
Affiliation(s)
- Kyu Sang Sim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Hyoyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Suel Hye Hur
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Tae Woong Na
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Ji Hye Lee
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea.
| |
Collapse
|
6
|
Sunanta P, Kontogiorgos V, Pankasemsuk T, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Sommano SR. The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Front Nutr 2023; 10:1142784. [PMID: 37560057 PMCID: PMC10409574 DOI: 10.3389/fnut.2023.1142784] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Garlic, a common culinary spice, is cultivated and used around the globe. Consumption of garlic and its supplements reduces the risk of diabetes and cardiovascular disease and boosts the immune system with antibacterial, antifungal, anti-aging, and anti-cancer properties. Diallyl sulfide, diallyl disulfide, triallyl trisulfide, phenolics, flavonoids, and others are the most commercially recognized active ingredients in garlic and its products. In recent years, global demand for medicinal or functional garlic has surged, introducing several products such as garlic oil, aged garlic, black garlic, and inulin into the market. Garlic processing has been demonstrated to directly impact the availability of bioactive ingredients and the functionality of products. Depending on the anticipated functional qualities, it is also recommended that one or a combination of processing techniques be deemed desirable over the others. This work describes the steps involved in processing fresh garlic into products and their physicochemical alterations during processing. Their nutritional, phytochemical, and functional properties are also reviewed. Considering the high demand for functional food, this review has been compiled to provide guidance for food producers on the industrial utilization and suitability of garlic for new product development.
Collapse
Affiliation(s)
- Piyachat Sunanta
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Vassilis Kontogiorgos
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tanachai Pankasemsuk
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Hur SH, Kim S, Kim H, Jeong S, Chung H, Kim YK, Kim HJ. Geographical discrimination of dried chili peppers using femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fsLA-ICP-MS). Curr Res Food Sci 2023; 6:100532. [PMID: 37377492 PMCID: PMC10290993 DOI: 10.1016/j.crfs.2023.100532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
This study presents a method for discriminating the geographical origin of dried chili peppers using femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fsLA-ICP-MS) and multivariate analysis, such as orthogonal partial least squares discriminant analysis (OPLS-DA), heatmap analysis, and canonical discriminant analysis (CDA). Herein, 102 samples were analyzed for the content of 33 elements using optimized conditions of 200 Hz (repetition rate), 50 μm (spot size), and 90% (energy). Significant differences in count per second (cps) values of the elements were observed between domestic and imported peppers, with variations of up to 5.66 times (133Cs). The OPLS-DA model accuracy achieved an R2 of 0.811 and a Q2 of 0.733 for distinguishing dried chili peppers of different geographical origins. The variable importance in projection (VIP) and s-plot identified elements 10 and 3 as key to the OPLS-DA model, and in the heatmap, six elements were estimated to be significant in discriminating between domestic and imported samples. Furthermore, CDA showed a high accuracy of 99.02%. This method can ensure food safety for consumers, and accurately determine the geographic origin of agricultural products.
Collapse
Affiliation(s)
- Suel Hye Hur
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Seyeon Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Hyoyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Seongsoo Jeong
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong-Kyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| |
Collapse
|
8
|
Rapa M, Ferrante M, Rodushkin I, Paulukat C, Conti ME. Venetian Protected Designation of origin wines traceability: Multi-elemental, isotopes and chemometric analysis. Food Chem 2023; 404:134771. [DOI: 10.1016/j.foodchem.2022.134771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
|
9
|
Bui MQ, Quan TC, Nguyen QT, Tran-Lam TT, Dao YH. Geographical origin traceability of Sengcu rice using elemental markers and multivariate analysis. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:177-190. [PMID: 35722667 DOI: 10.1080/19393210.2022.2070932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Multi-element analysis combined with chemometric method has been used to investigate the distinguish between Sengcu rice and other types of rice origins in Vietnam. In Sengcu rice, As, Ba Sr, Pb, Ca, Se were confirmed as the key elements for geographical traceability among three fields of Lao Cai, whereas Al, Ca, Fe, Mg, Ag, As were major factors to distinguish between Sengcu and other types of rice. Based on linear discriminant analysis and partial least squares-discriminant analysis model, overall correct identification rates distinguishing between Sengcu and other types of rice were approximately 100% in both training and validation test. Moreover, to distinguish geographical origin of Sengcu rice samples, these rates vary from 80% to 99%. These results suggest the presence of food adulteration illustrated in the latter.
