1
|
Lin J, Dai J, Yang Q, Li J, Xiao J, Zhang Y, Huang Y, Wang L, Chen P, Xu B, Zhao J, Yang X, Chen X. Preparation and characterization of Salecan β-glucan-based edible film loaded with lemon essential oil nanoemulsion: Effects on the preservation of chilled pork. Food Chem 2025; 478:143598. [PMID: 40043435 DOI: 10.1016/j.foodchem.2025.143598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Chilled meat is highly prone to microbial spoilage, and edible films with antimicrobial properties offer a feasible solution. In this study, oil-in-water (O/W) nanoemulsions loaded with lemon essential oil (LEO) were developed. Nanoemulsification improved the antioxidant and antimicrobial activities of LEO. The edible films, using Salecan β-glucan as the matrix and incorporating varying ratios of LEO nanoemulsion, demonstrated uniform oil distribution and desirable appearance. Kinetic modeling showed a slow release of LEO from the film by a diffusion-dominated coupled mechanism. The film with 5 % LEO nanoemulsion displayed superior mechanical strength, barrier properties, and prolonged essential oil release, significantly inhibiting spoilage bacteria. Preservation tests confirmed its efficacy in controlling pH, total viable count, TVB-N, and lipid oxidation, thereby prolonging the shelf-life of chilled pork and significantly delaying deterioration in quality indicators such as color and texture. This approach presents a promising method for developing innovative edible films for chilled meat preservation.
Collapse
Affiliation(s)
- Jiao Lin
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Qian Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Jiarui Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Jing Xiao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Yuexin Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center,Chengdu 610000, PR China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu 610000, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China; Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China; Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Hernandez-Tenorio F, Saez AA, Palacio DA, Galeano E, Marin-Palacio LD, Giraldo-Estrada C. Formulations based on pullulan and a derivative as coating material for the food sector. Carbohydr Polym 2024; 342:122393. [PMID: 39048197 DOI: 10.1016/j.carbpol.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Carboxymethylated derivatives of pullulan (PU) were synthesized and evaluated as coating for the postharvest preservation of blueberries. Carboxymethylpullulan was obtained by etherification reaction with the substitution degrees of 0.52, 0.34, and 0.26 for CMP1, CMP2, and CMP3 respectively. Infrared spectroscopy and nuclear magnetic resonance results showed characteristic signals of the carbonyl group belonging to the carboxymethyl group. Thermal analysis showed that CMP1, CMP2, and CMP3 derivatives presented thermal stability values of 209.91 C, 214.73 C, and 225.52 °C, respectively, and were lower with respect to PU with Td of 238.84 °C. Furthermore, an increase in the glass transition temperature due to carboxymethylation was determined. The chemical modification decreased the contact angle with respect to PU (71.34°) with values for CMP1, CMP2, and CMP3 of 39.89°, 53.72° and 60.61°, respectively. The carboxymethylation also increased the water vapor permeability and mechanical properties of the films. In addition, it was found that the CMP molecules affected the optical properties. The application of CMP-based coatings reduced the mass loss and ripening rate of blueberries compared to native pullulan, therefore, packaging from CMP molecules could be used as a coating capable of delaying ripening and extending the shelf life of fruits.
Collapse
Affiliation(s)
- Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Alex A Saez
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 0500100, Colombia
| | - Luz D Marin-Palacio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Catalina Giraldo-Estrada
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia.
| |
Collapse
|
3
|
Ridella F, Carpintero M, Marcet I, Matos M, Gutiérrez G, Rendueles M, Díaz M. Esterification of dextran by octenyl succinic anhydride (OSA): Physicochemical characterization and functional properties assessment. Carbohydr Polym 2024; 340:122300. [PMID: 38858007 DOI: 10.1016/j.carbpol.2024.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024]
Abstract
The chemical modification of biopolymers to enhance their functional properties in the food, cosmetic, and pharmaceutical industries is an area of particular interest today. In this study, different molecular weight dextrans were chemically modified for the first time with octenyl succinic anhydride (OSA). This reaction involves an esterification process wherein the hydroxy groups of dextran are partially substituted by a carbonaceous chain, imparting hydrophobic properties to dextran molecules and, consequently, an amphiphilic nature. To assess and quantify the incorporation of OSA into the dextran structure, reaction products were analysed using NMR and FTIR. Additionally, the thermal properties, the Z-potential and the foaming and emulsifying capacity of both native and modified dextrans were examined. The introduction of OSA groups to dextran molecules, with degrees of substitution between 0.028 and 0.058, increased the zeta potential and the thermal stability of the polymer. Furthermore, the chemical modification of dextran backbone with this radical conferred a hydrophobic nature to the biopolymer, which enhance its foaming and emulsifying capacity. Therefore, these results demonstrate that the incorporation of hydrophobic moieties into dextran polymers improves their functional properties and broadens their potential applications in the industry.
