1
|
Kamthai S, Wiriyacharee P, Naruenartwongsakul S, Khaw-on P, Deenu A, Chaipoot S, Phongphisutthinant R, Tachai K, Orpool S. Influence of Honey Bee Brood Protein on the Hydrophilic, Mechanical, and Thermal Properties of Polysaccharide Gel Films. Gels 2025; 11:236. [PMID: 40277672 PMCID: PMC12026552 DOI: 10.3390/gels11040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Growing concerns over the environmental impact of plastic packaging have driven interest in sustainable alternatives, particularly biopolymer-based films. This study developed ternary-blended polysaccharide gel films composed of carboxymethyl starch (CMS), chitosan (CS), and pectin (PT), with dialdehyde carboxymethyl cellulose (DCMC) as a crosslinker, and investigated the effects of honey bee brood protein (BBP) (0-0.4% w/v) on their mechanical, barrier, and thermal properties. A completely randomized design (CRD) was employed to evaluate the impact of BBP concentration on film characteristics. Results demonstrated that adding 0.4% BBP enhanced water vapor barrier properties and thermal stability while reducing hydrophilicity. The optimal formulation was observed at 0.1% BBP, providing the highest tensile strength (7.73 MPa), elongation at break (32.23%), and water-absorption capacity (369.01%). The improvements in thermal stability and hydrophilicity were attributed to BBP's hydrophobic amino acids, which interacted with DCMC to form a denser polymer network, enhancing structural integrity and moisture resistance. Additionally, BBP incorporation contributed to the biodegradability of polysaccharide gel films, improving their environmental sustainability compared to conventional biopolymers. The findings suggest that BBP can serve as a functional additive in polysaccharide-based films, balancing performance and eco-friendliness for applications in biodegradable food and medical packaging.
Collapse
Affiliation(s)
- Suthaphat Kamthai
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pairote Wiriyacharee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Patompong Khaw-on
- School of Nursing, Faculty of Nursing, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Aree Deenu
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.D.); (S.O.)
| | - Supakit Chaipoot
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Tachai
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sawichaya Orpool
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.D.); (S.O.)
| |
Collapse
|
2
|
Kulka-Kamińska K, Kurzawa M, Sionkowska A. Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application. MATERIALS (BASEL, SWITZERLAND) 2025; 18:457. [PMID: 39859927 PMCID: PMC11766734 DOI: 10.3390/ma18020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared. The enrichment of biomaterials with active ingredients is a common practice, as it allows the desired properties to be obtained in the final product. To characterize the films, several analyses were performed, including infrared spectroscopy, imaging of the samples by SEM and AFM techniques, swelling analysis in pH 5.5 and 7.4, mechanical and antioxidant assays, contact angle measurements, and determination of the resveratrol release profile under the skin mimicking conditions. Resveratrol incorporation into the matrices resulted in modifications to the chemical structure and film morphology. The mechanical characteristics of films with additives were found to undergo deterioration. The sample containing 10% of resveratrol exhibited a higher swelling degree than other films. The resveratrol-modified films demonstrated a notable antioxidant capacity, a reduced contact angle, and enhanced wettability. The resveratrol release occurred rapidly initially, with a maximum of 84% and 56% of the substance released depending on the sample type. Thus, the proposed formulations have promising properties, in particular good swelling capacity, high antioxidant potential, and improved wettability, and may serve as skin dressings after further investigation.
Collapse
Affiliation(s)
- Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland
| |
Collapse
|
3
|
Sun C, Wang YS, Luan QY, Chen HH. Preparation and properties of edible active films of gelatin/carboxymethyl cellulose loaded with resveratrol. Int J Biol Macromol 2024; 283:137897. [PMID: 39577525 DOI: 10.1016/j.ijbiomac.2024.137897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Resveratrol (Res) powder was incorporated into gelatin (GEL)/carboxymethyl cellulose (CMC) film-forming solutions to create GEL/CMC-Res composite films (G/C-R) without the use of organic solvents. The study focused on how phase separation affected the properties of these films. The film formation mechanism of the G/C-R films was analyzed using infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The findings revealed that the Res powder was evenly distributed within the GEL/CMC film matrix, which enhanced the crystallinity and surface roughness of the films, contributing to improved surface hydrophobicity. Dynamic rheological analysis showed that the presence of Res increased both the modulus and viscosity of the film-forming solutions. Thermal analysis, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA), indicated that Res elevated the phase transition temperature, decreased the rate of thermal degradation, and enhanced the thermal stability of the films. Additionally, Res reduced water vapor permeability (WVP) by 75 % and significantly boosted antioxidant activity from 15 % to 85 %. This study demonstrates that the dispersion of Res powder in G/C-R blend films markedly improves their water barrier and antioxidant properties, effectively inhibiting the oxidation of soybean oil, and highlighting their potential as active packaging for food.
Collapse
Affiliation(s)
- Cong Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qian-Yu Luan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
4
|
Nowak N, Grzebieniarz W, Juszczak L, Cholewa-Wójcik A, Synkiewicz-Musialska B, Huber V, Touraud D, Kunz W, Jamróz E. Influence of Curcuma Longa extract in citral addition on functional properties of thin films with triple-layer structure based on furcellaran and gelatin. Int J Biol Macromol 2024; 266:131344. [PMID: 38574923 DOI: 10.1016/j.ijbiomac.2024.131344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
In this study, we obtained triple-layer films based on furcellaran and gelatin, in which the middle layer was enriched with extract of Curcuma longa in citral. This newly developed material underwent a comprehensive characterisation process to identify significant improvements in its functional properties. Both SEM, XRD and FTIR analyzes indicated the formation of interactions not only between the components but also between the film layers. Notably, the incorporation of the natural extract led to a significant reduction in solubility, decreasing it from 74.79 % to 57.25 %, while enhancing thermal stability expressed as a melting point elevating it from 147.10 °C in the control film to 158.80 °C in the film with the highest concentration of the active ingredient. Simultaneously, the addition of this active ingredient resulted in decreased water contact angle (WCA) values, rendering the film more hydrophilic. The produced films exhibit great promise as packaging materials, particularly within the food industry, and the conducted research is marked by its forward-looking and developmental approach.
Collapse
Affiliation(s)
- Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland.