Collapse
Affiliation(s)
- Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thuy Cam Quan
- Department of Analytical Chemistry, Faculty of Chemistry, Viet Tri University of Industry, Phu Tho, Vietnam
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thanh-Thien Tran-Lam
- Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
10
|
Lu Z, Hai C, Yan S, Xu L, Lu D, Sou Y, Chen H, Yang X, Fu H, Yang J. Chemistry Combining Elemental Profile, Stable Isotopic Ratios, and Chemometrics for Fine Classification of a Chinese Herb Licorice ( Glycyrrhiza uralensis Fisch.) from 37 Producing Area. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8906305. [PMID: 36032189 PMCID: PMC9410990 DOI: 10.1155/2022/8906305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
A method based on elemental fingerprint, stable isotopic analysis and combined with chemometrics was proposed to trace the geographical origins of Licorice (Glycyrrhiza uralensis Fisch) from 37 producing areas. For elemental fingerprint, the levels of 15 elements, including Ca, Cu, Mg, Pb, Zn, Sr, Mn, Se, Cd, Fe, Na, Al, Cr, Co, and K, were analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Three stable isotopes, including δ 13C, δ 15N, and δ 18O, were measured using an isotope-ratio mass spectrometer (IRMS). For fine classification, three multiclass strategies, including the traditional one-versus-rest (OVR) and one-versus-one (OVO) strategies and a new ensemble strategy (ES), were combined with two binary classifiers, partial least squares discriminant analysis (PLSDA) and least squares support vector machines (LS-SVM). As a result, ES-PLSDA and ES-LS-SVM achieved 0.929 and 0.921 classification accuracy of GUF samples from the 37 origins. The results show that element fingerprint and stable isotope combined with chemometrics is an effective method for GUF traceability and provides a new idea for the geographical traceability of Chinese herbal medicine.
Collapse
Affiliation(s)
- Zhongying Lu
- Department of Food Engineering, Guizhou Vocational College of Foodstuff Engineering, Guiyang 551400, China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Simin Yan
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201114, China
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Daowang Lu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Yixin Sou
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China
| |
Collapse
|
11
|
Muñoz-Redondo J, Bertoldi D, Tonon A, Ziller L, Camin F, Moreno-Rojas J. Multi-element and stable isotopes characterization of commercial avocado fruit (Persea americana Mill) with origin authentication purposes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Application of stable isotopic and elemental composition combined with random forest algorithm for the botanical classification of Chinese honey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Chemometric origin classification of Chinese garlic using sulfur-containing compounds, assisted by stable isotopes and bioelements. Food Chem 2022; 394:133557. [PMID: 35759834 DOI: 10.1016/j.foodchem.2022.133557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Geographical origin discrimination of agro-products is essential to guarantee food safety and fair trade. Garlic samples cultivated in six provinces or major production regions in China were characterized for stable isotopes (δ13C, δ2H, δ18O, δ15N, and δ34S), bioelemental contents (% C, % N and % S), and sulfur-containing compounds (8 organosulfur components and 2 amino acids). Results showed that many of the 18 analyzed garlic variables had significant differences among production regions. Some sulfur-containing compounds found in garlic from different provinces had a strong correlation with sulfur isotopes, suggesting garlic sulfur isotopes were also affected by geographical origin. Two supervised pattern recognition models (PLS-DA and k-NN) were developed using stable isotopes, elemental contents, and sulfur-containing compounds, and had a discrimination accuracy of 93.4 % and 87.8 %, respectively. Chemometric classification models using multi-isotopes, elements and sulfur-containing compounds provides a useful method to authenticate Chinese garlic origins.
