1
|
Benincá T, Schmidt L, Thomé Cardoso L, Rossini Augusti P, da Silva Malheiros P. Carvacrol as a food additive: Toxicological aspects and the role of nanotechnology in enhancing its antimicrobial and antioxidant properties. Food Res Int 2024; 197:115256. [PMID: 39593338 DOI: 10.1016/j.foodres.2024.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Carvacrol (CAR), a phenolic monoterpene found in essential oils, shows promise as a food additive due to its antimicrobial and antioxidant properties. Challenges like volatility and strong aroma necessitate innovative approaches for its use, with nanotechnology offering solutions through improved solubility and controlled release. CAR-loaded nanoparticles (NPs) exhibit enhanced antimicrobial and antioxidant activity, presenting a novel approach for food preservation. However, limited toxicological data, particularly for nanoencapsulated forms of CAR, highlights the need for comprehensive safety assessments. While studies indicate varying effects of CAR, with high concentrations showing cytotoxicity and genotoxicity, lower doses appear safe in animal models and human trials. This review highlights the multifaceted role of CAR in food applications and emphasizes the importance of understanding its toxicological profile for well-informed use in the food industry. Furthermore, the use of nanotechnology is explored to enhance the application of CAR in foods.
Collapse
Affiliation(s)
- Thaís Benincá
- Microbiology and Food Hygiene Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Luana Schmidt
- Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Louise Thomé Cardoso
- Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Paula Rossini Augusti
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Patrícia da Silva Malheiros
- Microbiology and Food Hygiene Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Mardani M, Siahtiri S, Besati M, Baghani M, Baniassadi M, Nejad AM. Microencapsulation of natural products using spray drying; an overview. J Microencapsul 2024; 41:649-678. [PMID: 39133055 DOI: 10.1080/02652048.2024.2389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
AIMS This study examines microencapsulation as a method to enhance the stability of natural compounds, which typically suffer from inherent instability under environmental conditions, aiming to extend their application in the pharmaceutical industry. METHODS We explore and compare various microencapsulation techniques, including spray drying, freeze drying, and coacervation, with a focus on spray drying due to its noted advantages. RESULTS The analysis reveals that microencapsulation, especially via spray drying, significantly improves natural compounds' stability, offering varied morphologies, sizes, and efficiencies in encapsulation. These advancements facilitate controlled release, taste modification, protection from degradation, and extended shelf life of pharmaceutical products. CONCLUSION Microencapsulation, particularly through spray drying, presents a viable solution to the instability of natural compounds, broadening their application in pharmaceuticals by enhancing protection and shelf life.
Collapse
Affiliation(s)
- Mahshid Mardani
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saeed Siahtiri
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Masoud Besati
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Mahdavi Nejad
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Alegbeleye O, Rhee MS. Growth of Listeria monocytogenes in fresh vegetables and vegetable salad products: An update on influencing intrinsic and extrinsic factors. Compr Rev Food Sci Food Saf 2024; 23:e13423. [PMID: 39169547 DOI: 10.1111/1541-4337.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The ability of foodborne pathogens to grow in food products increases the associated food safety risks. Listeria monocytogenes (Lm) is a highly adaptable pathogen that can survive and grow under a wide range of environmental circumstances, including otherwise inhibitory conditions, such as restrictive cold temperatures. It can also survive long periods under adverse environmental conditions. This review examines the experimental evidence available for the survival and growth of Lm on fresh vegetables and ready-to-eat vegetable salads. Published data indicate that, depending on certain intrinsic (e.g., nutrient composition) and extrinsic factors (e.g., storage temperature, packaging atmosphere), Lm can survive on and in a wide variety of vegetables and fresh-cut minimally processed vegetable salads. Studies have shown that temperature, modified atmosphere packaging, relative humidity, pH, water activity, background microbiota of vegetables, microbial strain peculiarities, and nutrient type and availability can significantly impact the fate of Lm in vegetables and vegetable salads. The influence of these factors can either promote its growth or decline. For example, some studies have shown that background microbiota inhibit the growth of Lm in vegetables and minimally processed vegetable salads, but others have reported a promoting, neutral, or insignificant effect on the growth of Lm. A review of relevant literature also indicated that the impact of most influencing factors is related to or interacts with other intrinsic or extrinsic factors. This literature synthesis contributes to the body of knowledge on possible strategies for improving food safety measures to minimize the risk of Lm-associated foodborne outbreaks involving vegetables and vegetable salads.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas, Campinas, Brazil
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
4
|