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, PL-42-200 Częstochowa, Poland; Department of Food Analysis and Evaluation of Food Quality, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Beata Synkiewicz-Musialska
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Kraków Division, Zabłocie 39, Kraków, Poland
| | - Verena Huber
- Institute of Physical and Theoretical Chemistry Universtitätsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry Universtitätsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry Universtitätsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| |
Collapse
|
5
|
Nayak A, Mukherjee A, Kumar S, Dutta D. Exploring the potential of jujube seed powder in polysaccharide based functional film: Characterization, properties and application in fruit preservation. Int J Biol Macromol 2024; 260:129450. [PMID: 38232896 DOI: 10.1016/j.ijbiomac.2024.129450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In this study, we fabricated a novel biodegradable functional film using natural polysaccharides by adding jujube seed powder as an active ingredient. Scanning electron microscopy analysis showed agglomerate formation in the film with increasing concentration of seed powder. Fourier transform-infrared spectroscopy study demonstrated an electrostatic interaction between pectin and chitosan. The water solubility and swelling degree significantly decreased from 55.5 to 47.7 % and 66.0 to 41.9 %, respectively, depicting the film's water resistance properties. Higher opacity and lower transmittance value of the film indicated its protective effect towards light-induced oxidation of food. It was observed that the fabricated active film biodegraded to 82.33 % in 6 days. The DPPH radical scavenging activity of 98.02 % was observed for the functional film. The film showed antifungal activity against B. cinerea and P. chrysogenum. The highest zone of inhibition was obtained against food spoiling bacteria B. subtilis followed by S. aureus, P. aeruginosa and E. coli. Genotoxicity studies with the fabricated film showed a mitotic index of 8 % compared to 3 % in the control film. We used the fabricated film to preserve grapefruits, and the result showed that it could preserve grapes for ten days with an increase in antioxidant activity and polyphenolic content.
Collapse
Affiliation(s)
- Anamika Nayak
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
6
|
Khatami N, Guerrero P, Martín P, Quintela E, Ramos V, Saa L, Cortajarena AL, de la Caba K, Camarero-Espinosa S, Abarrategi A. Valorization of biological waste from insect-based food industry: Assessment of chitin and chitosan potential. Carbohydr Polym 2024; 324:121529. [PMID: 37985106 DOI: 10.1016/j.carbpol.2023.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Edible mealworms can be farmed to produce high-quality nutrients and proteins, useful as ingredients in human and animal foods. During this process biological waste is produced. This work explores the usage of the biological waste as source to produce chitin and chitosan with different potential applications. Different waste fractions were processed, and the feasibility of chitin isolation was assessed. Chitosan was derived, and films were fabricated and tested for intended uses. Data indicate that biopolymers with different properties can be obtained from multiple biological waste fractions. All samples show antibacterial activity, while chitosan films derived from molt show interesting properties for packaging purposes. Films also trigger the expression of anti-inflammatory phenotype markers in macrophage cells, which may be useful for tissue engineering implantation purposes. Altogether, biological waste from insect farming can be used to extract chitin and chitosan with different properties, and therefore, suitable for different applications.
Collapse
Affiliation(s)
- Neda Khatami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; POLYMAT, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | | | - Viviana Ramos
- Noricum SL, Avda. Fuente Nueva 14, nave 3, 28703 San Sebastián de los Reyes, Madrid, Spain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Sandra Camarero-Espinosa
- POLYMAT, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
7
|
Alshehri AA, Hamed YS, Kamel RM, Shawir SMS, Sakr H, Ali M, Ammar A, Saleh MN, El Fadly E, Salama MA, Abdin M. Enhanced physical properties, antioxidant and antibacterial activity of bio-composite films composed from carboxymethyl cellulose and polyvinyl alcohol incorporated with broccoli sprout seed extract for butter packaging. Int J Biol Macromol 2024; 255:128346. [PMID: 37995780 DOI: 10.1016/j.ijbiomac.2023.128346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the development of biodegradable films made from a combination of carboxymethyl cellulose (CMC), Polyvinyl alcohol (PVA), and purified extract of broccoli sprout seed (BSSE). The films were characterized for their color, physical properties, surface morphology, crystallinity, mechanical properties, and thermal properties. The addition of BSSE up to 1.4 % to the film matrix imparted opaque color and increased opacity up to 3.652. The films also became less moisture-absorbent 8.21 %, soluble 19.16 %, and permeable to water vapor 1.531 (× 10-10 g.m-1 s-1 pa-1). By utilizing 0.7 % from BSSE inside films, the surface of the films became smoother but became rough with higher concentrations 2.1 % of BSSE. Fourier transform infrared (FT-IR) analysis showed that there was physical interaction between the BSSE extract and the PV/CM matrix. The films showed good thermal stability, and the incorporation of BSSE improved their ability to preserve the acidity, TBARS, peroxide value, and total color differences of butter during cold storage.
Collapse
Affiliation(s)
- Azizah A Alshehri
- Department of Home Economic, College of Home Economic, King Khalid University, Abha, Saudi Arabia
| | - Yahya S Hamed
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12611, Egypt
| | - Samar M S Shawir
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hazem Sakr
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt; Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mostafa Ali
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Amin Ammar
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Mohamed N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Enas El Fadly
- Dairy Sciences Department, Faculty of Agriculture, Kafrelshiekh University, Egypt
| | | | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| |
Collapse
|
8
|
Akhtar HMS, Ahmed S, Olewnik-Kruszkowska E, Gierszewska M, Brzezinska MS, Dembińska K, Kalwasińska A. Carboxymethyl cellulose based films enriched with polysaccharides from mulberry leaves (Morus alba L.) as new biodegradable packaging material. Int J Biol Macromol 2023; 253:127633. [PMID: 37879581 DOI: 10.1016/j.ijbiomac.2023.127633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The objective of this study was to determine the properties of a new active packaging film developed by the addition of mulberry leaves polysaccharides (MLP) into carboxymethyl cellulose (CMC). Biodegradable CMC-MLP films were fabricated by casting method with various concentrations of MLP (1, 5 and 10 % w/w). The addition of MLP into the CMC matrix resulted increased thickness (0.126 to 0.163 mm) and roughness of the films. Also, the decline in moisture content from 27.91 to 14.12 %, water vapor permeability from 8.95 to 5.21 × 10-10 g-1 s-1 Pa-1, and a swelling degree from 59.11 to 37.45 % were observed. With the increasing concentration of MLP, the mechanical properties of the films were improved and higher dispersion of UV light were noted. Fourier transform - infrared spectroscopy (FT-IR) and X-ray diffraction revealed good inter-molecular interaction between CMC matrix and MLP. The prepared films showed excellent thermal stability, antioxidant and antibacterial properties as well as susceptibility to biodegradation in the soil environment. Moreover, it was proved that the films have ability to retard oil oxidation. Overall, it was concluded that CMC-MLP films constitute a promising biomaterial that may be applied as active food packaging.