Collapse
|
14
|
Stable isotope and multi-element profiling of Cassiae Semen tea combined with chemometrics for geographical discrimination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Liang K, Zhu H, Zhao S, Liu H, Zhao Y. Determining the geographical origin of flaxseed based on stable isotopes, fatty acids and antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:673-679. [PMID: 34213038 DOI: 10.1002/jsfa.11396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flaxseed is an economically important oilseed crop whose geographic origin is of significant interest to producers and consumers because every region may exhibit particular quality characteristics. The lipid/fatty acid method of determining the geographic origin of flaxseed has not been found to be adequate. RESULTS To improve the discrimination rate and the geographical traceability of this crop, the chemical profiles of the flaxseed samples were characterized via lipids/fatty acids, stable isotopes, and antioxidant capacity. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were also performed. A satisfactory discrimination rate of 98.6% was obtained after combining fatty acids, stable isotopes, and antioxidant capacity to trace the origin of flaxseed from five regions in northern China. CONCLUSION This study provides an effective method for distinguishing the geographic origin of flaxseed. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture, Beijing, China
| | - Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijin Liu
- Tibet Autonomous Region Agricultural and Livestock Product Quality and Safety Inspection Testing Center, Lhasa, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Organosulfur volatile profiles in Italian red garlic (Allium Sativum L.) varieties investigated by HS-SPME/GC-MS and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Choi SH, Shin WJ, Bong YS, Lee KS. Determination of the geographic origin of garlic using the bioelement content and isotope signatures. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zhang J, Yang R, Li YC, Ni X. The Role of Soil Mineral Multi-elements in Improving the Geographical Origin Discrimination of Tea (Camellia sinensis). Biol Trace Elem Res 2021; 199:4330-4341. [PMID: 33409909 DOI: 10.1007/s12011-020-02527-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
The combination of mineral multi-elements with chemometrics can effectively trace the geographical origin of tea (Camellia sinensis). However, the role of soil mineral multi-elements in discriminating the origin of tea was unknown. This study aimed to further validate whether the geographical origin of tea can be authenticated based on mineral multi-elements, the concentrations of which in tea leaves were significantly correlated with those in soil. Eighty-seven tea leaves samples and paired soils from Meitan and Fenggang (MTFG), Anshun, and Leishan in China were sampled, and 24 mineral elements were measured. The data were processed using one-way analysis of variance (ANOVA), Pearson correlation analysis, principal component analysis (PCA), and stepwise linear discriminant analysis (SLDA). Results indicated that tea and soil samples from different origins differed significantly (p < 0.05) in terms of most mineral multi-elemental concentrations. Conversely, the intra-regional differences of different cultivars of the same origin were relatively minor. Seventeen mineral elements in tea leaves were significantly correlated with those in soils. The SLDA model, based on the 17 aforementioned elements, produced a 98.85% accurate classification rate. In addition, the origin was also identified satisfactorily with 94.25% accuracy when considering the cultivar effect. In conclusion, the tea plant cultivars unaffected the accuracy of the discrimination rate. The geographical origin of tea could be authenticated based on the mineral multi-elements with significant correlation between tea leaves and soils. Soil mineral multi-elements played an important role in identifying the geographical origin of tea.