Popović N, Veljović K, Radojević D, Brdarić E, Stevanović D, Živković M, Kojić M. Insight into the Probiogenomic Potential of Enterococcus faecium BGPAS1-3 and Application of a Potent Thermostable Bacteriocin. Foods 2024; 13:2637. [PMID: 39200563 PMCID: PMC11353538 DOI: 10.3390/foods13162637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to investigate the probiogenomic features of artisanal bacteriocin-producing Enterococcus faecium BGPAS1-3 and the use of the improved pMALc5HisEk expression vector for overexpressing class II bacteriocins and the application of purified bacteriocin 31 in a milk model as a preservative against L. monocytogenes. The BGPAS1-3 strain was isolated from traditional fresh soft cheese manufactured in households on a small scale in rural locations surrounding Pale Mountain City in Bosnia and Herzegovina. The whole-genome sequencing approach and bioinformatics analyses revealed that the strain BGPAS1-3 was non-pathogenic to humans. The presence of bacteriocin operons suggested the ability of the isolate to suppress the growth of pathogens. Coding regions for three maturated bacteriocins (bacteriocin 31, bacteriocin 32, and enterocin P) produced by BGPAS1-3 were amplified and expressed in Escherichia coli ER2523 using the pMALc5HisEk system. All three bacteriocins were successfully overexpressed and purified after enterokinase cleavage but showed different antimicrobial activity. Bacteriocin 31 showed significantly stronger antimicrobial activity compared with bacteriocin 32. It was the only one that proved to be suitable for use as a food preservative against L. monocytogenes in a milk model.
Collapse
Affiliation(s)
- Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Emilija Brdarić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Dušan Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
- Department of Research and Development, Institute of Virology, Vaccines, and Sera “Torlak”, Vojvode Stepe 458, 11152 Belgrade, Serbia
| |
Collapse
|
5
|
Krümmel A, Pagno CH, Malheiros PDS. Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules. Foods 2024; 13:1141. [PMID: 38672814 PMCID: PMC11049105 DOI: 10.3390/foods13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The synthesis of active films with natural antimicrobials from renewable sources offers an alternative to conventional non-biodegradable packaging and synthetic additives. This study aimed to develop cassava starch films with antimicrobial activity by incorporating either free carvacrol or chia mucilage nanocapsules loaded with carvacrol (CMNC) and assess their impact on the physical, mechanical, and barrier properties of the films, as well as their efficacy against foodborne pathogens. The addition of free carvacrol led to a reduction in mechanical properties due to its hydrophobic nature and limited interaction with the polymeric matrix. Conversely, CMNC enhanced elongation at break and reduced light transmission, with a more uniform distribution in the polymeric matrix. Films containing 8% carvacrol exhibited inhibitory effects against Salmonella and Listeria monocytogenes, further potentiated when encapsulated in chia mucilage nanocapsules. These findings suggest that such films hold promise as active packaging materials to inhibit bacterial growth, ensuring food safety and extending shelf life.
Collapse
Affiliation(s)
- Aline Krümmel
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Carlos Henrique Pagno
- Laboratory of Phenolic Compounds, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Patrícia da Silva Malheiros
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| |
Collapse
|
6
|
Gheorghita RE, Lupaescu AV, Gâtlan AM, Dabija D, Lobiuc A, Iatcu OC, Buculei A, Andriesi A, Dabija A. Biopolymers-Based Macrogels with Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products. Gels 2024; 10:71. [PMID: 38247793 PMCID: PMC10815192 DOI: 10.3390/gels10010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The present study focused on the development of gel-based capsules from sodium alginate and the fresh juice from different berries: chokeberry, sea buckthorn, and blueberry. Obtained through the extrusion method, the macrocapsules were added into yogurt, a well-known and consumed dairy product. In order to establish the changes that can occur for the food product, the samples were tested over 7 and 15 days of storage in refrigeration conditions. According to the results, the antioxidant activity increased during storage and gels can represent a good option for bioactive substances' encapsulation. Sensorial analysis performed indicated that consumers are open to consuming yogurt berry capsules and, according to the results observed in the scientific literature, they no longer rejected the product due to the bitterness and sourness of sea buckthorn or aronia. Sea buckthorn capsules were brighter (L*) than chokeberry and blueberry capsules due to carotene content and dark colors. Minimal diameter variations and small standard deviations (SD = 0.25/0.33) suggest that extrusion methods and the Caviar box are good for gel capsule development. Yogurt luminosity varied with capsules; control had the highest, followed by sea buckthorn yogurt. Samples with chokeberry and blueberry (dark) capsules had lower luminosity. Over 8 and 15 days, luminosity slightly decreased, while a* and b* (hue and saturation) increased. Post-storage, the sample with chokeberry capsules showed a light purple color, indicating color transfer from capsules, with increased antioxidant activity. Differences between the samples and control were less pronounced in the sample with sea buckthorn capsules. Values for color differences between yogurt samples during the storage period revealed the most significant difference during the first storage period (day 1-8), with blueberries showing the lowest difference, indicating the stability of the blueberry capsules' wall during storage.
