1
|
Wu D, Li Y, Dai Y, Tian H, Chen Y, Shen G, Yang G. Stabilization of chitosan-based nanomedicines in cancer therapy: a review. Int J Biol Macromol 2025; 309:143016. [PMID: 40216118 DOI: 10.1016/j.ijbiomac.2025.143016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Chitosan (CS), a versatile and alkaline polysaccharide, has gained significant attention in nanomedicine due to its biocompatibility and biodegradability. In recent years, its applications in cancer therapy, particularly for the delivery of chemotherapeutic drugs, diagnostic agents, and genes, have advanced considerably. However, many CS-based nanomedicines suffer from poor stability in biological fluids, especially under physiological conditions. The neutral pH and the presence of electrolytes in physiological environments reduce the charge density of CS, which can account for this application limitation of CS-based nanomedicines. To improve the stability and prevent dissociation or aggregation of these nanomedicines before reaching the target sites, this review summarizes common stabilization strategies including hydrophilic or hydrophobic modification of CS, as well as incorporation with metal ions (e.g. Fe3+ or Zn2+), complexation with anionic cross-linkers (e.g. TPP) or anionic polymers. Additionally, the review highlights the application of stabilized CS-based nanocarriers in drug delivery, with a particular focus on cancer therapy. The challenges and future perspectives for accelerating the clinical translation of these nanomedicines are also discussed.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yazhen Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwei Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Tian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gongmin Shen
- Hangzhou Guoguang Pharmaceutical Co., Ltd., Hangzhou 310018, China.
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Badie MA, Teaima MH, El-Nabarawi MA, Badawi NM. Formulation and optimization of surfactant-modified chitosan nanoparticles loaded with cefdinir for novel topical drug delivery: Elevating wound healing efficacy with enhanced antibacterial properties. Int J Pharm 2024; 666:124763. [PMID: 39332464 DOI: 10.1016/j.ijpharm.2024.124763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Burn wounds remain a significant global health concern, frequently exacerbated by bacterial infections that hinder healing and raise morbidity rates. Cefdinir, a third-generation cephalosporin antibiotic, is used to treat various conditions, but it has limitations such as low water solubility, limited bioavailability, and a short biological half-life. This study aimed to fabricate and optimize novel surfactant-based Cefdinir-loaded chitosan nanoparticles (CFD-CSNPs) for enhancing topical CFD delivery and efficacy in burn healing. Box-Behnken Design (BBD) was employed to develop optimized CFD-CSNPs using Design Expert® software, where the independent factors were chitosan concentration, chitosan: sodium tripolyphosphate ratio, pH, and surfactant type. Particle size PS, zeta potential ZP, Polydispersity index PDI, and entrapment efficiency EE% were evaluated as dependent factors. CFD-CSNPs were produced using the ionic gelation method. The optimized formula was determined and then examined for further in vitro and in vivo assessments. The optimized CFD-CSNPs exhibited acceptable PS, PDI, and ZP values. The EE% of CFD from CSNPs reached 57.89 % ± 1.66. TEM analysis revealed spherical morphology. In vitro release studies demonstrated a biphasic release profile up to (75.5 % ± 3.8) over 48 hrs. The optimized CFD-CSNPs showed improved antimicrobial efficacy against the tested microorganisms, exhibiting superior performance for both biofilm prevention and eradication. Enhanced wound healing activity was achieved by the optimized CFD-CSNPs in both in vitro and in vivo studies as confirmed by scratch wound assay and skin burn mice model. The current study advocates the efficacy of the innovative topical application of CFD-CSNPs for wound healing purposes and treatment of wound infections.
Collapse
Affiliation(s)
- Merna A Badie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.
| |
Collapse
|
3
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
4
|
Sun H, Qiu X, Li X, Wang H. Eco-friendly, pH-sensitive curcumin-loaded sodium alginate/hydroxyapatite/quaternary ammonium chitosan microspheres with enhanced antibacterial and antioxidant activities for fruit preservation. Int J Biol Macromol 2024; 279:135297. [PMID: 39233149 DOI: 10.1016/j.ijbiomac.2024.135297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres. The loading experiments showed that the efficiency of the microspheres was significantly increased by 49.47 % and 55.10 %, respectively, when HA and HACC were incorporated into the SA network. The release test results suggested that the release rate of SA/HA/HACC microspheres loading CUR (SA/HA/HACC@CUR) increased as the pH decreased, demonstrating notable pH-responsive release characteristics. DPPH free radical scavenging experiments demonstrated that the SA/HA/HACC@CUR had excellent and long-lasting antioxidant capacity. The antibacterial experiments revealed that the SA/HA/HACC@CUR had excellent antibacterial properties, with inhibition rates of 88.73 % and 92.52 % against E. coli and S. aureus, respectively. Making coatings out of microspheres could effectively slow down the rotting and deterioration of cherry tomatoes during storage, suggesting that microspheres with intelligent responses have a broad application prospect in fruit preservation.
