1
|
Lyu C, Hu H, Cai L, He S, Xu X, Zhou G, Wang H. A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis. J Adv Res 2025; 71:127-139. [PMID: 38852803 DOI: 10.1016/j.jare.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. OBJECTIVES This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. METHODS Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. RESULTS SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. CONCLUSION SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway.
Collapse
Affiliation(s)
- Chongyang Lyu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haijing Hu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuwen He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Hu M, Zhou Z, Liu C, Zhan Z, Cui Y, He S, Shi X. Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis. Foods 2024; 13:3709. [PMID: 39594124 PMCID: PMC11594007 DOI: 10.3390/foods13223709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Two-component systems (TCS) of Salmonella enterica serovar Enteritidis are composed of a histidine kinase and a response regulator (RR) and represent a critical mechanism by which bacteria develop resistance to environmental stress. Here, we characterized the functions of RRs in TCS in the formation of stress tolerance, motility and biofilm using twenty-six S. Enteritidis RR-encoding gene deletion mutants. The viability results unraveled their essential roles in resistance to elevated temperature (GlrR), pH alterations (GlrR, TctD, YedW, ArcA and YehT), high salt (PhoB, BaeR, CpxR, PhoP, UvrY and TctD), oxidative stress (PhoB, YedW, BaeR, ArcA, PhoP, UvrY, PgtA and QseB) and motility (ArcA, GlnG, PgtA, PhoB, UhpA, OmpR, UvrY and QseB) of S. Enteritidis. The results of the crystal violet staining, microscopy observation and Congo red binding assays demonstrated that the absence of ArcA, GlnG, PhoP, OmpR, ZraR or SsrB in S. Enteritidis led to a reduction in biofilms and an impairment in red/dry/rough macrocolony formation, whereas the absence of UvrY exhibited an increase in biofilms and formed a brown/smooth/sticky macrocolony. The results indicated the regulatory effects of these RRs on the production of biofilm matrix, curli fimbriae and cellulose. Our findings yielded insights into the role of TCSs, making them a promising target for combating S. Enteritidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (Z.Z.); (C.L.); (Z.Z.); (Y.C.); (S.H.)
| |
Collapse
|
3
|
Xiang N, Wong CW, Guo X, Wang S. Infectivity responses of Salmonella enterica to bacteriophages on maize seeds and maize sprouts. Curr Res Food Sci 2024; 8:100708. [PMID: 38444730 PMCID: PMC10912052 DOI: 10.1016/j.crfs.2024.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Salmonella enterica (S. enterica) is a major foodborne pathogen leading to a large number of outbreaks and bringing food safety concerns to sprouts. The control of S. enterica on maize sprouts is important because raw maize sprouts have been gaining attention as a novel superfood. Compared to conventional chemical methods, the applications of bacteriophages are regarded as natural and organic. This study investigated the effects of a 2 h phage cocktail (SF1 and SI1, MOI 1000) soaking on reducing the populations of three Salmonella enterica strains: S. Enteritidis S5-483, S. Typhimurium S5-536, and S. Agona PARC5 on maize seeds and during the storage of maize sprouts. The results showed that the phage cocktail treatment effectively reduced populations of S. enterica strains by 1-3 log CFU/g on maize seeds and decreased population of S. Agona PACR5 by 1.16 log CFU/g on maize sprouts from 7.55 log CFU/g at day 0 of the storage period. On the other hand, the upregulations of flagella gene pefA by 1.5-folds and membrane gene lpxA by 23-folds in S. Typhimurium S5-536 indicated a differential response to the phage cocktail treatment. Conversely, stress response genes ompR, rpoS, and recA, as well as the DNA repair gene yafD, were downregulated in S. Agona PARC5. This work shows the use of bacteriophages could contribute as a part of hurdle effect to reduce S. enterica populations and is beneficial to develop strategies for controlling foodborne pathogens in the production and storage of maize sprouts.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| |
Collapse
|
4
|
He B, Zhu TT, Liang Y, Wei HJ, Huang ZL, Liang LJ, Zhong JH, Luo Y, Lian XL, Zhao DH, Liao XP, Liu YH, Ren H, Sun J. Adaptive evolution in asymptomatic host confers MDR Salmonella with enhanced environmental persistence and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168340. [PMID: 37931815 DOI: 10.1016/j.scitotenv.2023.168340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
As a common cause for food-borne diseases, the Salmonella spp. are generally prevalent among livestock, whereby they are likely to be transmitted to human via environmental contamination. To explore the potential mechanism for prevalence of MDR Salmonella and its risk for dissemination via contaminated environments, we profiled the colonization dynamics of MDR Salmonella in chicken, herein we found that an adaptive evolution, driven by mutagenesis in a small protein-encoding gene (STM14_1829), conferred the multidrug resistant (MDR) Salmonella with increased fitness in asymptomatic host. Then the mechanistic study demonstrated that only one amino acid substitution in small protein STM14_1829 rendered MDR Salmonella capable to better invade and persist in phagocytotic cells by modulating bacterial flagella overexpression. Concerningly, the evolved Salmonella was also more resilient to the potential stressors generally found in environments and food processing, including heat, cold, adverse pH and oxidations. It implied that the evolved subpopulations are plausibly more persistent in environments once they contaminated through animal manure or human excreta. Moreover, the evolution promoted the pathogenesis caused by MDR Salmonella in susceptible hosts, resulting in higher risk for dissemination of pathogens via contaminated environments. Together, our data provided the novel insights into that in vivo adaptive evolution benefits Salmonella colonization, persistence and pathogenesis, by promoting bacterial tolerance via modulating flagella expression. These findings may explain the rationale behind the increasing prevalence of certain MDR Salmonella clones in livestock and associated environment, and underscoring the need for advanced strategies to tackle the possible evolution of such zoonotic pathogens.