Collapse
Affiliation(s)
- Roxana Elena Gheorghita
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Ancuta Veronica Lupaescu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, Airport Street 1, 720134 Suceava, Romania
| | - Anca Mihaela Gâtlan
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
- SC Natur Logistics SRL, 720043 Suceava, Romania
| | - Dadiana Dabija
- Faculty of Economics, Administration and Business, Stefan cel Mare University of Suceava, Univeristy Street 13, 720229 Suceava, Romania;
| | - Andrei Lobiuc
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Oana Camelia Iatcu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Amelia Buculei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
| | | | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
| |
Collapse
|
7
|
Abd El-Hamid MI, El-Azzouny MM, El-Malt RMS, Elkenawy ME, Abdelwarith AA, Younis EM, Youssef W, Dawod RE, Elged DWAH, Habaka MAM, El Oksh ASA, Mekawy S, Davies SJ, Ibrahim D. Future impact of thymoquinone-loaded nanoemulsion in rabbits: prospects for enhancing growth, immunity, antioxidant potential and resistance against Pasteurella multocida. Front Vet Sci 2024; 10:1340964. [PMID: 38292130 PMCID: PMC10824920 DOI: 10.3389/fvets.2023.1340964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Phytochemical nanoemulsions, such as thymoquinone nanoemulsions (TQN), are regarded as innovative alternatives to antimicrobials that significantly improve the performance, digestion, antioxidant potential and immunity of rabbits. Thus, the potential effects of TQN on growth, digestibility, antioxidant potential, immunity and resistance against Pasteurella multocida (P. multocida) in rabbits were assessed. Herein, 240 rabbits were offered either a basal diet or diets fortified with three TQN-graded concentrations. At 60 days of age, rabbits were challenged with multidrug-resistant (MDR) virulent P. multocida strain. Our outcomes described that dietary inclusion of TQN, especially at higher concentrations, significantly enhanced the growth performance of rabbits, which was supported by increasing the levels of jejunal lipase, amylase and trypsin enzymes. Of note, the levels of muscle and jejunal antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and total antioxidant capacity (T-AOC)], serum immunological markers (IgG, IgG, IgM and total Igs) and blood phagocytic percentage were significantly provoked after TQN fortification; meanwhile, the levels of muscle and jejunal MDA, serum biochemical parameters (total cholesterol, TG and LDL), abdominal fat percentage, breast and thigh cholesterol were significantly decreased following TQN supplementations. Our findings showed that TQN protected rabbits against P. multocida experimental challenge as evidenced by reducing P. multocida counts in rabbits' lungs, downregulating the transcription levels of P. multocida virulence-related genes (ptfA, toxA and nanB) at 48 and 96 h post-infection and ameliorating the expression levels of cytokines-related genes (IL-1β, IL-10, IL-8, IL-6, DEFB1, TNF-α, TLR-4 and TLR-2) at 96 h post-infection. Our findings suggest the utilization of TQN in rabbits' diets due to their stimulating effects on digestibility as well as their growth-promoting, anti-inflammatory, antioxidant, antibacterial, anti-virulence and immunostimulant properties, which enhance the rabbits' P. multocida resistance.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona M. El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Rania M. S. El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Mona E. Elkenawy
- Department of Biochemistry, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Mansoura, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Rehab E. Dawod
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Damietta, Egypt
| | - Dalia W. A. H. Elged
- Toxicology and Biochemical Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Manal A. M. Habaka
- Department of Poultry and Rabbits Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Amal S. A. El Oksh
- Department of Biotechnology, Reference Laboratory for Quality Control of Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Soad Mekawy
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Wu W, Li Y, Zhu X, Wang L, Wang J, Qin Y, Zhang M, Yu C, Gou C, Yan X. Antimicrobial activity enabled by chitosan-ε-polylysine-natamycin and its effect on microbial diversity of tomato scrambled egg paste. Food Chem X 2023; 19:100872. [PMID: 37780335 PMCID: PMC10534210 DOI: 10.1016/j.fochx.2023.100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
For a long time, food spoilage posed a severe impairment on food safety and public health. Although chemical preservatives are commonly used to inhibit spoilage/ pathogenic microbial growth, the disadvantages of a single target, potential toxicity and high dose of use limit the better use of preservatives. In this research, the combination of natural preservatives: Natamycin (Nat), ε-polylysine (ε-PL), and Chitosan (CS) could achieve an excellent antimicrobial effect including bacteria and fungi, and reduce the usage of a single preservative. Compound preservatives could destroy microbial morphology and damage the integrity of the cell wall/membrane by leakage of protein and alkaline phosphatase (AKP). Besides, high-throughput sequencing revealed that compound preservatives could decrease microbial diversity and richness, especially, Pseudomonas, Acinetobacter, Fusarium, and Aspergillus. Therefore, the combination of 1/8 × MIC CS, 1/4 × MIC ε-PL, and 1/2 × MIC Nat can achieve an excellent antibacterial effect, providing new ideas for food preservation.