Collapse
Affiliation(s)
- Hafiz Muhammad Saleem Akhtar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Shakeel Ahmed
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ewa Olewnik-Kruszkowska
- Department of Physical and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Magdalena Gierszewska
- Department of Physical and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland.
| |
Collapse
|
9
|
Basumatary IB, Mukherjee A, Kumar S. Chitosan-based composite films containing eugenol nanoemulsion, ZnO nanoparticles and Aloe vera gel for active food packaging. Int J Biol Macromol 2023; 242:124826. [PMID: 37178889 DOI: 10.1016/j.ijbiomac.2023.124826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based food packaging films are gaining increasing popularity, as consumers' demands for sustainable alternatives and environmental concerns associated with synthetic plastic packaging grow. In this research work, chitosan-based active antimicrobial films reinforced with eugenol nanoemulsion (EuNE), Aloe vera gel, and zinc oxide nanoparticles (ZnONPs) were fabricated and characterized for their solubility, microstructure, optical properties, antimicrobial and antioxidant activities. The rate of release of EuNE from the fabricated films was also evaluated to determine active nature of the films. The EuNE droplet size was about 200 nm, and they were uniformly distributed throughout the film matrices. Incorporation of EuNE in chitosan drastically improved UV-light barrier property of the fabricated composite film by 3 to 6 folds, while maintaining their transparency. The XRD spectra of the fabricated films showed good compatibility between the chitosan and the incorporated active agents. The incorporation of ZnONPs significantly improved their antibacterial properties against foodborne bacteria and tensile strength about 2-folds, whereas incorporation of EuNE and AVG improved DPPH scavenging activities of the chitosan film up to 95 %, respectively.
Collapse
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| |
Collapse
|
10
|
Sun X, Li Q, Wu H, Zhou Z, Feng S, Deng P, Zou H, Tian D, Lu C. Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15081959. [PMID: 37112108 PMCID: PMC10141166 DOI: 10.3390/polym15081959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qingye Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hejun Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| |
Collapse
|
11
|
Hao Y, Kang J, Guo X, Sun M, Li H, Bai H, Cui H, Shi L. pH-responsive chitosan-based film containing oregano essential oil and black rice bran anthocyanin for preserving pork and monitoring freshness. Food Chem 2023; 403:134393. [DOI: 10.1016/j.foodchem.2022.134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022]
|
12
|
Development and characterization of antioxidant composite films based on starch and gelatin incorporating resveratrol fabricated by extrusion compression moulding. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Preparation of nano/microcapsules of ozonated olive oil in chitosan matrix and analysis of physicochemical and microbiological properties of the obtained films. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Antimicrobial and antioxidant AIE chitosan-based films incorporating a Pickering emulsion of lemon myrtle (Backhousia citriodora) essential oil. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Abdalbeygi S, Aminzare M, Hassanzad Azar H. Chitosan edible coating incorporated with resveratrol and Satureja bachtiarica essential oil as natural active packaging: In vitro antibacterial and antioxidant properties, and its impact on the shelf life of fresh chicken fillet and growth of inoculated Escherichia coli O 157:H 7. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The purpose of this study was to investigate the effects of chitosan coating containing resveratrol (RES) and Satureja bachtiarica essential oil (SEO) on the microbial quality, oxidative stability, and sensory properties of chicken meat as well as inoculated Escherichia coli O157:H7 during 12 day storage at 4 °C. The synergistic in vitro antioxidant effects between RES and SEO in chitosan coatings were observed. Moreover, chicken coated with chitosan solution containing RES 0.001% + SEO 2% indicated better results compared with the control group with the following scores (p≤0.05): Total viable count (6.11 log10 CFU/g), total psychrotrophic count (5.39 log10 CFU/g), Lactic acid bacteria (5.36 log10 CFU/g), pH (6.25), peroxide value (4.32 meq/kg lipid), thiobarbituric acid reactive substance (1.03 mg MDA/kg), sensory analysis (overall acceptability: 5.5), and inoculated E.coli O157:H7 (6.01 log10 CFU/g). The finding of the present study can contribute to the meat industry as a natural active packaging system.
Collapse
Affiliation(s)
- Sepehr Abdalbeygi
- Department of Food Safety and Hygiene , School of Public Health, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene , School of Public Health, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Hassan Hassanzad Azar
- Department of Food Safety and Hygiene , School of Public Health, Zanjan University of Medical Sciences , Zanjan , Iran
| |
Collapse
|
16
|
Preparation and Characterization of Phenolic Acid-Chitosan Derivatives as an Edible Coating for Enhanced Preservation of Saimaiti Apricots. Foods 2022; 11:foods11223548. [PMID: 36429144 PMCID: PMC9689608 DOI: 10.3390/foods11223548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, caffeic acid (CA) and chlorogenic acid (CGA) were incorporated onto chitosan (CS) using free radical grafting initiated by a hydrogen peroxide/ascorbic acid (H2O2/Vc) redox system. The structural properties of the CA (CA-g-CS) and CGA (CGA-g-CS) derivatives were characterized by UV-Vis absorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermal stability analysis. Then, the antioxidant and antibacterial properties were evaluated, and the effect of CGA-g-CS on the postharvest quality of Saimaiti apricot was studied. It proved that phenolic acids were successfully grafted onto the CS. The grafting ratios of CA-g-CS and CGA-g-CS were 126.21 mg CAE/g and 148.94 mg CGAE/g. The antioxidation and antibacterial activities of CGA-g-CS were better than those of CA-g-CS. The MICs of CGA-g-CS against E. coli, S. aureus, and B. subtilis were 2, 1, and 2 mg/mL. The inhibitory zones of 20 mg/mL CGA-g-CS against the three bacteria were 19.16 ± 0.35, 16.33 ± 0.91, and 16.24 ± 0.05 mm. The inhibitory effects of 0.5% CGA-g-CS on the firmness, weight loss, SSC, TA, relative conductivity, and respiration rate of the apricot were superior. Our results suggest that CGA-g-CS can be potentially used as an edible coating material to preserve apricots.
Collapse
|
17
|
Ordoñez R, Atarés L, Chiralt A. Biodegradable active materials containing phenolic acids for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3910-3930. [PMID: 35912666 DOI: 10.1111/1541-4337.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 01/28/2023]
Abstract
The development of new materials for food packaging applications is necessary to reduce the excessive use of disposable plastics and their environmental impact. Biodegradable polymers represent an alternative means of mitigating the problem. To add value to biodegradable materials and to enhance food preservation, the incorporation of active compounds into the polymer matrix is an affordable strategy. Phenolic acids are plant metabolites that can be found in multiple plant extracts and exhibit antioxidant and antimicrobial properties. Compared with other natural active compounds, such as essential oils, phenolic acids do not present a high sensorial impact while exhibiting similar minimal inhibitory concentrations against different bacteria. This study summarizes and discusses recent studies about the potential of both phenolic acids/plant extracts and biodegradable polymers as active food packaging materials, their properties, interactions, and the factors that could affect their antimicrobial efficiency. The molecular structure of phenolic acids greatly affects their potential antioxidant and antimicrobial capacity, as well as their specific interactions with polymer matrices and food substrates. These interactions, in turn, can lead to plasticizing or cross-linking effects. In the present study, the antioxidant and antimicrobial properties of different biodegradable films with phenolic acids have been described, as well as the main factors affecting the active properties of these films as useful materials for active packaging development. More studies applying these active materials in real foods are required.