Collapse
Affiliation(s)
- Jian Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ruidong Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | - Xinran Ni
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
19
|
Origin verification of imported infant formula and fresh milk into China using stable isotope and elemental chemometrics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Fu H, Wei L, Chen H, Yang X, Kang L, Hao Q, Zhou L, Zhan Z, Liu Z, Yang J, Guo L. Combining stable C, N, O, H, Sr isotope and multi-element with chemometrics for identifying the geographical origins and farming patterns of Huangjing herb. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Lee HS, Shim JY, Shin WJ, Choi SH, Bong YS, Lee KS. Dietary homogenization and spatial distributions of carbon, nitrogen, and sulfur isotope ratios in human hair in South Korea. PLoS One 2021; 16:e0256404. [PMID: 34415968 PMCID: PMC8378694 DOI: 10.1371/journal.pone.0256404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Dietary homogenization has progressed worldwide due to westernization and the globalization of food production systems. We investigated dietary heterogeneity in South Korea by examining the spatial distribution of carbon (C), nitrogen (N), and sulfur (S) isotope ratios using 264 human hair samples. Overall, variation in isotope values was small, indicating low dietary heterogeneity. We detected differences in δ13C, δ15N, and δ34S values between administrative provinces and metropolitan cities; inter-regional differences were typically < 1 ‰. Values of δ34S were significantly lower in hair samples from inland regions relative to those from coastal locations, and a similar pattern was observed in δ15N values. Understanding geographic variation in δ34S and δ15N values in human hair is useful for provenancing humans in South Korea.
Collapse
Affiliation(s)
- Han-Seul Lee
- Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute, Cheongju-si, Chungbuk, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Yu Shim
- Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute, Cheongju-si, Chungbuk, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Woo-Jin Shin
- Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute, Cheongju-si, Chungbuk, Republic of Korea
| | - Seung-Hyun Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju-si, Chungbuk, Republic of Korea
| | - Yeon-Sik Bong
- Center for Research Equipment, Korea Basic Science Institute, Cheongju-si, Chungbuk, Republic of Korea
| | - Kwang-Sik Lee
- Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute, Cheongju-si, Chungbuk, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Zhou X, Wu H, Pan J, Chen H, Jin B, Yan Z, Xie L, Rogers KM. Geographical traceability of south-east Asian durian: A chemometric study using stable isotopes and elemental compositions. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Cuchet A, Anchisi A, Telouk P, Yao Y, Schiets F, Fourel F, Clément Y, Lantéri P, Carénini E, Jame P, Casabianca H. Multi-element (13C, 2H and 34S) bulk and compound-specific stable isotope analysis for authentication of Allium species essential oils. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Li C, Wang Q, Shao S, Chen Z, Nie J, Liu Z, Rogers KM, Yuan Y. Stable Isotope Effects of Biogas Slurry Applied as an Organic Fertilizer to Rice, Straw, and Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8090-8097. [PMID: 34279098 DOI: 10.1021/acs.jafc.1c01740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biogas slurry (BS) is now increasingly used for organic rice production in China. However, the isotopic response and fractionation of different BS application rates to characterize organic rice cultivation have not yet been investigated. In this study, different fertilizer treatments were applied to rice paddy soil including urea, BS with five different application rates and a control with no fertilizer added. Multiproxy analyses (% C, % N, δ13C, δ15N, δ2H, and δ18O) of rice, rice straw, and soil were undertaken using elemental analyzer-isotope ratio mass spectrometry. Rice, straw, and soil showed only minor isotopic and elemental variations across all fertilizer treatments except for δ15N. δ15N values of rice and straw became more positive (+6.1 to +11.2‰ and +6.1 to +12.2‰, respectively) with increasing BS application rates and became more negative with urea fertilization (+2.8 and +3.0‰, respectively). The soil had more positive δ15N values after BS application but showed no significant change with different application rates. No obvious δ15N isotopic differences were found between the control soil and soils fertilized with urea. 15N fractionation was observed between rice, straw, and soil (Δrice-soil -2.0 to +4.3‰, Δstraw-soil -1.9 to +5.3‰) and their isotopic values were strongly correlated to each other (r > 0.94, p < 0.01). Results showed that % C, % N, δ13C, δ2H, and δ18O in rice displayed only minor variations for different fertilizers. However, δ15N values increased in response to BS application, confirming that BS leaves an enriched 15N isotopic marker in soil, straw, and rice, indicating its organically cultivated status. Results from this study will enhance the stable isotope δ15N databank for assessing organic practices using different fertilizer sources.