Collapse
Affiliation(s)
- Florencia Ridella
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - María Carpintero
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
5
|
Yuan X, Zhou Y, Wang Y, Liu L, Yang G. Fabrication of Schiff-base crosslinked films modified dialdehyde starch with excellent UV-blocking and antibacterial properties for fruit preservation. Carbohydr Polym 2024; 326:121619. [PMID: 38142076 DOI: 10.1016/j.carbpol.2023.121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Starch-based films have received considerable attention, owing to their commendable biocompatible and biodegradable properties; however, their poor ultraviolet (UV)-blocking and antibacterial performances limit their application in fruit preservation. Herein, bio-based bifunctional benzoxazine (Bi-BOZ) compounds with different carbon chain lengths were synthesized, and the influence of chain lengths on the antibacterial effect was explored. Benzoxazine with 1,12-dodecanediamine as the amine source (BOZ-DDA) exhibited excellent antibacterial and antibiofilm activities, with minimum inhibitory concentrations of 21.7 ± 2.2 and 23.3 ± 2.6 μg/mL against Escherichia coli and Staphylococcus aureus, respectively, mainly because the electrostatic attraction and hydrophobic effect of BOZ-DDA, effectively disrupted the bacterial integrity. DS/DDA films with hydrophobic, antibacterial, and UV-resistant abilities were prepared by the Schiff-base reaction between BOZ-DDA and dialdehyde starch (DS). The interactions between the films increased with BOZ-DDA content, enhanced mechanical and barrier properties. DS/DDA films exhibited acid-responsive antibacterial activity attributed to the acid hydrolysis of Schiff bases, released of BOZ-DDA from the films, and the protonation of BOZ-DDA. DS/DDA films exhibited commendable antibacterial and anti-ultraviolet characteristics compared to commercially available films, allowing them to prevent the degradation of mangoes and grapes. As sustainable antibacterial materials, the multifunctional DS/DDA films manifest promising prospects in fruit preservation packaging applications.
Collapse
Affiliation(s)
- Xuan Yuan
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yijia Zhou
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yudan Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, China
| | - Guoxing Yang
- Daqing Petrochemical Research Center, Petrochemical Research Institute, PetroChina Corporation, Daqing 163000, China.