Collapse
Affiliation(s)
- Ramón Ordoñez
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Lorena Atarés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Chiralt
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
18
|
Braham F, Amaral LMPF, Biernacki K, Carvalho DO, Guido LF, Magalhães JMCS, Zaidi F, Souza HKS, Gonçalves MP. Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging. Foods 2022; 11:foods11172641. [PMID: 36076826 PMCID: PMC9455762 DOI: 10.3390/foods11172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, a qualitative study of the phenolic content of Moringa oleifera leaves (MO), extracted with deep eutectic solvents (DES) based on choline chloride (ChCl) with lactic acid (LA) or glycerol (GLY), was performed by high-resolution mass spectrometry (HPLC-DAD-ESI-MSn). The two solvents (DES-LA and DES-GLY) extract similar classes of phenolics, and ten compounds were identified. The antioxidant profile was also studied (TPC, TFC, DPPH, FRAP, ORAC, and ABTS). Both solvents show an efficient extraction of phenolic compounds and high antioxidant capacity was verified for the extracts. However, the DES-Gly have a higher capacity for polyphenolic extraction (TPC led to 38.409 ± 0.095 mg GAE.g−1 and 2.259 ± 0.023 mg QE.g−1 for TFC). Films based on methylcellulose (MC) containing different amounts of DES or MO extracts, acting as plasticizers, were developed and characterized regarding their mechanical, optical, water vapor permeability, and microstructural properties. All films are uniform, clear, and transparent with smooth, homogeneous surfaces. It was found that the presence of more than 10% of MO extract and/or DES provided more flexible films (Eb for MC 2%_DES 20% achieved 4.330 ± 0.27 %, and 8.15 ± 0.39 % for MC 2%_MO 20%) with less mechanical and barrier resistance. The ultimate objective of this study was to provide information that could assist in the development of antimicrobial active methylcellulose films for sliced wheat bread packaging.
Collapse
Affiliation(s)
- Fazia Braham
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Route Targa Ouzemour, Bejaia 06000, Algeria
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luísa M. P. F. Amaral
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Krzysztof Biernacki
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Daniel O. Carvalho
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Luis F. Guido
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Júlia M. C. S. Magalhães
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Farid Zaidi
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Route Targa Ouzemour, Bejaia 06000, Algeria
| | - Hiléia K. S. Souza
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- IPC—Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Correspondence:
| | - Maria P. Gonçalves
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Ferreira PG, Ferreira VF, da Silva FDC, Freitas CS, Pereira PR, Paschoalin VMF. Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics 2022; 14:pharmaceutics14061307. [PMID: 35745879 PMCID: PMC9228519 DOI: 10.3390/pharmaceutics14061307] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/05/2023] Open
Abstract
Chitosan displays a dual function, acting as both an active ingredient and/or carrier for pharmaceutical bioactive molecules and metal ions. Its hydroxyl- and amino-reactive groups and acetylation degree can be used to adjust this biopolymer's physicochemical and pharmacological properties in different forms, including scaffolds, nanoparticles, fibers, sponges, films, and hydrogels, among others. In terms of pharmacological purposes, chitosan association with different polymers and the immobilization or entrapment of bioactive agents are effective strategies to achieve desired biological responses. Chitosan biocompatibility, water entrapment within nanofibrils, antioxidant character, and antimicrobial and anti-inflammatory properties, whether enhanced by other active components or not, ensure skin moisturization, as well as protection against bacteria colonization and oxidative imbalance. Chitosan-based nanomaterials can maintain or reconstruct skin architecture through topical or systemic delivery of hydrophilic or hydrophobic pharmaceuticals at controlled rates to treat skin affections, such as acne, inflammatory manifestations, wounds, or even tumorigenesis, by coating chemotherapy drugs. Herein, chitosan obtention, physicochemical characteristics, chemical modifications, and interactions with bioactive agents are presented and discussed. Molecular mechanisms involved in chitosan skin protection and recovery are highlighted by overlapping the events orchestrated by the signaling molecules secreted by different cell types to reconstitute healthy skin tissue structures and components.
Collapse
Affiliation(s)
- Patricia Garcia Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (P.G.F.); (V.F.F.)
| | - Vitor Francisco Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (P.G.F.); (V.F.F.)
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil;
| | - Cyntia Silva Freitas
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (C.S.F.); (P.R.P.)
- Programa de Pós-Graduação em Ciencia de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (C.S.F.); (P.R.P.)
- Programa de Pós-Graduação em Ciencia de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (C.S.F.); (P.R.P.)
- Programa de Pós-Graduação em Ciencia de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7362
| |
Collapse
|
20
|
Ponnusamy PG, Sundaram J, Mani S. Preparation and characterization of citric acid crosslinked chitosan‐cellulose nanofibrils composite films for packaging applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering University of Georgia Athens Georgia USA
| |
Collapse
|
21
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Aminzare M, Moniri R, Hassanzad Azar H, Mehrasbi MR. Evaluation of antioxidant and antibacterial interactions between resveratrol and eugenol in carboxymethyl cellulose biodegradable film. Food Sci Nutr 2022; 10:155-168. [PMID: 35035918 PMCID: PMC8751429 DOI: 10.1002/fsn3.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
The aim of present study was to compare the in vitro antioxidant and antibacterial properties of carboxymethyl cellulose (CMC) films containing resveratrol (RES) and eugenol (EUG), alone and in combination, and to calculate the dose interactions between them. At first, the total phenolic content of CMC films was evaluated. Then, their antioxidant and antibacterial effects of films were determined using DPPH, reducing power, disk diffusion, and broth dilution methods. Finally, concentrations of RES and EUG which showed better results in the CMC films were added in combination forms to calculate their antioxidant and antibacterial interactions. The results showed that addition of RES and/or EUG to CMC films increased the total phenolic content, free radicals scavenging activity, reducing power, and antibacterial activities of the films (p ≤ .05). Gram-positive bacteria were more susceptible than Gram-negatives. In addition, the combined use of RES and EUG in CMC films had synergistic antioxidant and antagonistic antibacterial effects. The best results belonged to the film containing RES (8 µg/ml) + EUG (8 mg/ml) (p ≤ .05). Considering the results of the present research, we can utilize CMC biodegradable film containing RES and EUG as a natural active packaging in food industry.