Collapse
Affiliation(s)
- Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ting-Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hai-Jing Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi-Lei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Jie Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Jia-Hao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin-Lei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Dong-Hao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
5
|
Zhu W, Xi L, Qiao J, Du D, Wang Y, Morigen. Involvement of OxyR and Dps in the repression of replication initiation by DsrA small RNA in Escherichia coli. Gene 2023; 882:147659. [PMID: 37482259 DOI: 10.1016/j.gene.2023.147659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Regulation of the cell cycle process is an effective measure to ensure the stability and fidelity of genetic material during the reproduction of bacteria under different stresses. The small RNA DsrA helps bacteria adapt to environments by binding to multiple targets, but its association with the cell cycle remains unclear. Detection by flow cytometry, we first found that the knockout of dsrA promoted replication initiation, and corresponding overexpression of DsrA inhibited replication initiation in Escherichia coli. The absence of the chaperone protein Hfq, the DNA replication negative regulator protein Dps, or the transcription factor OxyR, was found to cause DsrA to no longer inhibit replication initiation. Excess DsrA promotes expression of the oxyR and dps gene, whereas β-galactosidase activity assay showed that deleting oxyR limited the enhancement of dps promoter transcriptional activity by DsrA. OxyR is a known positive regulator of Dps. Our data suggests that the effect of DsrA on replication initiation requires Hfq and that the upregulation of Dps expression by OxyR in response to DsrA levels may be a potential regulatory pathway for the negative regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingjun Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
6
|
Cross-protective effect of acid adaptation on ethanol tolerance in Salmonella Enteritidis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Tan Z, Fan J, He S, Zhang Z, Chu H. sRNA21, a novel small RNA, protects Mycobacterium abscessus against oxidative stress. J Gene Med 2023:e3492. [PMID: 36862004 DOI: 10.1002/jgm.3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND During infection, Mycobacterium abscessus encounters numerous environmental changes and adapts to them using a variety of complex mechanisms. Non-coding small RNAs (sRNAs) have been shown in other bacteria to be involved in post-transcriptional regulatory pathways, including environmental stress adaptation. However, the potential role of sRNAs in the resistance to oxidative stress in M. abscessus was not clearly described. METHODS In the present study, we analyzed putative sRNAs identified by RNA-sequencing (RNA-seq) experiments in M. abscessus ATCC_19977 under oxidative stress, and the transcription profiles of sRNAs with differential expression were verified by quantitative reverse transcription-PCR (qRT-PCR). Six sRNA overexpression strains were constructed, and the differences in growth curves between these strains and the control strain were verified. An upregulated sRNA under oxidative stress was selected and named sRNA21. The survival ability of the sRNA21 overexpression strain was assessed, and computer-based approaches were used to predict the targets and pathways regulated by sRNA21. The total ATP production and NAD+ /NADH ratio of the sRNA21 overexpression strain were measured. The expression level of antioxidase-related genes and the activity of antioxidase were tested to confirm the interaction of sRNA21 with the predicted target genes in silico. RESULTS In total, 14 putative sRNAs were identified under oxidative stress, and the qRT-PCR analysis of six sRNAs showed comparable results to RNA-seq assays. Overexpression of sRNA21 in M. abscessus increased cell growth rate and intracellular ATP level before and after peroxide exposure. The expression of genes encoding alkyl hydroperoxidase and superoxide dismutase was significantly increased, and superoxide dismutase activity was enhanced in the sRNA21 overexpression strain. Meanwhile, after sRNA21 overexpression, the intracellular NAD+ /NADH ratio decreased, indicating changes in redox homeostasis. CONCLUSIONS Our findings show that sRNA21 is an oxidative stress-induced sRNA that increases M. abscessus survival and promotes the expression of antioxidant enzymes under oxidative stress. These findings may provide new insights into the adaptive transcriptional response of M. abscessus to oxidative stress.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Characterization and comparative transcriptome analyses of Salmonella enterica Enteritidis strains possessing different chlorine tolerance profiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Chen L, Zhao X, Li R, Yang H. Integrated metabolomics and transcriptomics reveal the adaptive responses of Salmonella enterica serovar Typhimurium to thyme and cinnamon oils. Food Res Int 2022; 157:111241. [DOI: 10.1016/j.foodres.2022.111241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