Collapse
Affiliation(s)
- Haonan Sun
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaolin Qiu
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyi Li
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanyu Wang
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Huang Y, Hao S, Chen J, Wang M, Lin Z, Liu Y. Synthesis and Characterization of a Novel Chitosan-Based Nanoparticle-Hydrogel Composite System Promising for Skin Wound Drug Delivery. Mar Drugs 2024; 22:428. [PMID: 39330309 PMCID: PMC11433214 DOI: 10.3390/md22090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
As a natural preservative, nisin is widely used in the food industry, while its application in biomedicine is limited due to its susceptibility to interference from external conditions. In this study, a nanoparticle-hydrogel composite system was designed to encapsulate and release nisin. Nisin nanoparticles were identified with a smooth, spherical visual morphology, particle size of 122.72 ± 4.88 nm, polydispersity coefficient of 0.473 ± 0.063, and zeta potential of 23.89 ± 0.37 mV. Based on the sample state and critical properties, three temperature-sensitive hydrogels based on chitosan were ultimately chosen with a rapid gelation time of 112 s, outstanding reticular structure, and optimal swelling ratio of 239.05 ± 7.15%. The composite system exhibited the same antibacterial properties as nisin, demonstrated by the composite system's inhibition zone diameter of 17.06 ± 0.83 mm, compared to 20.20 ± 0.58 mm for nisin, which was attributed to the prolonged release effect of the hydrogel at the appropriate temperature. The composite system also demonstrated good biocompatibility and safety, making it suitable for application as short-term wound dressings in biomedicine due to its low hemolysis rate of less than 2%. In summary, our nanoparticle-based hydrogel composite system offers a novel application form of nisin while ensuring its stability, thereby deepening and broadening the employment of nisin.
Collapse
Affiliation(s)
- Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Y.H.); (S.H.); (J.C.); (M.W.); (Z.L.)
| | - Shuting Hao
- Department of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Y.H.); (S.H.); (J.C.); (M.W.); (Z.L.)
| | - Jiayu Chen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Y.H.); (S.H.); (J.C.); (M.W.); (Z.L.)
| | - Mengyuan Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Y.H.); (S.H.); (J.C.); (M.W.); (Z.L.)
| | - Ziheng Lin
- Department of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Y.H.); (S.H.); (J.C.); (M.W.); (Z.L.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Y.H.); (S.H.); (J.C.); (M.W.); (Z.L.)
- Ningbo Key Laboratory of Detection, Control and Early Warning of Key Hazardous Materials in Food, Ningbo Academy of Product and Food Quality Inspection, Ningbo Fibre Inspection Institute, Ningbo 315048, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Băbuțan M, Botiz I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics (Basel) 2024; 9:396. [PMID: 39056837 PMCID: PMC11274445 DOI: 10.3390/biomimetics9070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.