Collapse
Affiliation(s)
- Majid Aminzare
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Roya Moniri
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzad Azar
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Mohammad Reza Mehrasbi
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
23
|
Alginate with citrus pectin and pterostilbene as healthy food packaging with antioxidant property. Int J Biol Macromol 2021; 193:2093-2102. [PMID: 34774594 DOI: 10.1016/j.ijbiomac.2021.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
A new type of film packaging made from natural polysaccharide materials, with its environmental safety and friendliness, is considered as a potential substitute for plastics. Novel polysaccharide composite films based upon citrus pectin (CP) and sodium alginate (SA) were successfully prepared and characterized, containing pterostilbene (PTE) at various concentrations (0.2, 0.4, 0.8, 1.6, 3.2 mM). The rheological analysis displayed that all film-forming liquids performed no gelation behavior with G" > G' at low frequency and weak gelation with G" < G' at high frequency. The SA-CP films had good tensile strength (TS) and elongation at break (EB), while adding PTE as an antioxidant to the film reduced both the values. Of note, the SA-CP films with PTE had better moisture resistance than that of the pure SA-CP films, which was related to the changes of its microstructure. The increased roughness of the films containing PTE was observed by microscope. After calcium chloride cross-linking, the water solubility of the films was reduced, while its thermal stability was improved. Notably, the accretion of PTE expressively enhanced the antioxidant properties of the SA-CP films. Thus, the SA-CP composite films containing PTE could be utilized as an excellent antioxidant packaging material.
Collapse
|
24
|
Using tannins as active compounds to develop antioxidant and antimicrobial chitosan and cellulose based films. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
Nanoemulsion-based basil seed gum edible film containing resveratrol and clove essential oil: In vitro antioxidant properties and its effect on oxidative stability and sensory characteristic of camel meat during refrigeration storage. Meat Sci 2021; 185:108716. [PMID: 34839195 DOI: 10.1016/j.meatsci.2021.108716] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
The initial purpose of this study was to compare the in vitro antioxidant interactions between resveratrol (RES) and clove essential oil (CEO) in conventional and nanoemulsion-based basil seed gum (BSG) films. Then, the effects of the best nanoemulsion-based BSG film obtained from in vitro evaluations were determined on oxidative stability and sensory properties of minced camel meat during 20-day storage at 4 °C. The results showed higher in vitro antioxidant activities of nanoemulsion-based BSG films compared to conventional films as well as synergistic effects between RES and CEO. Furthermore, minced camel meat wrapped with nanoemulsion-based BSG film containing RES 4 μg/mL + CEO 10 mg/mL showed better results compared with the control group with the following scores: total carbonyls (0.84 nmol/mg protein), peroxide value (4.03 meq/kg lipid), thiobarbituric acid reactive substance (1.03 mg malondialdehyde/kg), and sensory analysis (overall acceptability: 5.4). The finding of the present study can be applied as a new method in meat and meat products packaging industry.
Collapse
|
26
|
Contessa CR, da Rosa GS, Moraes CC. New Active Packaging Based on Biopolymeric Mixture Added with Bacteriocin as Active Compound. Int J Mol Sci 2021; 22:ijms221910628. [PMID: 34638967 PMCID: PMC8508738 DOI: 10.3390/ijms221910628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to develop a chitosan/agar-agar bioplastic film incorporated with bacteriocin that presents active potential when used as food packaging. The formulation of the film solution was determined from an experimental design, through the optimization using the desirability function. After establishing the concentrations of the biopolymers and the plasticizer, the purified bacteriocin extract of Lactobacillus sakei was added, which acts as an antibacterial agent. The films were characterized through physical, chemical, mechanical, barrier, and microbiological analyses. The mechanical properties and water vapor permeability were not altered by the addition of the extract. The swelling property decreased with the addition of the extract and the solubility increased, however, the film remained intact when in contact with the food, thus allowing an efficient barrier. Visible light protection was improved by increased opacity and antibacterial capacity was effective. When used as Minas Frescal cream cheese packaging, it contributed to the increase of microbiological stability, showing a reduction of 2.62 log UFC/g, contributing a gradual release of the active compound into the food during the storage time. The film had an active capacity that could be used as a barrier to the food, allowing it to be safely packaged.
Collapse
|
27
|
Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA. Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41372-41395. [PMID: 34448558 DOI: 10.1021/acsami.1c08061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ashleigh Abbott
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| | - Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Synthesis of New Chitosan from an Endemic Chilean Crayfish Exoskeleton ( Parastacus Pugnax): Physicochemical and Biological Properties. Polymers (Basel) 2021; 13:polym13142304. [PMID: 34301060 PMCID: PMC8309378 DOI: 10.3390/polym13142304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used to produce chitosan by a deacetylation process. In the present study, the extraction of chitin and chitosan from the Parastacus pugnax (P. pugnax) crayfish exoskeleton was studied for the first time. Thus, the P. pugnax crayfish exoskeleton was converted to chitosan following the steps of depigmentation, deproteinization, and deacetylation. The produced chitosan (Chitosan-CGNA) was characterized in terms of the protein content, solubility, degree of deacetylation, viscosity, molecular weight, FTIR, SEM, XRD, antimicrobial, and antioxidant activity. The results showed that the obtained chitosan had a high degree of deacetylation (91.55%) and a medium molecular weight (589.43 kDa). The antibacterial activity of the chitosan was tested against bacterial strains relevant for the food industry and the lowest minimum inhibitory concentration (MIC) values were evidenced with Salmonella tiphymurium (S. typhimurium), Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis) and Listeria. Monocytogenes (L. monocytogenes). Moreover, the Chitosan-CGNA showed an effect on DPPH radical scavenging activity, and its antioxidant activity was dependent on concentration and deacetylation degree. These results suggest that P. pugnax exoskeleton could be an excellent natural source for the production of chitosan with potential applications in the health system, and to prevent infections associated with pathogens strains.
Collapse
|
29
|
Preparation and characterization of chitosan-based bioactive films incorporating Moringa oleifera leaves extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01055-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11060646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them. Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical, optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but the good barrier properties were maintained. Optical properties did not change statistically with the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to support a decision on the choice of the material’s final application.
Collapse
|
31
|
Rachtanapun P, Klunklin W, Jantrawut P, Jantanasakulwong K, Phimolsiripol Y, Seesuriyachan P, Leksawasdi N, Chaiyaso T, Ruksiriwanich W, Phongthai S, Sommano SR, Punyodom W, Reungsang A, Ngo TMP. Characterization of Chitosan Film Incorporated with Curcumin Extract. Polymers (Basel) 2021; 13:polym13060963. [PMID: 33801132 PMCID: PMC8004135 DOI: 10.3390/polym13060963] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is a phenolic compound derived from turmeric roots (Curcuma longa L.). This research studied the effects of curcumin extract on the properties of chitosan films. The film characteristics measured included mechanical properties, visual aspects, color parameters, light transmission, moisture content, water solubility, water vapor permeability, infrared spectroscopy, and antioxidant activity. The results suggest that adding curcumin to chitosan-based films increases yellowness and light barriers. Infrared spectroscopy analysis showed interactions between the phenolic compounds of the extract and the chitosan, which may have improved the mechanical properties and reduced the moisture content, water solubility, and water vapor permeability of the films. The antioxidant activity of the films increased with increasing concentrations of the curcumin extract. This study shows the potential benefits of incorporating curcumin extract into chitosan films used as active packaging.