Collapse
Affiliation(s)
- Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yaru Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoyu Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jiayi Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chunshan Yu
- Xinjiang Xiaochu Food Co., Ltd., Changji 831100, China
| | - Chunmei Gou
- Xinjiang Xiaochu Food Co., Ltd., Changji 831100, China
| | - Xiaoqin Yan
- Xinjiang Xiaochu Food Co., Ltd., Changji 831100, China
| |
Collapse
|
9
|
Yu W, Guo J, Liu Y, Xue X, Wang X, Wei L, Ma J. Potential Impact of Combined Inhibition by Bacteriocins and Chemical Substances of Foodborne Pathogenic and Spoilage Bacteria: A Review. Foods 2023; 12:3128. [PMID: 37628127 PMCID: PMC10453098 DOI: 10.3390/foods12163128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, food safety caused by foodborne pathogens and spoilage bacteria has become a major public health problem worldwide. Bacteriocins are a kind of antibacterial peptide synthesized by microbial ribosomes, and are widely used as food preservatives. However, when used individually bacteriocins may have limitations such as high cost of isolation and purification, narrow inhibitory spectrum, easy degradation by enzymes, and vulnerability to complex food environments. Numerous studies have demonstrated that co-treatment with bacteriocins and a variety of chemical substances can have synergistic antibacterial effects on spoilage microorganisms and foodborne pathogens, effectively prolonging the shelf life of food and ensuring food safety. Therefore, this paper systematically summarizes the synergistic bacteriostatic strategies of bacteriocins in combination with chemical substances such as essential oils, plant extracts, and organic acids. The impacts of bacteriocins when used individually and in combination with other chemical substances on different food substrates are clarified, and bacteriocin-chemical substance compositions that enhance antibacterial effectiveness and reduce the potential negative effects of chemical preservatives are highlighted and discussed. Combined treatments involving bacteriocins and different kinds of chemical substances are expected to be a promising new antibacterial method and to become widely used in both the food industry and biological medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (W.Y.); (J.G.); (Y.L.); (X.X.); (X.W.); (L.W.)
| |
Collapse
|
10
|
Costa MJ, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023; 15:1271. [PMID: 37376571 DOI: 10.3390/v15061271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, one-third of all food produced worldwide is wasted or lost, and bacterial contamination is one of the main reasons. Moreover, foodborne diseases are a severe problem, causing more than 420,000 deaths and nearly 600 million illnesses yearly, demanding more attention to food safety. Thus, new solutions need to be explored to tackle these problems. A possible solution for bacterial contamination is using bacteriophages (phages), which are harmless to humans; these natural viruses can be used to prevent or reduce food contamination by foodborne pathogens. In this regard, several studies showed the effectiveness of phages against bacteria. However, when used in their free form, phages can lose infectivity, decreasing the application in foods. To overcome this problem, new delivery systems are being studied to incorporate phages and ensure prolonged activity and controlled release in food systems. This review focuses on the existent and new phage delivery systems applied in the food industry to promote food safety. Initially, an overview of phages, their main advantages, and challenges is presented, followed by the different delivery systems, focused in methodologies, and biomaterials that can be used. In the end, examples of phage applications in foods are disclosed and future perspectives are approached.