Collapse
Affiliation(s)
- Mihai Băbuțan
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Mohamed HI, Mahmoud NMR, Ramadan A, Al-Subaie AM, Ahmed SB. Novel Biological-Based Strategy for Synthesis of Green Nanochitosan and Copper-Chitosan Nanocomposites: Promising Antibacterial and Hematological Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1111. [PMID: 38998716 PMCID: PMC11243605 DOI: 10.3390/nano14131111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
Two novel samples of nanoparticles based on chitosan were greenly synthesized using pomegranate peel extract. The extract served as a nanoparticle precursor, facilitating the precipitation of nanosized chitosan through the ionic gelation method. Additionally, by mixing the green chitosan nanoparticles with copper ions, a nanoscale composite of chitosan and copper oxide was also produced. Structural and morphological investigations (FTIR, XRD, SEM, EDX, and TGA analyses) were performed for greenly synthesized chitosan nanoparticles and their copper oxide composite to determine all the significant characteristics of those nanoparticles. In addition, both samples were tested using some biological investigations, such as antimicrobial activity and hematological effects. The antimicrobial tests yielded promising results for both the green chitosan nanoparticles and the CuO composite when tested using two bacterial strains and two fungal strains. Moreover, the results showed that using a similar concentration of both green-based chitosan samples resulted in a slightly larger inhibition zone and a lower minimum inhibition concentration (MIC) for the copper oxide chitosan composite compared to the chitosan nanoparticles for all microorganisms included in the test. The mean count of blood components (RBCs and platelets), clotting time, and cholesterol levels in three different blood samples were used to indicate the hematological activity of both greenly synthesized nanoparticles. The results verified a slight reduction in blood component count after the addition of green chitosan nanoparticles, but the chitosan copper oxide composite did not have a noticeable effect on the three blood samples. The chitosan nanoparticles were able to cause a considerable reduction in clotting time and cholesterol levels for all blood samples, thus acting as procoagulants. However, the mixing of CuO with chitosan nanoparticles prolonged the rate of clotting in blood samples from hypercholesteremic individuals, and thus, the mixture acted as an anticoagulant agent.
Collapse
Affiliation(s)
- Hadeer I. Mohamed
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubial, Imam Abdulrahman Bin Faisal University, P.O. Box 4030, Jubail 35816, Saudi Arabia;
| | - Nesrine M. R. Mahmoud
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (N.M.R.M.); (A.R.)
| | - Abeer Ramadan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (N.M.R.M.); (A.R.)
| | - Abeer M. Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Somia B. Ahmed
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia; (N.M.R.M.); (A.R.)
| |
Collapse
|
8
|
Wawrzyńczak A, Chudzińska J, Feliczak-Guzik A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. Chemphyschem 2024; 25:e202300823. [PMID: 38353297 DOI: 10.1002/cphc.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Jagoda Chudzińska
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| |
Collapse
|
9
|
Gutiérrez-Ruíz SC, Cortes H, González-Torres M, Almarhoon ZM, Gürer ES, Sharifi-Rad J, Leyva-Gómez G. Optimize the parameters for the synthesis by the ionic gelation technique, purification, and freeze-drying of chitosan-sodium tripolyphosphate nanoparticles for biomedical purposes. J Biol Eng 2024; 18:12. [PMID: 38273413 PMCID: PMC10811841 DOI: 10.1186/s13036-024-00403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.
Collapse
Affiliation(s)
| | - Hernán Cortes
- Departamento de Genómica, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, 14389, Mexico
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Li G, Li J, Lee YY, Qiu C, Zeng X, Wang Y. Pickering emulsions stabilized by chitosan-flaxseed gum-hyaluronic acid nanoparticles for controlled topical release of ferulic acid. Int J Biol Macromol 2024; 255:128086. [PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.
Collapse
Affiliation(s)
- Guanghui Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Junle Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
11
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
12
|
Chen R, Huang M, Xu P. Polyphosphate as an antithrombotic target and hemostatic agent. J Mater Chem B 2023; 11:7855-7872. [PMID: 37534776 DOI: 10.1039/d3tb01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyphosphate (PolyP) is a polymer comprised of linear phosphate units connected by phosphate anhydride bonds. PolyP exists in a diverse range of eukaryotes and prokaryotes with varied chain lengths ranging from six to thousands of phosphate units. Upon activation, human platelets and neutrophils release short-chain PolyP, along with other components, to initiate the coagulation pathway. Long-chain PolyP derived from cellular or bacterial organelles exhibits higher proinflammatory and procoagulant effects compared to short-chain PolyP. Notably, PolyP has been identified as a low-hemorrhagic antithrombotic target since neutralizing plasma PolyP suppresses the thrombotic process without impairing the hemostatic functions. As an inorganic polymer without uniform steric configuration, PolyP is typically targeted by cationic polymers or recombinant polyphosphatases rather than conventional antibodies, small-molecule compounds, or peptides. Additionally, because of its procoagulant property, PolyP has been incorporated in wound-dressing materials to facilitate blood hemostasis. This review summarizes current studies on PolyP as a low-hemorrhagic antithrombotic target and the development of hemostatic materials based on PolyP.