| |
Collapse
|
6
|
Cheng X, Yang S, Fang Q, Dai S, Peng X, Sun M, Lian Z, Liu Y, Yang J, Xu J, Wang H, Jiang L. Biomacromolecule assembly of soy glycinin-potato starch complexes: Focus on structure, function, and applications. Carbohydr Polym 2023; 317:121101. [PMID: 37364963 DOI: 10.1016/j.carbpol.2023.121101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The effect of the cross-linking mechanism and functional properties of soy glycinin (11S)-potato starch (PS) complexes was investigated in this study. The results showed that the binding effecting and spatial network structure of 11S-PS complexes via heated-induced cross-linking were adjusted by biopolymer ratios. In particular, 11S-PS complexes with the biopolymer ratios of 2:15, had a strongest intermolecular interaction through hydrogen bonds and hydrophobic force. Moreover, 11S-PS complexes at the biopolymer ratios of 2:15 exhibited a finer three-dimensional network structure, which was used as film-forming solution to enhance the barrier performance and mitigate the exposure to the environment. In addition, the 11S-PS complexes coating was effective in moderating the loss of nutrients, thereby extending their storage life in truss tomato preservation experiments. This study provides helpful to insights into the cross-linking mechanism of the 11S-PS complexes and the potential application of food-grade biopolymer composite coatings in food preservation.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Fang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinhui Peng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingyue Sun
- College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150066, China
| | - ZiTeng Lian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanwei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - JinJie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
7
|
Zhang W, Goksen G, Zhou Y, Yang J, Khan MR, Ahmad N, Fei T. Application of a Chitosan-Cinnamon Essential Oil Composite Coating in Inhibiting Postharvest Apple Diseases. Foods 2023; 12:3518. [PMID: 37761227 PMCID: PMC10529609 DOI: 10.3390/foods12183518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of this study was to explore the film-forming properties of cinnamon essential oil (CEO) and chitosan (CS) and the effect of their composite coating on postharvest apple diseases. The results demonstrated that the composite coating exhibits favorable film-forming properties at CEO concentrations below 4% (v/v). The effectiveness of the composite coating in disease control can be attributed to two factors: the direct inhibitory activity of CEO against pathogens in vitro and the induced resistance triggered by CS on the fruits. Importantly, the incorporation of CEO did not interfere with the induction of resistance by CS in harvested apples. However, it is noteworthy that the inhibitory effect of the CS-CEO composite coating on apple diseases diminished over time. Therefore, a key aspect of enhancing the preservation ability of fruits is improving the controlled release properties of CEO within CS coatings. This will enable a sustained and prolonged antimicrobial effect, thereby bolstering the fruit preservation capabilities of the composite coatings.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Yuanping Zhou
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Hu J, Jiao W, Chen Q, Liu B, Fu M. Preparation of a multilayer antibacterial film and its application for controlling postharvest disease in temperate fruit (including apple, pear, and peach) under ambient storage. Food Sci Nutr 2023; 11:5188-5198. [PMID: 37701234 PMCID: PMC10494645 DOI: 10.1002/fsn3.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 09/14/2023] Open
Abstract
The objective of this study was to provide formulation of a new multilayer antibacterial film and to investigate the optimal use concentration of chitosan and carboxymethyl cellulose in the range from 0.5% to 2%, as well as its application for controlling postharvest disease in temperate fruit (apple, pear, and peach). The multilayer antibacterial film used chitosan (CS) and carboxymethyl cellulose (CMC) as polysaccharide macromolecule, lemon essential oil (LEO) as active agent, and ε-polylysine (ε-PL) as the main antibacterial ingredient. The results showed that the physical properties of the self-assembled film were adjusted by the electrostatic layer-by-layer (LbL) deposition. Fourier transform infrared (FT-IR) analysis and thermogravimetric (TGA) revealed that hydrogen bonds were generated during the self-assembly of CS-LEO/CMC-ε-PL film, resulting in changes in intermolecular interactions and thermal stability. Furthermore, compared with CS-LEO single-layer film, the multilayer film exhibited higher retention rate of LEO. In vivo test, the self-assembled film significantly inhibited the infection of postharvest pathogenic fungi including Penicillium expansum (P. expansum) and Alternaria alternata (A. alternata) on fruit. To summarize, the CS-LEO/CMC-ε-PL LbL self-assembly coating notably controlled postharvest pathogen rot on fruit, and reduced the loss of fruit during storage and transportation. Our results suggest that the polysaccharide-based edible coating prepared in this work may offer an alternative to synthetic waxes.
Collapse
Affiliation(s)
- Jingjing Hu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Wenxiao Jiao
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Qingmin Chen
- College of Food Science and EngineeringShandong Agricultural and Engineering UniversityJinanChina
| | - Bangdi Liu
- Academy of Agricultural Planning and EngineeringMinistry of Agriculture and Rural AffairsBeijingChina
| | - Maorun Fu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
9
|
Prasad S, Purohit SR. Microbial exopolysaccharide: Sources, stress conditions, properties and application in food and environment: A comprehensive review. Int J Biol Macromol 2023:124925. [PMID: 37236568 DOI: 10.1016/j.ijbiomac.2023.124925] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Microbial glucan or exopolysaccharides (EPS) have caught an eye of researchers from decades. The unique characteristics of EPS make it suitable for various food and environmental applications. This review overviews the different types of exopolysaccharides, sources, stress conditions, properties, characterization techniques and applications in food and environment. The yield and production condition of EPS is a major factor affecting the cost and its applications. Stress conditions are very important as it stimulates the microorganism for enhanced EPS production and affects its properties. As far as application is concerned specific properties of EPS such as, hydrophilicity, less oil uptake behavior, film forming ability, adsorption potential have applications in both food and environment sector. Novel and improved method of production, feed stock and right choice of microorganisms with stress conditions are critical for desired functionality and yield of the EPS.