|
10
|
DsrA Modulates Central Carbon Metabolism and Redox Balance by Directly Repressing pflB Expression in Salmonella Typhimurium. Microbiol Spectr 2022; 10:e0152221. [PMID: 35107349 PMCID: PMC8809350 DOI: 10.1128/spectrum.01522-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial small RNAs (sRNAs) function as vital regulators in response to various environmental stresses by base pairing with target mRNAs. The sRNA DsrA, an important posttranscriptional regulator, has been reported to play a crucial role in defense against oxidative stress in Salmonella enterica serovar Typhimurium, but its regulatory mechanism remains unclear. The transcriptome sequencing (RNA-seq) results in this study showed that the genes involved in glycolysis, pyruvate metabolism, the tricarboxylic acid (TCA) cycle, and NADH-dependent respiration exhibited significantly different expression patterns between S. Typhimurium wild type (WT) and the dsrA deletion mutant (ΔdsrA strain) before and after H2O2 treatment. This indicated the importance of DsrA in regulating central carbon metabolism (CCM) and NAD(H) homeostasis of S. Typhimurium. To reveal the direct target of DsrA action, fusion proteins of six candidate genes (acnA, srlE, tdcB, nuoH, katG, and pflB) with green fluorescent protein (GFP) were constructed, and the fluorescence analysis showed that the expression of pflB encoding pyruvate-formate lyase was repressed by DsrA. Furthermore, site-directed mutagenesis and RNase E-dependent experiments showed that the direct base pairing of DsrA with pflB mRNA could recruit RNase E to degrade pflB mRNA and reduce the stability of pflB mRNA. In addition, the NAD+/NADH ratio in WT-ppflB-pdsrA was significantly lower than that in WT-ppflB, suggesting that the repression of pflB by DsrA could contribute greatly to the redox balance in S. Typhimurium. Taken together, a novel target of DsrA was identified, and its regulatory role was clarified, which demonstrated that DsrA could modulate CCM and redox balance by directly repressing pflB expression in S. Typhimurium. IMPORTANCE Small RNA DsrA plays an important role in defending against oxidative stress in bacteria. In this study, we identified a novel target (pflB, encoding pyruvate-formate lyase) of DsrA and demonstrated its potential regulatory mechanism in S. Typhimurium by transcriptome analysis. In silico prediction revealed a direct base pairing between DsrA and pflB mRNA, which was confirmed in site-directed mutagenesis experiments. The interaction of DsrA-pflB mRNA could greatly contribute to the regulation of central carbon metabolism and intracellular redox balance in S. Typhimurium. These findings provided a better understanding of the critical roles of small RNA in central metabolism and stress responses in foodborne pathogens.
Collapse
|
11
|
Guo D, Bai Y, Fei S, Yang Y, Li J, Yang B, Lü X, Xia X, Shi C. Effects of 405 ± 5-nm LED Illumination on Environmental Stress Tolerance of Salmonella Typhimurium in Sliced Beef. Foods 2022; 11:foods11020136. [PMID: 35053867 PMCID: PMC8774786 DOI: 10.3390/foods11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Salmonella Typhimurium is a widely distributed foodborne pathogen and is tolerant of various environmental conditions. It can cause intestinal fever, gastroenteritis and bacteremia. The aim of this research was to explore the effect of illumination with 405 nm light-emitting diodes (LEDs) on the resistance of S. Typhimurium to environmental stress. Beef slices contaminated with S. Typhimurium were illuminated by 405 nm LEDs (18.9 ± 1.4 mW/cm2) for 8 h at 4 °C; controls were incubated in darkness at 7 °C. Then, the illuminated or non-illuminated (control) cells were exposed to thermal stress (50, 55, 60 or 65 °C); oxidative stress (0.01% H2O2 [v/v]); acid stress (simulated gastric fluid [SGF] at pH 2 or 3); or bile salts (1%, 2%, or 3% [w/v]). S. Typhimurium treated by 405 nm LED irradiation showed decreased resistance to thermal stress, osmotic pressure, oxidation, SGF and bile salts. The transcription of eight environmental tolerance-related genes were downregulated by the illumination. Our findings suggest the potential of applying 405 nm LED-illumination technology in the control of pathogens in food processing, production and storage, and in decreasing infection and disease related to S. Typhimurium.
Collapse
Affiliation(s)
- Du Guo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Yichen Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Shengyi Fei
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: or ; Tel.: +86-29-87092486; Fax: +86-29-87091391
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| |
Collapse
|
12
|
Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol 2021; 7:238-256. [PMID: 34250377 PMCID: PMC8255907 DOI: 10.3934/microbiol.2021015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.
Collapse
Affiliation(s)
- Amanova Sholpan
- Almaty Technological University, Almaty, Republic of Kazakhstan
| | | | | | | |
Collapse
|