Collapse
Affiliation(s)
- Ruoyu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
13
|
Luo Y, Wang J, Lv T, Wang H, Zhou H, Ma L, Zhang Y, Dai H. Chitosan particles modulate the properties of cellulose nanocrystals through interparticle interactions: Effect of concentration. Int J Biol Macromol 2023; 240:124500. [PMID: 37080408 DOI: 10.1016/j.ijbiomac.2023.124500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The physical and chemical properties of cellulose nanocrystals (CNC) were regulated by physical crosslinking with chitosan particles (CSp). At a fixed concentration (0.5 wt%) of CNC, varying CSp concentration (0.02-0.5 wt%) influenced the morphologies and chemical properties of the obtained complex particles (CNC-CSp). The results of Fourier transform infrared spectroscopy (FTIR) and zeta potential confirmed the electrostatic and hydrogen bonding interactions between CSp and CNC. At a low CSp concentration (0.02-0.05 wt%), the charge shielding effect induced the formation of particle aggregation networks, thus showing increased viscosity, turbidity and size (153.4-2605.7 nm). At a higher CSp concentration (0.1-0.5 wt%), the hydrogen bonding interaction promoted CSp adsorption onto the surface of CNC, thus facilitating the dispersion of CNC-CSp due to electrostatic repulsion caused by surface-adsorbed CSp. In addition, CSp improved the thermal stability, hydrophobicity (41.87-60.02°) and rheological properties of CNC. Compared with CNC, CNC-CSp displayed a better emulsifying ability and emulsion stability, in which CSp could play a dual role (i.e., charge regulator and stabilizer). This study suggests that introducing CSp can improve the properties and application potentials of CNC as food colloids.
Collapse
Affiliation(s)
- Yuyuan Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junjie Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tianyi Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
14
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
15
|
Safdar R, Thanabalan M. Preparation of Chitosan-Tripolyphosphate Formulated Insulin Microparticles, Their Characterization, ANN Prediction, and Release Kinetics. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Kolge H, Kadam K, Ghormade V. Chitosan nanocarriers mediated dsRNA delivery in gene silencing for Helicoverpa armigera biocontrol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105292. [PMID: 36549819 DOI: 10.1016/j.pestbp.2022.105292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Specific gene silencing by RNA interference (RNAi) involving exogenous double stranded RNA (dsRNA) delivery has potential in Helicoverpa armigera control, a resistant insect pest. Here, ionotropically synthesized cationic chitosan nanoparticles (CNPs, 95 nm size, +36 mV charge) showed efficient dsRNA loading (95 %) and effective protection from insect gut nucleases and pH degradation. The CNPs were tagged with fluorescence and found to be stable on leaf surface (24 h) and were internalized by columnar insect gut cells. A single dose of CNPs:dsRNA complex (containing 0.1 μg dsRNA) ingested by H. armigera larvae via artificial/leaf feed effectively silenced lipase and chitinase target genes (2-2.7 fold downregulation) and suppressed their respective enzyme activities (2-5.3 fold). RNAi caused reduced pupation (5-fold) and impaired moth emergence. RNAi effects correlated significantly with 100% insect mortality (PCA 0.97-0.99). Furthermore, specific dsRNA did not affect non-target insects Spodoptera litura and Drosophila melanogaster. Developed CNPs:dsRNA complexes towards RNAi targets can serve as a safe, targeted insecticide for sustainable crop protection.
Collapse
Affiliation(s)
- Henry Kolge
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Kartiki Kadam
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India.