Collapse
Affiliation(s)
- Sanstuti Prasad
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Soumya Ranjan Purohit
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India.
| |
Collapse
|
10
|
Gojgic-Cvijovic G, Jakovljevic D, Zivkovic L, Cosovic V, Pavlovic V, Nikolic I, Maravic N, Dokic L. Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties. Int J Biol Macromol 2023; 242:124837. [PMID: 37178878 DOI: 10.1016/j.ijbiomac.2023.124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
In this study, levan from Bacillus licheniformis NS032 was modified in an aqueous medium by octenyl succinic anhydride (OSA), and the properties of the obtained derivatives were studied. The maximum efficiency in the synthesis reaction was achieved at 40 °C and a polysaccharide slurry concentration of 30 %. Increasing the reagent concentration (2-10 %) led to an increase in the degree of substitution (0.016-0.048). Structures of derivatives were confirmed by FTIR and NMR. Scanning electronic microscopy, thermogravimetry, and dynamic light scattering analyses showed that the derivatives with degrees of substitution of 0.025 and 0.036 retained levan's porous structure and thermostability and showed better colloidal stability than the native polysaccharide. The intrinsic viscosity of derivatives increased upon modification, while the surface tension of the 1 % solution was lowered to 61 mN/m. Oil-in-water emulsions prepared with sunflower oil (10 % and 20 %) by mechanical homogenization and 2 and 10 % derivatives in the continuous phase showed mean oil droplet sizes of 106-195 μm, while the distribution curves exhibited bimodal character. The studied derivatives have a good capacity to stabilize emulsions, as they have a creaming index ranging from 73 % to 94 %. The OSA-modified levans could have potential applications in new formulations of emulsion-based systems.
Collapse
Affiliation(s)
- Gordana Gojgic-Cvijovic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Dragica Jakovljevic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Ljiljana Zivkovic
- University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia
| | - Vladan Cosovic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Vladimir Pavlovic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ivana Nikolic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Maravic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ljubica Dokic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
11
|
Preparation, characterization, and antibacterial effect of bio-based modified starch films. Food Chem X 2023; 17:100602. [PMID: 36974189 PMCID: PMC10039230 DOI: 10.1016/j.fochx.2023.100602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
There are several problems with common starch films, including strong water absorption and poor mechanical properties. To create a better starch film, octenyl succinate cassava starch ester (OSCS) was first blended with chitosan and nano ZnO to prepare an OSCS/CS/ZnO film. Then, the film was supplemented with different concentrations of ε-PL as a bacteriostatic agent to prepare a film that would resist bacterial invasion. The mechanical properties, barrier properties, optical properties, and color of the modified starch antibacterial films were investigated, and finally the antibacterial properties and cytotoxicity were tested. The results demonstrated that the modified starch antibacterial film had good mechanical properties, improved surface hydrophobicity, and had a UV-blocking effect. The modified starch antibacterial film with ε-PL of 8% had stable and long-lasting antibacterial properties, stable release, and good cytocompatibility. An active packaging material was successfully prepared using ε-PL and had a strong preservative effect on food.