Collapse
Affiliation(s)
- Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, P.R. China, Hangzhou 310021, China
| | - Qiang Wang
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, P.R. China, Hangzhou 310021, China
| | - Zhaoming Chen
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, P.R. China, Hangzhou 310021, China
| | - Zhi Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Karyne M Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, P.R. China, Hangzhou 310021, China
| |
Collapse
|
25
|
Xu L, Hai C, Yan S, Wang S, Du S, Chen H, Yang J, Fu H. Classification of organic and ordinary kiwifruit by chemometrics analysis of elemental fingerprint and stable isotopic ratios. J Food Sci 2021; 86:3447-3456. [PMID: 34289111 DOI: 10.1111/1750-3841.15836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
Elemental fingerprint, stable isotopic analysis, and chemometrics were combined to identify organic kiwifruit from ordinarily cultivated kiwifruit. Samples of organic (n1 = 78) and ordinary kiwifruit (n2 = 85) were collected from neighboring areas. For elemental fingerprint, the contents of 15 elements in fresh fruits, including Al, Cr, Mg, Pb, Zn, Ca, Cu, Mn, Se, Cd, Fe, Na, Sr, Co, and K, were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Three stable isotopes, including δ13 C, δ15 N, and δ18 O, were analyzed using an isotope-ratio mass spectrometer (IRMS). Different classification methods including soft independent modeling of class analogy (SIMCA), partial least squares discriminant analysis (PLSDA), and least squares support vector machines (LS-SVM), were used to discriminate the organic and ordinary kiwifruits by fusion of elemental and stable isotopic. As a result, the sensitivity, specificity, and overall accuracy of SIMCA model were 0.885, 0.857, and 0.864, respectively. PLSDA and LS-SVM obtained 0.950 and 0.983 classification accuracy of organic and ordinary kiwifruits, respectively. It was demonstrated that elemental fingerprint and stable isotopic analysis would provide useful chemical information for the identification of organic fruits, and the capacity of these methods could be enhanced by chemometrics. PRACTICAL APPLICATION: The classification of kiwifruit usually relies on the label assigned by the merchant, which is prone to deceive consumers. This research has developed an accurate and effective classification method based on stable isotopes and mineral elements for the identification of ordinary kiwifruit and organic kiwifruit, providing a tool for the quality monitoring of organic food.
Collapse
Affiliation(s)
- Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren, P.R. China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan, P.R. China
| | - Simin Yan
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, P.R. China
| | - Shuo Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan, P.R. China
| | - Shijie Du
- College of Material and Chemical Engineering, Tongren University, Tongren, P.R. China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan, P.R. China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, P.R. China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan, P.R. China
| |
Collapse
|
26
|
Nie J, Shao S, Zhang Y, Li C, Liu Z, Rogers KM, Wu MC, Lee CP, Yuan Y. Discriminating protected geographical indication Chinese Jinxiang garlic from other origins using stable isotopes and chemometrics. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Kang X, Zhao Y, Liu W, Ding H, Zhai Y, Ning J, Sheng X. Geographical traceability of sea cucumbers in China via chemometric analysis of stable isotopes and multi-elements. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Wang Z, Erasmus SW, van Ruth SM. Preliminary Study on Tracing the Origin and Exploring the Relations between Growing Conditions and Isotopic and Elemental Fingerprints of Organic and Conventional Cavendish Bananas ( Musa spp.). Foods 2021; 10:foods10051021. [PMID: 34066664 PMCID: PMC8151364 DOI: 10.3390/foods10051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