| |
Collapse
|
17
|
Ruiz-Pulido G, Quintanar-Guerrero D, Serrano-Mora LE, Medina DI. Triborheological Analysis of Reconstituted Gastrointestinal Mucus/Chitosan:TPP Nanoparticles System to Study Mucoadhesion Phenomenon under Different pH Conditions. Polymers (Basel) 2022; 14:4978. [PMID: 36433107 PMCID: PMC9696252 DOI: 10.3390/polym14224978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles' mucoadhesiveness was negligible.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de México, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Luis Eduardo Serrano-Mora
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
18
|
Lactoferrin-Chitosan-TPP Nanoparticles: Antibacterial Action and Extension of Strawberry Shelf-Life. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Li G, Lee YY, Lu X, Chen J, Liu N, Qiu C, Wang Y. Simultaneous loading of (-)-epigallocatechin gallate and ferulic acid in chitosan-based nanoparticles as effective antioxidant and potential skin-whitening agents. Int J Biol Macromol 2022; 219:333-345. [PMID: 35934077 DOI: 10.1016/j.ijbiomac.2022.07.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022]
Abstract
Chitosan (CS) based nanoparticles simultaneously loaded with (-)-epigallocatechin gallate (EGCG) and ferulic acid (FA) were fabricated via ionic gelation method modified by sodium tripolyphosphate and genipin (G-CS-EGCG-FA NPs). The particle size, morphology, entrapment efficiency, rheological properties, antioxidant and tyrosinase inhibitory activity of NPs were investigated. The G-CS-EGCG-FA NPs exhibited irregular ellipsoidal shape with average diameter of 412.3 nm and high DPPH and ABTS·+ scavenging ability. The entrapment efficiency of EGCG and FA in NPs was 46.0 ± 1.3 % and 46.8 ± 1.6 %, respectively. CS-based NPs show no toxic effects on NIH 3 T3 cells and B16-F10 melanoma cells with concentration <200 μg/mL and 25 μg/mL, respectively and the cell viability ranged from 100 % to 118 %. Meanwhile, the oxidative repaired capacity of G-CS-EGCG-FA NPs (200 μg/mL) in H2O2-induced cells was over 100 %, higher than that of the same dose of free EGCG or FA. Moreover, the tyrosinase inhibition activity of G-CS-EGCG-FA NPs (25 μg/mL) (84.6 %) was more potent than that of free EGCG (55.3 %), free FA (47.1 %) and kojic acid, indicating the good skin repairing and whitening ability of G-CS-EGCG-FA NPs. Given these results, this research provides new insights for designing novel particles loaded with dual bioactive agents that possess synergistic benefits.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Jing Chen
- Institute for Advance and Application Chemical synthesis, Jinan University, Guangzhou 510632, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chaoying Qiu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Jinan University, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
20
|
Chitosan IR806 dye-based polyelectrolyte complex nanoparticles with mitoxantrone combination for effective chemo-photothermal therapy of metastatic triple-negative breast cancer. Int J Biol Macromol 2022; 216:558-570. [PMID: 35809672 DOI: 10.1016/j.ijbiomac.2022.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
Abstract
Chemo-photothermal therapy is one of the emerging therapies for treating triple-negative breast cancer. In this study, we have used ionotropic gelation method to fabricate chitosan and IR806 dye-based polyelectrolyte complex (CIR-PEx) nanoparticles. These nano-complexes were in size range of 125 ± 20 nm. The complexation of IR 806 dye with chitosan improved photostability, photothermal transduction, and showed excellent biocompatibility. Cancer cells treated with CIR-PEx NPs enhanced intracellular uptake within 5 h of incubation and also displayed mitochondrial localization. With the combination of CIR-PEx NPs and a chemotherapeutic agent (i.e., mitoxantrone, MTX), a significant decline in cancer cell viability was observed in both 2D and 3D cell culture models. The chemo-photothermal effect of CIR-PEx NPs + MTX augmented apoptosis in cancer cells when irradiated with NIR light. Furthermore, when tested in the 4 T1-tumor model, the chemo-photothermal therapy showed a drastic decline in tumor volume and inhibited metastatic lung nodules. The localized hyperthermia caused by photothermal therapy reduced the primary tumor burden, and the chemotherapeutic activity of mitoxantrone further complemented by inhibiting the spread of cancer cells. The proposed chemo-photothermal therapy combination could be a promising strategy for treating triple-negative metastatic breast cancer.