Collapse
|
12
|
Characterization of Zizania latifolia polysaccharide-corn starch composite films and their application in the postharvest preservation of strawberries. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Pourramezan H, Labbafi M, Khodaiyan F, Mousavi M, Gharaghani M, Saadatvand M, Mahmoudi A. Preparation of octenyl succinylated kappa-carrageenan; reaction optimization, characterization, and application in low-fat vegan mayonnaise. Int J Biol Macromol 2022; 223:882-898. [PMID: 36309236 DOI: 10.1016/j.ijbiomac.2022.10.218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Kappa-carrageenan (KC) esterification reaction with octenyl succinic anhydride was optimized using response surface methodology, leading to the production of a food-based emulsifier. Modified kappa-carrageenan (KC-OSA) with different degrees of substitution (DS) (0.023 and 0.045) was produced, and their functional and structural properties were investigated. The results from FTIR and 1HNMR verified the successful occurrence of modification. The KC-OSA emulsions with both DS values were utterly stable after 30 days of storage, while KC failed to form emulsions. The viscosity, foaming properties, surface net charge, and gel opacity increased after modification and with an increase in its extent, while emulsion particle size and polydispersity index, gel melting temperature, and gel hardness decreased. Afterward, the KC-OSA (DS = 0.023) potential use was investigated as fat and egg yolk substitute in mayonnaise, which resulted in vegan mayonnaise samples with no phase separation after a month of storage at room temperature. Particle size measurements implied that the particle size of the mayonnaise sample was decreased with an increase in KC-OSA concentration. The results from the sensory evaluation showed that KC-OSA could be successfully implemented in low-fat vegan mayonnaise. The results from this study draw a bright horizon for the use of KC-OSA in the food industry.
Collapse
Affiliation(s)
- Hamidreza Pourramezan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohsen Labbafi
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohammad Gharaghani
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Melika Saadatvand
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Alireza Mahmoudi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
14
|
Sharma L, Saini CS, Sharma V, Sukhija S. Effect of sesame protein and lotus seed starch based bioactive coatings enriched with
Garcinia indica
extract on sapodilla during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Loveleen Sharma
- Amity Institute of Food Technology Amity University Uttar Pradesh (AUUP) Noida India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Sangrur Punjab India
| | - Vinita Sharma
- Department of Food Technology Chaudhary Devi Lal University Sirsa India
| | - Sakshi Sukhija
- Department of Biotechnology Engineering and Food Technology University Institute of Engineering, Chandigarh University Mohali India
| |
Collapse
|
15
|
Ghosh T, Priyadarshi R, Krebs de Souza C, Angioletti BL, Rhim JW. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
17
|
Singh RS, Saini GK, Kennedy JF. Pullulan production in stirred tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Omar-Aziz M, Gharaghani M, Hosseini SS, Khodaiyan F, Mousavi M, Askari G, Kennedy JF. Effect of octenylsuccination of pullulan on mechanical and barrier properties of pullulan-chickpea protein isolate composite film. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Muley AB, Kedia P, Pegu K, Kausley SB, Rai B. Analyzing the physical and biochemical changes in strawberries during storage at different temperatures and the development of kinetic models. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Emam HE, Mohamed AL. Controllable Release of Povidone-Iodine from Networked Pectin@Carboxymethyl Pullulan Hydrogel. Polymers (Basel) 2021; 13:3118. [PMID: 34578019 PMCID: PMC8468881 DOI: 10.3390/polym13183118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Povidone-iodine (PI) is a common antiseptic reagent which is used for skin infections and wound healing. The control release of PI is quite important to heal the deep and intense wounds. Herein, the preparation of biodegradable pectin@carboxymethyl pullulan (Pe@CMP) hydrogel was carried out and applied for controllable release of PI. CMP was synthesized by interaction of monochloroacetic acid with pullulan at different ratios. The Pe@CMP hydrogel was then prepared by crosslinking of pectin with CMP in presence of glutaraldehyde as cross linker. After carboxymethylation, COOH contents were enlarged to be 24.2-51.2 mmol/kg and degree of substitution was 0.44-0.93. The rheological properties of Pe@CMP hydrogel were enlarged by increment of pectin ratio. Swelling ratio in water (16.0-18.0%) was higher than that of artificial sweat (11.7-13.2%). Pe@CMP hydrogel containing 20% pectin, exhibited the lowest release and 57.7% from PI was released within 360 min. The biological activity of the released PI was monitored to be highly efficient. The kinetic of release was fitted well to the first ordered reaction and Higuchi models. The mechanism of release was explained by the swelling of hydrogel. The networked structure of hydrogel was opened by swelling and PI was released from the outer pores followed by inner pores, achieving the controllable release.