The stable isotopic ratios and elemental compositions of 120 banana samples, Musa spp. (AAA Group, Cavendish Subgroup) cultivar Williams, collected from six countries (Colombia, Costa Rica, Dominica Republic, Ecuador, Panama, Peru), were determined by isotope ratio mass spectrometry and inductively coupled plasma mass spectrometry. Growing conditions like altitude, temperature, rainfall and production system (organic or conventional cultivation) were obtained from the sampling farms. Principal component analysis (PCA) revealed separation of the farms based on geographical origin and production system. The results showed a significant difference in the stable isotopic ratios (δ13C, δ15N, δ18O) and elemental compositions (Al, Ba, Cu, Fe, Mn, Mo, Ni, Rb) of the pulp and peel samples. Furthermore, δ15N was found to be a good marker for organically produced bananas. A correlation analysis was conducted to show the linkage of growing conditions and compositional attributes. The δ13C of pulp and peel were mainly negatively correlated with the rainfall, while δ18O was moderately positively (R values ~0.5) correlated with altitude and temperature. A moderate correlation was also found between temperature and elements such as Ba, Fe, Mn, Ni and Sr in the pulp and peel samples. The PCA results and correlation analysis suggested that the differences of banana compositions were combined effects of geographical factors and production systems. Ultimately, the findings contribute towards understanding the compositional differences of bananas due to different growing conditions and production systems linked to a defined origin; thereby offering a tool to support the traceability of commercial fruits.
Collapse
Affiliation(s)
- Zhijun Wang
- Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.)
| | - Sara W. Erasmus
- Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.)
| | - Saskia M. van Ruth
- Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.)
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
- Correspondence: ; Tel.: +31-(0)317480250
| |
Collapse
|
29
|
Pereira HV, Pinto FG, Dos Reis MR, Garret TJ, Augusti R, Sena MM, Piccin E. A fast and effective approach for the discrimination of garlic origin using wooden-tip electrospray ionization mass spectrometry and multivariate classification. Talanta 2021; 230:122304. [PMID: 33934771 DOI: 10.1016/j.talanta.2021.122304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
This paper presents the combination of wooden-tip electrospray ionization mass spectrometry (WTESI-MS) and multivariate pattern recognition methods (principal component analysis, PCA and partial least squares discriminant analysis, PLS-DA) for the rapid and reliable discrimination, via chemical fingerprints, of garlic origin. A total of 312 garlic samples grown in different countries (Brazil, China, Argentina, Spain, and Chile) were studied. The methodology was based on a direct sampling approach, which relies on loading the sample by penetrating the garlic cloves with a pre-wetted wooden tip, followed by direct prompt analysis by WTESI-MS. Thus, no sample preparation is needed, which prevents the degradation of important metabolites and increases the analytical throughput. Parameters that affects the WTESI were optimized and the best performance in terms of signal stability and intensity was achieved using the positive ion mode. Most of the ions in WTESI mass spectra were assigned to amino acids, sugars, organosulfur compounds, and lipids. The discriminative model showed good performance (accuracy rates between 81.9% and 98.6%) and enabled identifying diagnostic ions for garlic samples from different origins. The differentiation and classification of garlic origin is of major importance as this food flavoring product is widely consumed, with worldwide trade representing billions of dollars every year, and is very often the subject of fraud.