Collapse
|
21
|
Relationship between the Antifungal Activity of Chitosan-Capsaicin Nanoparticles and the Oxidative Stress Response on Aspergillus parasiticus. Polymers (Basel) 2022; 14:polym14142774. [PMID: 35890550 PMCID: PMC9322876 DOI: 10.3390/polym14142774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
The fungus Aspergillus parasiticus is a contaminant in agricultural crops and its eradication involves the indiscriminate use of harmful synthetic pesticides. In the search for antifungal agents of natural origin, chitosan (Q) and capsaicin (C) are coupled in the form of nanoparticles (Np), which can possess a direct application under specific conditions. Due to their small size, Np can cross through the cell wall, taking the cells into a pro-oxidant environment known as “oxidative stress”, which presents when the reactive oxygen species (ROS) surpass the number of antioxidants in the cell. In the present investigation, nanoparticles of chitosan (Np Q) and nanoparticles of chitosan-capsaicin (Np QC) with an average diameter of 44.8 ± 20.6 nm and 111.1 ± 14.1 nm, respectively, were synthesized, and there was a zeta potential of + 25.6 ± 0.7 mV and + 26.8 ± 6.1 mV, respectively. The effect of the concentration of Np Q (A, B, C, and D), of Np QC (A, B, C, and D), and capsaicin in a solution (control) was evaluated on the viability of the spores, the accumulation of intracellular ROS, and the morphometric changes of A. parasiticus. Acute toxicity of the Np was determined utilizing bioassays with Artemia salina, and acute phytotoxicity was evaluated in lettuce seeds (Lactuca sativa). According to ROS results, capsaicin (control) did not induce oxidative stress in the cell; otherwise, it was observed to have an elevated (p < 0.05) accumulation of ROS when the concentration of Np Q increased. For both, Np Q and Np QC, an inverse physiological pattern relating spore viability and ROS accumulation in the fungus was found; the viability of spores decreased as the ROS accumulation increased. The spore viability of A. parasiticus diminished upon increasing the concentration of chitosan (0.3−0.4 mg/mL) in the Np, while the intracellular accumulation of ROS increased proportionally to the concentration of the nanomaterials in the treatments of Np Q and Np QC. On the other hand, Np QC presented a lower (p < 0.05) toxicological effect in comparison with Np Q, which indicates that the incorporation of bioactive compounds, such as capsaicin, into nanoparticles of chitosan is a strategy that permits the reduction of the toxicity associated with nanostructured materials.
Collapse
|
22
|
Poureghbal Y, Rahimi M, Akbari M. Ionic gelation of chitosan with sodium tripolyphosphate using a novel combined nebulizer and falling film system. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Masoud Rahimi
- Chemical Engineering Department Razi University Kermanshah Iran
| | - Mona Akbari
- Chemical Engineering Department University of Hormozgan Bandar Abbas Iran
| |
Collapse
|
23
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
24
|
Complexation behavior of carboxymethyl short-chain amylose and quaternized chitosan. Int J Biol Macromol 2022; 209:1914-1921. [PMID: 35500772 DOI: 10.1016/j.ijbiomac.2022.04.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
The complexation of carboxymethyl short-chain amylose (CSA) and hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and the stability of CSA/HACC nanocomplex were investigated. Resonance light scattering (RLS), turbidity, nanoparticle size and zeta potential analyses revealed that the complex coacervation occurred between CSA and HACC. The mass ratio and pH markedly influenced the complexation behavior; CSA with a higher degree of substitution (DS0.2) altered the complexation at a lower mass ratio and pH, increasing the turbidity and RLS intensity. The results of particle size and zeta potential analyses indicated that CSA/HACC complexes possessed the good pH and ionic strength stability. In addition to electrostatic interactions, hydrogen bonding and hydrophobic effects were also determined to be involved in the complexation process using thermal titration calorimetry (ITC). Additionally, the process was spontaneous, and CSA with a higher DS showed stronger complexation ability. These results may enable the understanding of polysaccharide complex behaviors.