Collapse
Affiliation(s)
- Maria J Costa
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sanna M Sillankorva
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
11
|
Zhang X, Yang C, Yang K. Novel Antibacterial Metals as Food Contact Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3029. [PMID: 37109867 PMCID: PMC10145333 DOI: 10.3390/ma16083029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Food contamination caused by microorganisms is a significant issue in the food field that not only affects the shelf life of food, but also threatens human health, causing huge economic losses. Considering that the materials in direct or indirect contact with food are important carriers and vectors of microorganisms, the development of antibacterial food contact materials is an important coping strategy. However, different antibacterial agents, manufacturing methods, and material characteristics have brought great challenges to the antibacterial effectiveness, durability, and component migration associated with the use security of materials. Therefore, this review focused on the most widely used metal-type food contact materials and comprehensively presents the research progress regarding antibacterial food contact materials, hoping to provide references for exploring novel antibacterial food contact materials.
Collapse
|
12
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
13
|
ALJOHANI AB, AL-HEJIN AM, SHORI AB. Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108:104116. [DOI: 10.1016/j.fm.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
|
15
|
Zhou C, Li C, Cui H, Lin L. Metabolomics insights into the potential of encapsulated essential oils as multifunctional food additives. Crit Rev Food Sci Nutr 2022; 64:5143-5160. [PMID: 36454059 DOI: 10.1080/10408398.2022.2151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Growing consumer concern about foodborne disease outbreaks and health risks associated with chemical additives has propelled the usage of essential oils (EOs) as novel food additives, but are limited by instability. In this regard, a series of EOs nano/micro-capsules have been widely used to enhance their stability and improve food quality. However, classical food quality assessment methods are insufficient to fully characterize the effects of encapsulated EOs on food properties, including physical, biochemical, organoleptic, and microbial changes. Recently, the rapid development of high-throughput sequencing is accelerating the application of metabolomics in food safety and quality analysis. This review seeks to present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies. The scientific findings confirm that metabolomics opens up exciting prospects for biomarker screening in food preservation and contributes to an in-depth understanding of the mechanisms of action (MoA) of EOs. Future research should focus on constructing food quality assessment criteria based on multi-omics technologies, which will drive the standardization and commercialization of EOs for food industry applications.
Collapse
Affiliation(s)
- Changqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
16
|
Lactoferrin-Chitosan-TPP Nanoparticles: Antibacterial Action and Extension of Strawberry Shelf-Life. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Essential Oil-Based Nanoparticles as Antimicrobial Agents in the Food Industry. Microorganisms 2022; 10:microorganisms10081504. [PMID: 35893562 PMCID: PMC9331367 DOI: 10.3390/microorganisms10081504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
The use of essential oils (EO) loaded with nanoparticles is the most promising alternative to increase food quality and safety. Interesting works describe the antimicrobial properties of EO for pathogen control in natural and processed foods for human health and animal production, also contributing to sustainability. Their association with different nanosystems allows novel developments in the micronutrition, health promotion, and pathogen control fields, preventing the aggravation of bacterial microevolution and combating antibiotic resistance. Benefits to the environment are also provided, as they are biodegradable and biocompatible. However, such compounds have some physicochemical properties that prevent commercial use. This review focuses on recent developments in antimicrobial EO-based nanoparticles and their application in different food matrices.
Collapse
|
19
|
Zhao D, Zhao Q, Xu Z, Shi X. Preparation of temperature‐sensitive fragrance nanocapsules and its controllable release property. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology No. 100 Haiquan Road, Shanghai China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology No. 100 Haiquan Road, Shanghai China
| | - Zhifei Xu
- Shanghai Zhishengyuan Testing Technology Co., Ltd Shanghai China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| |
Collapse
|
20
|
Soto ER, Rus F, Ostroff GR. Yeast Particles Hyper-Loaded with Terpenes for Biocide Applications. Molecules 2022; 27:molecules27113580. [PMID: 35684516 PMCID: PMC9182042 DOI: 10.3390/molecules27113580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Yeast particles (YPs) are 3−5 µm hollow and porous microspheres, a byproduct of some food grade yeast (Saccharomyces cerevisiae) extract manufacturing processes. Terpenes can be efficiently encapsulated inside YPs by passive diffusion through the porous cell walls. As previously published, this YP terpene encapsulation approach has been successfully implemented (1) to develop and commercialize fungicide and nematicide products for agricultural applications, (2) to co-load high potency agrochemical actives dissolved in terpenes or suitable solvents, and (3) to identify YP terpenes with broad-acting anthelmintic activity for potential pharmaceutical applications. These first-generation YP terpene materials were developed with a <2:1 terpene: YP weight ratio. Here we report methods to increase the terpene loading capacity in YPs up to 5:1 terpene: YP weight ratio. Hyper-loaded YP terpenes extend the kinetics of payload release up to three-fold compared to the commercialized YP terpene formulations. Hyper-loaded YP-terpene compositions were further optimized to achieve high terpene storage encapsulation stability from −20 °C to 54 °C. The development of hyper-loaded YP terpenes has a wide range of potential agricultural and pharmaceutical applications with terpenes and other compatible active substances that could benefit from a delivery system with a high payload loading capacity combined with increased payload stability and sustained release properties.