Collapse
Affiliation(s)
- Hossam E. Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Giza 12622, Egypt;
| | | |
Collapse
|
22
|
Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, Kousar M, Thu HE, Abbasi M, Kashif MUR. Curcumin-laden hyaluronic acid-co-Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. Int J Biol Macromol 2021; 185:350-368. [PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/13/2023]
Abstract
Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | | | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | | |
Collapse
|
23
|
Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and mechanical properties. Carbohydr Polym 2021; 255:117471. [DOI: 10.1016/j.carbpol.2020.117471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
|
24
|
Shi C, Huang Q, Zhang R, Liang X, Wang F, Liu Z, Liu M, Hu H, Yin Y. Preparation and catalytic behavior of antioxidant cassava starch with selenium active sites and hydrophobic microenvironments. RSC Adv 2021; 11:39758-39767. [PMID: 35494106 PMCID: PMC9044535 DOI: 10.1039/d1ra06832f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The preparation of antioxidant starch with the activity of glutathione peroxidase (GPx) for scavenging free radicals can not only enrich the types of modified starch but also alternate native GPx to overcome its drawbacks.
Collapse
Affiliation(s)
- Cheng Shi
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiugang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ruirui Zhang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Feng Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
25
|
Gómez‐Aldapa CA, Ghinis‐Rojas DM, Castro‐Rosas J, Velazquez G, Gutiérrez MC, González‐Salitre L, Basilio‐Cortes UA. Effect of mechanical homogenization on the physicochemical properties of films made from dual modified corn starch prepared by the casting solution method. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos A. Gómez‐Aldapa
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | - Dennise M. Ghinis‐Rojas
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | - Javier Castro‐Rosas
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico NacionalCICATA Unidad Querétaro Querétaro Mexico
| | | | - Lourdes González‐Salitre
- Área Académica de QuímicaInstituto de Ciencias Básicas e IngenieríaCiudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo (UAEH) Hidalgo Mexico
| | | |
Collapse
|
26
|
Omar-Aziz M, Yarmand MS, Khodaiyan F, Mousavi M, Gharaghani M, Kennedy JF, Hosseini SS. Chemical modification of pullulan exopolysaccharide by octenyl succinic anhydride: Optimization, physicochemical, structural and functional properties. Int J Biol Macromol 2020; 164:3485-3495. [DOI: 10.1016/j.ijbiomac.2020.08.158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
|
27
|
Muley AB, Singhal RS. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chem 2020; 329:127213. [PMID: 32516713 DOI: 10.1016/j.foodchem.2020.127213] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Chitosan and whey protein isolate (WPI) conjugate films were prepared as a novel matrix for encapsulating and extending the postharvest shelf life of strawberries. Film forming solutions of chitosan, WPI, and chitosan-WPI conjugate were mixed with glycerol, casted for films at 60 ± 2 °C and assessed for their colour, water vapour and oxygen transfer rate, textural, functional groups and secondary structure, thermal, crystallinity, and antioxidant properties. Chitosan-WPI conjugate films were applied as an edible coating on strawberries, and studied for storage stability at 5 °C and 20 °C by assessing physical and biochemical parameters. A considerable reduction in colour indices, weight loss, pH and titratable acidity, reducing sugars, ascorbic acid, total phenolics, DPPH and ABTS assay was noted in the coated strawberries over the control at both the studied temperatures. The control strawberries had a shelf life of 5 and 3 days, whereas coating enhanced the shelf life of strawberries to 8 and 5 days when stored at 5 °C and 20 °C, respectively.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
28
|
Effect of transglutaminase treatment on properties of coconut protein-guar gum composite film. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chem 2019; 299:125109. [DOI: 10.1016/j.foodchem.2019.125109] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
|
30
|
Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydr Polym 2019; 217:46-57. [DOI: 10.1016/j.carbpol.2019.04.050] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
|
31
|