Collapse
Affiliation(s)
- Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
- Correspondence:
| | - Warinporn Klunklin
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
| | - Pensak Jantrawut
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
| | - Warintorn Ruksiriwanich
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suphat Phongthai
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
| | - Sarana Rose Sommano
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Group for Development of Microbial Hydrogen Production Process, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Thi Minh Phuong Ngo
- Department of Chemical Technology and Environment, The University of Danang-University of Technology and Education, Danang 550000, Vietnam;
| |
Collapse
|
32
|
Díaz-Montes E, Castro-Muñoz R. Trends in Chitosan as a Primary Biopolymer for Functional Films and Coatings Manufacture for Food and Natural Products. Polymers (Basel) 2021; 13:767. [PMID: 33804445 PMCID: PMC7957772 DOI: 10.3390/polym13050767] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n Col. Barrio La Laguna Ticoman, Mexico City 07340, Mexico;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| |
Collapse
|
33
|
Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. Int J Food Microbiol 2021; 342:109071. [PMID: 33578302 DOI: 10.1016/j.ijfoodmicro.2021.109071] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022]
Abstract
Biodegradable films reinforced with bio-nanomaterials are a solution for developing active packaging systems, shelf-life extension and protection of environment against conventional packaging. This study aimed to characterize the biocompatible chitosan (CS) films formulated with nano-liposomal garlic essential oil (NLGEO) and assess the physicho-mechanical, morphology properties and also microbial and chemical changes in chicken fillets during storage time at 4 °C. NLGEO was obtained by thin-layer hydration-sonication method using glycerol and tween 80 as plasticizer and emulsifier, respectively. Different levels (0, 0.5, 1 and 2%) of NLGEO with average size of ~101 nm were added into the chitosan matrix and films fabricated by casting method. The average size, polydispersity index and zeta potential were ~101 nm, 0.127 and -7.23, respectively. Control samples showed higher values for pH, total volatile nitrogen (TVN), peroxide value (PV), thiobarbituric acid-reactive substances (TBARS), and microbial count including total viable count (TVC), coliforms, Staphylococcus aureus and psychrotroph bacteria than treated samples. The films with higher NLGEO content represented stronger inhibitory effects. The incorporation of NLGEO improved the mechanical properties and water resistance of active films. Microstructure analysis also showed a nearly smooth surface morphology and homogenous structure with a good dispersion for NLGEO films. Significant synergistic effects in chemical and bacterial preservation of chicken fillet samples were observed by NLGEO films. The optimal mechanical and barrier properties of chitosan-NLGEO films introduced it a potential active packaging to extend the shelf life of chicken fillet.
Collapse
|
34
|
Homayounpour P, Shariatifar N, Alizadeh‐Sani M. Development of nanochitosan-based active packaging films containing free and nanoliposome caraway ( Carum carvi. L) seed extract. Food Sci Nutr 2021; 9:553-563. [PMID: 33473316 PMCID: PMC7802560 DOI: 10.1002/fsn3.2025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The biocompatible active films were prepared based on nanochitosan (NCh) containing free and nanoliposome caraway seed extract (NLCE). The produced films were characterized by physico-mechanical, barrier, structural, color, antimicrobial, and antioxidant properties. The average particle size of NLCE was 78-122 nm, and the encapsulation efficiency (EE%) was obtained 49.87%-73.07%. Nanoliposomes with the lowest size and the highest encapsulation efficiency were merged with the film samples. NCh/CE3% and NCh/NLCE3% films had higher stability compared to other films and showed the highest antimicrobial activity (3.68 mm inhibition) and radical quenching capacity (51%), respectively. Likewise, biodegradable active films containing nanoliposomes had lower antimicrobial potential and higher antioxidant capacity than films containing free extract with similar concentration. The Fourier-transform infrared spectroscopy (FTIR) results revealed new interactions between NCh and nanoliposomes. Scanning electron microscopy (SEM) investigation also exhibited a homogenous structure and nearly smooth surface morphology with a good dispersion for NCh/NLCE films. Despite an increase in yellowness (b value) and a decrease in whiteness (L value) index, the incorporation of nanoliposomes within the NCh films improved the mechanical flexibility (from 10.2% to 15.05%) and reduced water vapor permeability (WVP) (from 14.2 × 10-12 g/m·s·Pa to 11.9 × 10-12 g/m·s·Pa). Today, due to the growing trend toward natural ingredients, the use of nanoparticles derived from plant derivatives has expanded in the food industry owing to their antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- Parisa Homayounpour
- Department of Food Science and TechnologyIslamic Azad UniversityDamghan BranchDamghanIran
| | - Nabi Shariatifar
- Food Safety and Hygiene DivisionDepartment of Environmental HealthSchool of Public HealthTehran University of Medical SciencesTehranIran
- Halal Research Center of Islamic Republic of IranTehranIran
| | - Mahmood Alizadeh‐Sani
- Food Safety and Hygiene DivisionDepartment of Environmental HealthSchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
35
|
COSTA LAD, DIÓGENES ICN, OLIVEIRA MDA, RIBEIRO SF, FURTADO RF, BASTOS MDSR, SILVA MAS, BENEVIDES SD. Smart film of jackfruit seed starch as a potential indicator of fish freshness. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.06420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Chen X, Wang K, Wang Z, Zeng H, Yang T, Zhang X. Highly stretchable composites based on cellulose. Int J Biol Macromol 2020; 170:71-87. [PMID: 33358953 DOI: 10.1016/j.ijbiomac.2020.12.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Cellulose is a kind of natural polymer with good biocompatibility, biodegradability, non-toxicity, low cost and other advantages, which has been widely used in many fields, such as energy, biological scaffolds, medicine, paper making, cosmetics, and template materials. Based on this, how to use cellulose to construct stretchable composites to meet the needs of different fields has attracted widespread attention. In this review, we have described the applications of cellulose-based stretchable composites, including sensor applications, energy applications, bionic and medical materials applications, fabric applications, and packaging applications. Finally, the future development of stretchable composites based on cellulose is discussed.