Collapse
|
21
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
22
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
23
|
Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of natural food ingredients has been increased in recent years due to the negative health implications of synthetic ingredients. Natural bioactive compounds are important for the development of health-oriented functional food products with better quality attributes. The natural bioactive compounds possess different types of bioactivities, e.g., antioxidative, antimicrobial, antihypertensive, and antiobesity activities. The most common method for the development of functional food is the fortification of these bioactive compounds during food product manufacturing. However, many of these natural bioactive compounds are heat-labile and less stable. Therefore, the industry and researchers proposed the microencapsulation of natural bioactive compounds, which may improve the stability of these compounds during processing and storage conditions. It may also help in controlling and sustaining the release of natural compounds in the food product matrices, thus, providing bioactivity for a longer duration. In this regard, several advanced techniques have been explored in recent years for microencapsulation of bioactive compounds, e.g., essential oils, healthy oils, phenolic compounds, flavonoids, flavoring compounds, enzymes, and vitamins. The efficiency of microencapsulation depends on various factors which are related to natural compounds, encapsulating materials, and encapsulation process. This review provides an in-depth discussion on recent advances in microencapsulation processes as well as their application in food systems.
Collapse
|
24
|
Lelis CA, de Carvalho APA, Conte Junior CA. A Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality. Int J Mol Sci 2021; 22:12055. [PMID: 34769485 PMCID: PMC8584738 DOI: 10.3390/ijms222112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Natural antimicrobials (NA) have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. Once solubility, stability, and changes in sensory attributes could limit their applications in foods, several studies were published suggesting micro-/nanoencapsulation to overcome such challenges. Thus, for our systematic review the Science Direct, Web of Science, Scopus, and Pub Med databases were chosen to recover papers published from 2010 to 2020. After reviewing all titles/abstracts and keywords for the full-text papers, key data were extracted and synthesized. The systematic review proposed to compare the antimicrobial efficacy between nanoencapsulated NA (nNA) and its free form in vitro and in situ studies, since although in vitro studies are often used in studies, they present characteristics and properties that are different from those found in foods; providing a comprehensive understanding of primary mechanisms of action of the nNA in foods; and analyzing the effects on quality parameters of foods. Essential oils and nanoemulsions (10.9-100 nm) have received significant attention and showed higher antimicrobial efficacy without sensory impairments compared to free NA. Regarding nNA mechanisms: (i) nanoencapsulation provides a slow-prolonged release to promote antimicrobial action over time, and (ii) prevents interactions with food constituents that in turn impair antimicrobial action. Besides in vitro antifungal and antibacterial, nNA also demonstrated antioxidant activity-potential to shelf life extension in food. However, of the studies involving nanoencapsulated natural antimicrobials used in this review, little attention was placed on proximate composition, sensory, and rheological evaluation. We encourage further in situ studies once data differ from in vitro assay, suggesting food matrix greatly influences NA mechanisms.
Collapse
Affiliation(s)
- Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Anna Paula Azevedo de Carvalho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
25
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
26
|
Kaur R, Gupta TB, Bronlund J, Kaur L. THE POTENTIAL OF ROSEMARY AS A FUNCTIONAL INGREDIENT FOR MEAT PRODUCTS- A REVIEW. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Pinilla CMB, Lopes NA, Brandelli A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules 2021; 26:molecules26123587. [PMID: 34208209 PMCID: PMC8230829 DOI: 10.3390/molecules26123587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.
Collapse
Affiliation(s)
- Cristian Mauricio Barreto Pinilla
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
| | - Nathalie Almeida Lopes
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
- Center of Nanoscience and Nanotechnology (CNANO), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Correspondence: ; Tel.: +55-51-3308-6249
| |
Collapse
|
28
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|