Collapse
|
25
|
Bai X, Xu L, Singh AK, Qiu X, Liu M, Abuzeid A, El-Khateib T, Bhunia AK. Inactivation of Polymicrobial Biofilms of Foodborne Pathogens Using Epsilon Poly-L-Lysin Conjugated Chitosan Nanoparticles. Foods 2022; 11:569. [PMID: 35206046 PMCID: PMC8871342 DOI: 10.3390/foods11040569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
A mixed culture (polymicrobial) biofilm provides a favorable environment for pathogens to persist in the food processing environment and to contaminate food products. Inactivation and eradication of such biofilms from food processing environments are achieved by using harsh disinfectants, but their toxicity and environmentally hostile characteristics are unsustainable. This study aims to use food-grade natural nanoparticulated antimicrobials to control mixed-culture biofilms. Chitosan, a natural broad-spectrum antimicrobial biopolymer (polysaccharide) from crustaceans, was derivatized to produce chitosan nanoparticles (ChNP) as a carrier for another broad-spectrum antimicrobial agent, ε-poly-L-lysine (PL), to synthesize ChNP-PL conjugate. The antimicrobial activity of ChNP and ChNP-PL was tested against mixed-culture biofilms. ChNP-PL (~100 nm) exhibited a synergistic antimicrobial and anti-biofilm effect against mono or mixed-culture biofilms of five foodborne pathogens, including Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica serovar Enteritidis, Escherichia coli O157:H7, and Pseudomonas aeruginosa. ChNP-PL treatment prevented biofilm formation by mono or mixed cultures of L. monocytogenes, P. aeruginosa, and E. coli O157:H7, and bacterial counts were either below the detection limit or caused 3.5-5 log reduction. ChNP-PL also inactivated preformed biofilms. In monoculture biofilm, ChNP-PL treatment reduced L. monocytogenes counts by 4.5 logs, S. Enteritidis by 2 logs, E. coli by 2 logs, and S. aureus by 0.5 logs, while ChNP-PL had no inhibitory effect on P. aeruginosa. In vitro mammalian cell-based cytotoxicity analysis confirmed ChNP-PL to have no deleterious effect on intestinal HCT-8 cell line. In conclusion, our results show ChNP-PL has strong potential to prevent the formation or inactivation of preformed polymicrobial biofilms of foodborne pathogens.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Atul Kumar Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Clear Labs, San Carlos, CA 94070, USA
| | - Xiaoling Qiu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
| | - Mai Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
| | - Ahmed Abuzeid
- Department of Food Hygiene, Assiut University, Assiut 71515, Egypt; (A.A.); (T.E.-K.)
- Animal Health Research Institute, Agriculture Research Center, Giza, Cairo 12618, Egypt
| | - Talaat El-Khateib
- Department of Food Hygiene, Assiut University, Assiut 71515, Egypt; (A.A.); (T.E.-K.)
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (X.B.); (L.X.); (A.K.S.); (X.Q.); (M.L.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
Tiwari S, Upadhyay N, Singh BK, Dubey NK, Dwivedy AK, Singh VK. Nanoencapsulated
Lippia origanoides
essential oil: physiochemical characterisation and assessment of its bio‐efficacy against fungal and aflatoxin contamination as novel green preservative. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shikha Tiwari
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Neha Upadhyay
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Bijendra Kumar Singh
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Nawal K. Dubey
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Abhishek K. Dwivedy
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Vipin Kumar Singh
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
27
|
Alizadeh N, Nazari F. Thymol essential oil/ β-cyclodextrin inclusion complex into chitosan nanoparticles: Improvement of thymol properties in vitro studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Ultrasonic Synthesis of Nanochitosan and Its Size Effects on Turbidity Removal and Dealkalization in Wastewater Treatment. INVENTIONS 2021. [DOI: 10.3390/inventions6040098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed study on the synthesis of chitosan nanoparticles under ultrasonication is reported in this paper. By using this simple technique, chitosan particles in nanometer range can be easily prepared without using any harmful and expensive chemicals. The results show that increasing the ultrasonic irradiation time and ultrasonic wave amplitude are the key factors for producing discrete chitosan nanoparticles with narrow particle size distribution. The resulting nanoparticles show superior turbidity removal efficiency (75.4%) and dealkalization (58.3%) in wastewater treatment than the bulk chitosan solid (35.4% and 11.1%, respectively), thus offering an eco-friendly and promising approach for treating wastewater via the coagulation/flocculation process.
Collapse
|
29
|
Ko JA, Ryu YB, Lee WS, Ameer K, Kim YM. Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides. Foods 2021; 10:foods10112803. [PMID: 34829084 PMCID: PMC8619202 DOI: 10.3390/foods10112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, the optimization and modeling of microwave-assisted extraction (MAE) of water-soluble curcuminoids prepared using novel steviol glycosides (SGs) was carried out using four independent process variables at varying levels-X1: microwave power (50-200 W), X2: stevioside concentration (50-200 mg/mL), X3: curcumin concentration (20-200 mg/mL), and X4: time (1-10 min)-in response surface methodology configuration. Moreover, the effects of stevioside, as the most cost-effective natural solubilizer, were also evaluated. The water solubility of curcuminoids increased from 11 to 1320 mg/L with the addition of stevioside as a natural solubilizer. Moreover, microwave heating synergistically with stevioside addition significantly (p < 0.05) increased the solubility up to 5400 mg/L. Based on the results, the optimum conditions providing the maximum solubilization of 16,700 mg/L were 189 W microwave power, 195 g/L stevioside concentration, 183 g/L curcuminoid concentration, and 9 min of incubation time. Moreover, MAE of curcuminoids using SGs might render a significant advantage for its wide-scale application to solubilizing the multitude of insoluble functional flavonoids in fruits, plants, and food materials.