Collapse
Affiliation(s)
- Xianrong Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Zhenhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
37
|
Díaz-Galindo EP, Nesic A, Cabrera-Barjas G, Dublan-García O, Ventura-Aguilar RI, Vázquez-Armenta FJ, Aguilar-Montes de Oca S, Mardones C, Ayala-Zavala JF. Physico-Chemical and Antiadhesive Properties of Poly(Lactic Acid)/Grapevine Cane Extract Films against Food Pathogenic Microorganisms. Polymers (Basel) 2020; 12:polym12122967. [PMID: 33322661 PMCID: PMC7764811 DOI: 10.3390/polym12122967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was evaluation of the physico-chemical properties and adhesion of microorganisms on poly(lactic acid) (PLA)-based films loaded with grapevine cane extract (5-15 wt%). The films were processed in a compression molding machine and characterized by mechanical, thermal, water vapor barrier and microbiological tests. The best physical-chemical properties for PLA film containing 10 wt% of extract were obtained. The addition of 10 wt% of extract into PLA films led to decrease of tensile strength for 52% and increase in elongation at break for 30%. The water vapor barrier of this film formulation was enhanced for 55%. All films showed thermal stability up to 300 °C. The low release of the active compounds from films negatively influenced their antimicrobial and antifungal activity. Botrytis cinerea growth inhibition onto PLA containing extracts (PLA-E) films was in the range between 15 and 35%. On the other side, PLA/extract films exhibited the antiadhesive properties against Pseudomonas aeruginosa, Pectobacterium carotovorum, Saccharomyces pastorianus, and Listeria monocytogenes, which could imply their potential to be used as sustainable food packaging materials for preventing microbial contamination of food.
Collapse
Affiliation(s)
- Edaena Pamela Díaz-Galindo
- Facultad de Química, Universidad Autónoma del Estado de México, km 115 Car, Toluca-Ixtlahuaca, El Cerillo Piedras Blancas, Toluca 50295, Mexico; (E.P.D.-G.); (O.D.-G.)
| | - Aleksandra Nesic
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Correspondence: (G.C.-B.); (J.F.A.-Z.)
| | - Octavio Dublan-García
- Facultad de Química, Universidad Autónoma del Estado de México, km 115 Car, Toluca-Ixtlahuaca, El Cerillo Piedras Blancas, Toluca 50295, Mexico; (E.P.D.-G.); (O.D.-G.)
| | - Rosa Isela Ventura-Aguilar
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, San Isidro, Yautepec 62731, Morelos, Mexico;
| | - Francisco Javier Vázquez-Armenta
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Saúl Aguilar-Montes de Oca
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (CIESA-FMVZ-UAEM), Autopista Toluca-Atlacomulco Km. 15.5, San Cayetano de Morelos, Toluca 50200, Estado de México, Mexico;
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Universidad de Concepción, Barrio Universitario s/n, Concepción P.O. Box 160-C, Concepción 4070386, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
- Correspondence: (G.C.-B.); (J.F.A.-Z.)
| |
Collapse
|
38
|
Sun H, Li S, Chen S, Wang C, Liu D, Li X. Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. Int J Biol Macromol 2020; 159:696-703. [DOI: 10.1016/j.ijbiomac.2020.05.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
|
39
|
Adsorption of Bacteria by Highly Efficient, Economic and Biodegradable Magnetic Coated Chitosan Adsorbent. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01010-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wang R, Bao B, Bao C, Wang S, Ur Rahman S, Hou C, Elango J, Wu W. Resveratrol and Celastrol Loaded Collagen Dental Implants Regulate Periodontal Ligament Fibroblast Growth and Osteoclastogenesis of Bone Marrow Macrophages. Chem Biodivers 2020; 17:e2000295. [PMID: 32649040 DOI: 10.1002/cbdv.202000295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Collagen is widely used for dental therapy in several ways such as films, 3D matrix, and composites, besides traditional Chinese medicine (TCM), has been used in tissue regeneration and wound healing application for centuries. Hence, the present study was targeted for the first time to fabricate collagen film with TCM such as resveratrol and celastrol in order to investigate the human periodontal ligament fibroblasts (HPLF) growth and bone marrow macrophages (BMM) derived osteoclastogenesis. Further, the physicochemical, mechanical and biological activities of collagen-TCM films crosslinked by glycerol and EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosuccinimide) were investigated. Collagen film characterization was significantly regulated by the nature of plasticizers like hydrophobic and degree of polarity. Interestingly, the collagen film's denaturation temperature was increased by EDC-NHS than glycerol. FT-IR data confirmed the functional group changes due to chemical interaction of collagen with TCM. Morphological changes of HPLF cells cultured in control and collagen films were observed by SEM. Importantly, the addition of resveratrol upregulated the proliferation of HPLF cells, while osteoclastogenesis of BMM cells treated with mCSF-RANKL was significantly downregulated by celastrol. Accordingly, the collagen-TCM film could be an interesting material for dental regeneration, and especially it is a therapeutic target to restrain the elevated bone resorption during osteoporosis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Chunling Bao
- East Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201306, P. R. China
| | - Shujun Wang
- Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Saeed Ur Rahman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Chunyu Hou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, Shanghai, 201306, P. R. China
| |
Collapse
|
41
|
Luís Â, Gallardo E, Ramos A, Domingues F. Design and Characterization of Bioactive Bilayer Films: Release Kinetics of Isopropyl Palmitate. Antibiotics (Basel) 2020; 9:antibiotics9080443. [PMID: 32722329 PMCID: PMC7459774 DOI: 10.3390/antibiotics9080443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022] Open
Abstract
Active packaging incorporating antioxidants and antimicrobials is creating a niche in the market and becoming increasingly important. The main goal of this work was the design of bioactive bilayer films (zein/pullulan) incorporating licorice essential oil. The bilayer films were fully characterized in terms of their chemical, physical, barrier, antioxidant, and antimicrobial properties. Furthermore, the release kinetics of isopropyl palmitate, the major compound of the licorice essential oil, was evaluated by HPLC-DAD (high-performance liquid chromatography coupled to diode-array detector). Scanning Electron Microscopy (SEM) micrographs of cross-sections of the bilayer films clearly show the two layers of the films. Besides presenting the capacity to scavenge free radicals and to inhibit the lipid peroxidation, the developed bilayer films were also able to inhibit the growth of known foodborne pathogens (Enterococcus faecalis and Listeria monocytogenes). The release kinetics profile of isopropyl palmitate from bilayer films incorporating licorice essential oil demonstrated that in 50% ethanol at room temperature, the release was more effective, suggesting that the bilayer films will be more efficient if applied to package semi-fatty food.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (E.G.); (F.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-002
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (E.G.); (F.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana Ramos
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
- Materiais Fibrosos e Tecnologias Ambientais (FibEnTech), Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (E.G.); (F.D.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| |
Collapse
|
42
|
Novel ABTS-dot-blot method for the assessment of antioxidant properties of food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Riaz A, Lagnika C, Luo H, Dai Z, Nie M, Hashim MM, Liu C, Song J, Li D. Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol 2020; 150:595-604. [DOI: 10.1016/j.ijbiomac.2020.02.078] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
|
44
|
Riaz A, Lagnika C, Luo H, Nie M, Dai Z, Liu C, Abdin M, Hashim MM, Li D, Song J. Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydr Polym 2020; 235:115944. [DOI: 10.1016/j.carbpol.2020.115944] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
|
45
|
Zarandona I, Puertas A, Dueñas M, Guerrero P, de la Caba K. Assessment of active chitosan films incorporated with gallic acid. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105486] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Díaz-Galindo EP, Nesic A, Cabrera-Barjas G, Mardones C, von Baer D, Bautista-Baños S, Dublan Garcia O. Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape cane Extract. Molecules 2020; 25:E1306. [PMID: 32182987 PMCID: PMC7144104 DOI: 10.3390/molecules25061306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this paper is to evaluate the physicochemical and microbiological properties of active thermoplastic starch-based materials. The extract obtained from grape cane waste was used as a source of stilbene bioactive components to enhance the functional properties of thermoplastic starch (TPS). The biomaterials were prepared by the compression molding technique and subjected to mechanical, thermal, antioxidant, and microbiological tests. The results showed that the addition of grape cane extract up to 15 wt% (TPS/WE15) did not significantly influence the thermal stability of obtained biomaterials, whereas mechanical resistance decreased. On the other side, among all tested pathogens, thermoplastic starch based materials showed antifungal activity toward Botrytis cinerea and antimicrobial activity toward Staphylococcus aureus, suggesting potential application in food packaging as an active biomaterial layer.