Collapse
Affiliation(s)
- Hebert V Pereira
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Frederico G Pinto
- Department of Chemistry, Institute of Exact Sciences, Federal University of Viçosa, 38810-000, Rio Paranaíba, MG, Brazil
| | - Marcelo R Dos Reis
- Department of Crop Production, Institute of Agricultural Sciences, Federal University of Viçosa, Rio Paranaíba, MG, Brazil
| | - Timothy J Garret
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, 32608, Gainesville, FL, USA
| | - Rodinei Augusti
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Marcelo M Sena
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Bioanalytics, 13083-970, Campinas, SP, Brazil
| | - Evandro Piccin
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Li S, Yu X, Zhen Z, Huang M, Lu J, Pang Y, Wang X, Gao Y. Geographical origin traceability and identification of refined sugar using UPLC-QTof-MS analysis. Food Chem 2021; 348:128701. [PMID: 33493847 DOI: 10.1016/j.foodchem.2020.128701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Authentication of geographical origin is essential to the food safety of refined sugar. This study aimed to determine the geographical origin traceability and authenticity of refined sugar in China. Ultra performance liquid chromatography-quadrupole time-of-flight Mass Spectrometry (UPLC-QTof-MS), instead of conventional stable isotope ratio mass spectrometer (IRMS), was used to detect the mass fragment ratios (Rδ-sucrose and Rδ-glucose) of refined sugar. These ratios could reflect the cultivation practice and environmental conditions. A total of 108 batches of samples were collected from six regions in China, and additional 72 samples were verified with support vector machines (SVM) model, in order to evaluate the accuracy of origin identification and composition prediction. Our results showed that 83.3% of the refined sugar was correctly classified based on the geographical region of origin under different environmental conditions. These findings indicate that the specified mass fragment ratio may be a promising approach for assessing the traceability and authenticity of refined sugar.
Collapse
Affiliation(s)
- Shuocong Li
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| | - Xiwen Yu
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, China.
| | - Zhenpeng Zhen
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| | - Minxing Huang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| | - Jianhua Lu
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| | - Yanghai Pang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| | - XiaoPeng Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| | - YuFeng Gao
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Sugarcane Science and Technology Innovation Center, Guangzhou 510316, China.
| |
Collapse
|
31
|
Chan T, Robinson G, Liu J, Kurti M, He Y, von Lampe K. Identifying Counterfeit Cigarettes Using Environmental Pollen Analysis: An Improved Procedure. J Forensic Sci 2020; 65:2138-2145. [PMID: 32804422 DOI: 10.1111/1556-4029.14540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/27/2022]
Abstract
Traditional pollen preparation techniques provide clear residues for pollen identification; however, such methods are time-consuming, requiring repeated centrifugation, heating, and digestion with high-concentration hazardous chemicals. Tobacco leaves can effectively trap environmental pollen due to hairy surface and terpene-rich exudates. A new tobacco sample processing method was developed by using different extraction chemistry with surfactant. Marlboro Gold cigarettes were employed as model samples for method development. Parameters critical for pollen extraction, which include number of cigarette sticks used, extraction solution, and extraction temperature, were optimized. By using 1% dishwashing detergent to treat three cigarettes at room temperature, the improved method was able to recover sufficient pollen for microscopic analysis in three repeated centrifuge-washing steps and omit hazardous chemicals involved in traditional methods. We focused on the pollen of common ragweed (Ambrosia artemisiifolia), a plant native to North America, as an indicator to differentiate genuine and counterfeit U.S. brand cigarettes. Results from analyzing randomly purchased genuine (authenticated by forensic examination) and known counterfeit Marlboro Gold provided by law enforcement revealed that a significant amount (39%) of Ambrosia were consistently present in all genuine samples, while counterfeit contained none or only trace count. Similar results were found in other counterfeit U.S. brand cigarettes (all seized in the U.S.) involved in this study as well. Lack of Ambrosia in cigarette strongly indicates the product was not originated in the United States.
Collapse
Affiliation(s)
- Tiffany Chan
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, 524 W59th Street, New York, NY, 10019
| | - Guy Robinson
- Department of Natural Sciences, Fordham University, 113 West 60th Street, New York, NY, 10023.,Plant Research Laboratory, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458
| | - Jonathan Liu
- Department of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711
| | - Marin Kurti
- Department of Sociology, Anthropology, Criminology and Social Work, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06226
| | - Yi He
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, 524 W59th Street, New York, NY, 10019
| | - Klaus von Lampe
- Department of Police and Security Management, Berlin School of Economics and Law, Campus Lichtenberg, Alt-Friedrichsfelde 60, Berlin, 10315, Germany
| |
Collapse
|