Hydrophobically modified pea proteins: Synthesis, characterization and evaluation as emulsifiers in eggless cake. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Terán Hilares R, Resende J, Orsi C, Ahmed M, Lacerda T, da Silva S, Santos J. Exopolysaccharide (pullulan) production from sugarcane bagasse hydrolysate aiming to favor the development of biorefineries. Int J Biol Macromol 2019; 127:169-177. [DOI: 10.1016/j.ijbiomac.2019.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
|
33
|
Enhancing resilient property of Kaempferia galanga rhizome starch by succinylation. Int J Biol Macromol 2019; 124:1033-1039. [DOI: 10.1016/j.ijbiomac.2018.11.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022]
|
34
|
Soni N, Shah NN, Singhal RS. Dodecenyl succinylated guar gum hydrolysate as a wall material for microencapsulation: Synthesis, characterization and evaluation. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Torres-León C, Vicente AA, Flores-López ML, Rojas R, Serna-Cock L, Alvarez-Pérez OB, Aguilar CN. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.057] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Synthesis and evaluation of n-octenyl succinylated guar gum as an anti-staling agent in bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
An investigation on the effect of polyphenolic extracts of Nigella sativa seedcake on physicochemical properties of chitosan-based films. Carbohydr Polym 2018; 192:347-355. [DOI: 10.1016/j.carbpol.2018.03.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023]
|
38
|
Shah NN, Singhal RS. A two-tier modified starch-oxidation followed by n -octenyl succinylation as gum Arabic substitute: Process details and characterization. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Physicochemical, functional and rheological investigation of Soymida febrifuga exudate gum. Int J Biol Macromol 2018; 111:1116-1123. [DOI: 10.1016/j.ijbiomac.2018.01.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/20/2022]
|
40
|
Li H, Xue Y, Jia B, Bai Y, Zuo Y, Wang S, Zhao Y, Yang W, Tang H. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.102] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Cross-linking effect of polyphenolic extracts of Lepidium sativum seedcake on physicochemical properties of chitosan films. Int J Biol Macromol 2018; 114:1240-1247. [PMID: 29627468 DOI: 10.1016/j.ijbiomac.2018.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 11/23/2022]
Abstract
Lepidium sativum seedcake phenolic extract (LSE), as compared to tannic acid (TA), was evaluated for its effect on film forming ability of chitosan. The films were investigated for their structural, mechanical, optical, thermal and in vitro antioxidant activity release profile. At 5% (v/v of film-forming solution), LSE led to improved 32.2% of tensile strength and 109% elongation, compared to the effect of TA in chitosan films. Moisture content, WVP, and crystallinity decreased with the increasing LSE concentration. Changes in absorbance intensity by FT-IR indicated structural modification. The DSC thermograph indicted a change in the melting point. SEM showed smooth and homogeneous surface cross-section composite film with LSE. The films exhibit dose-dependent and time-dependent release of total polyphenols and antioxidant activity in the water, 50% ethanol, and 95% ethanol. Hence, the current work help valorization of L. sativum seedcake after oil extraction for an alternative as novel active-packaging material for food and pharmaceutical application.
Collapse
|
42
|
Chen CT, Chen KI, Chiang HH, Chen YK, Cheng KC. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy. J Food Sci 2016; 82:108-117. [DOI: 10.1111/1750-3841.13577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Chieh-Ting Chen
- Graduate Inst. of Food Science Technology; Natl. Taiwan Univ; Taipei 10617 Taiwan
| | - Kuan-I Chen
- Graduate Inst. of Food Science Technology; Natl. Taiwan Univ; Taipei 10617 Taiwan
- Inst. of Biotechnology; Natl. Taiwan Univ; Taipei 10617 Taiwan
| | - Hsin-Han Chiang
- Dept. of Electrical Engineering; Fu Jen Catholic Univ; New Taipei City 24205 Taiwan
| | - Yu-Kuo Chen
- Dept. of Food Science; Natl. Pingtung Univ. of Science and Technology; Pingtung 91207 Taiwan
| | - Kuan-Chen Cheng
- Graduate Inst. of Food Science Technology; Natl. Taiwan Univ; Taipei 10617 Taiwan
- Inst. of Biotechnology; Natl. Taiwan Univ; Taipei 10617 Taiwan
- Dept. of Medical Research; China Medical Univ. Hospital, China Medical Univ; 91, Hsueh-Shih Road Taichung 40402 Taiwan
- Dept. of Food Science; Rutgers Univ; New Brunswick N.J. 08901 U.S.A
| |
Collapse
|