Collapse
Affiliation(s)
- Edaena Pamela Díaz-Galindo
- Facultad de Química, Universidad Autónoma del Estado de México, Km 115 Carr. Toluca-Ixtlahuaca. El Cerrillo Piedras Blancas, Toluca 50100, Mexico; (E.P.D.-G.); (O.D.G.)
| | - Aleksandra Nesic
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Universidad de Concepción, Barrio Universitario s/n, Concepción P.O-Box 160-C, Concepción 4070386, Chile; (C.M.); (D.v.B.)
| | - Dietrich von Baer
- Departamento de Análisis Instrumental, Universidad de Concepción, Barrio Universitario s/n, Concepción P.O-Box 160-C, Concepción 4070386, Chile; (C.M.); (D.v.B.)
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional. Carretera Yautepec-Jojutla, Km. 6, calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos 62731, Mexico;
| | - Octavio Dublan Garcia
- Facultad de Química, Universidad Autónoma del Estado de México, Km 115 Carr. Toluca-Ixtlahuaca. El Cerrillo Piedras Blancas, Toluca 50100, Mexico; (E.P.D.-G.); (O.D.G.)
| |
Collapse
|
47
|
Cano A, Andres M, Chiralt A, González-Martinez C. Use of tannins to enhance the functional properties of protein based films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Li Y, Zou Q, Song S, Sun T, Li J. Effects of chitosan coatings combined with resveratrol and lysozyme on the quality of
Sciaenops ocellatus
during refrigerated storage. J Food Saf 2020. [DOI: 10.1111/jfs.12777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yingchang Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Qian Zou
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Suzhen Song
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| |
Collapse
|
49
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh A, Dubey NK. Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110000. [PMID: 31787384 DOI: 10.1016/j.ecoenv.2019.110000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The present study deals with encapsulation of Myristica fragrans essential oil (MFEO) into chitosan nano-matrix, their characterization and assessment of antimicrobial activity, aflatoxin inhibitory potential, safety profiling and in situ efficacy in stored rice as environment friendly effective preservative to control the postharvest losses of food commodities under storage. Surface morphology of MFEO-chitosan nanoemulsion as well as encapsulation of MFEO was confirmed through SEM, FTIR and XRD analysis. In vitro release characteristics with biphasic burst explained controlled volatilization from nanoencapsulated MFEO. Unencapsulated MFEO exhibited fungitoxicity against 15 food borne molds and inhibited aflatoxin B1 secretion by toxigenic Aspergillus flavus LHP R14 strain. In contrast, nanoencapsulated MFEO showed better fungitoxicity and inhibitory effect on aflatoxin biosynthesis at lower doses. In situ efficacy of unencapsulated and nanoencapsulated MFEO on stored rice seeds exhibited effective protection against fungal infestation, aflatoxin B1 contamination, and lipid peroxidation. Both the unencapsulated and nanoencapsulated MFEO did not affect the germination of stored rice seeds confirming non-phytotoxic nature. In addition, negligible mammalian toxicity of unencapsulated MFEO (LD50 = 14,289.32 μL/kg body weight) and MFEO loaded chitosan nanoemulsion (LD50 = 9231.89 μL/kg body weight) as revealed through favorable safety profile recommend the industrial significance of nanoencapsulated MFEO as an effective green alternative to environmentally hazardous synthetic pesticides for protection of food commodities during storage.
Collapse
Affiliation(s)
- Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
50
|
Jiang L, Zong J, Ma C, Chen S, Li H, Zhang D. Characterization of sustained-release chitosan film loaded with rutin-β-cyclodextrin complex and glucoamylase. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:734-744. [PMID: 32116382 PMCID: PMC7016053 DOI: 10.1007/s13197-019-04106-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
ABSTRACT Edible chitosan film incorporated with rutin-β-cyclodextrin was developed and characterized. The delivery of rutin was improved via the hydrolyzation function of glucoamylase, and the antioxidant activity of the chitosan film was enhanced by the addition of rutin. Sodium bicarbonate solution at different pHs (pH-adjusting reagent) was employed to afford the mild condition for the incorporated glucoamylase. The enzyme exhibited its hydrolyzation function to improve the release rate of rutin by destabilizing the rutin-β-cyclodextrin complex (RCC) in chitosan film. The optimum pH of glucoamylase was achieved with 5 mL addition amount of 0.5 mol/L sodium bicarbonate solution, and the glucoamylase improved the radical scavenging ratio of chitosan film. The yellowness of chitosan film was enhanced with the addition of RCC solution. The films prepared without water demonstrated coarse and rough surface, while the water-based films had smoother and even surface as examined by scanning electron microscopy. In contrast, these observations disappeared in the water immersion groups. X-ray diffraction suggested that the hydrolyzation of β-cyclodextrin and the interlinkage between β-cyclodextrin and the chitosan chain exerted a negative function on maintaining the crystal structure of pure chitosan film. Further, the destabilization of RCC complex with the glucoamylase activity was evidenced by the absence of peak associated with β-cyclodextrin as observed from Fourier transform infrared spectra. The enzyme improved the release of rutin and the addition of RCC successfully endowed antioxidant activity to the chitosan film. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Jinhuan Zong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zhangdian District, No. 12, Zhangzhou Road, Zibo, Shandong Province, China
| |
Collapse
|