Collapse
Affiliation(s)
- Jin-A Ko
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (Y.-B.R.); (W.-S.L.)
| | - Woo-Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (Y.-B.R.); (W.-S.L.)
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (K.A.); (Y.-M.K.); Tel./Fax: +92-62-530-2142 (ext. 2149) (K.A.); +82-62-530-2142 (ext. 2149) (Y.-M.K.)
| | - Young-Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (K.A.); (Y.-M.K.); Tel./Fax: +92-62-530-2142 (ext. 2149) (K.A.); +82-62-530-2142 (ext. 2149) (Y.-M.K.)
| |
Collapse
|
30
|
Bicak B, Budama-Kilinc Y, Kecel-Gunduz S, Zorlud T, Akman G. Peptide based nano-drug candidate for cancer treatment: Preparation, characterization, in vitro and in silico evaluation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Yuan J, Cao J, Yu F, Ma J, Zhang D, Tang Y, Zheng J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. J Mater Chem B 2021; 9:6491-6506. [PMID: 34296734 DOI: 10.1039/d1tb01000j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.
Collapse
Affiliation(s)
- Jianhua Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Curcumin loaded iron functionalized biopolymeric nanofibre reinforced edible nanocoatings for improved shelf life of cut pineapples. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
A facile strategy for synthesis of a broad palette of intrinsically radiolabeled chitosan nanoparticles for potential use in cancer theranostics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci Rep 2021; 11:9540. [PMID: 33953277 PMCID: PMC8100113 DOI: 10.1038/s41598-021-88907-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
Novel synthesized Chitosan–Copper oxide nanocomposite (Cs–CuO) was prepared using pomegranate peels extract as green precipitating agents to improve the biological activity of Cs-NP's, which was synthesized through the ionic gelation method. The characterization of biogenic nanoparticles Cs-NP's and Cs–CuO-NP's was investigated structurally, morphologically to determine all the significant characters of those nanoparticles. Antimicrobial activity was tested for both Cs-NP's and Cs–CuO-NP's via minimum inhibition concentration and zone analysis against fungus, gram-positive and gram-negative. The antimicrobial test results showed high sensitivity of Cs–CuO-NP's to all microorganisms tested in a concentration less than 20,000 mg/L, while the sensitivity of Cs-NP's against all microorganisms under the test started from a concentration of 20,000–40,000 mg/L except for the C. albicans species. The hematological activity was also tested via measuring the RBCs, platelet count, and clotting time against healthy, diabetic, and hypercholesteremia blood samples. The measurement showed a decrease in RBCs and platelet count by adding Cs-NP’s or Cs–CuO-NP's to the three blood samples. Cs-NP's success in decreasing the clotting time for healthy and diabetic blood acting as a procoagulant agent while adding biogenic CuO-NP’s to Cs-NP’s increased clotting time considering as an anti-coagulant agent for hypercholesteremia blood samples.
Collapse
|
35
|
Almurshedi AS, Aljunaidel HA, Alquadeib B, Aldosari BN, Alfagih IM, Almarshidy SS, Eltahir EKD, Mohamoud AZ. Development of Inhalable Nanostructured Lipid Carriers for Ciprofloxacin for Noncystic Fibrosis Bronchiectasis Treatment. Int J Nanomedicine 2021; 16:2405-2417. [PMID: 33814907 PMCID: PMC8012696 DOI: 10.2147/ijn.s286896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 μm. CONCLUSION Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Bushra Alquadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram K D Eltahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amany Z Mohamoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Shirolkar MM, Athavale R, Ravindran S, Rale V, Kulkarni A, Deokar R. Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.nanoso.2020.100657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Valencia MS, Franco da Silva Júnior M, Xavier Júnior FH, de Oliveira Veras B, Fernanda de Oliveira Borba E, Gonçalves da Silva T, Xavier VL, Pessoa de Souza M, Carneiro-da-Cunha MDG. Bioactivity and cytotoxicity of quercetin-loaded, lecithin-chitosan nanoparticles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Ruiz-Pulido G, Medina DI. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. Eur J Pharm Biopharm 2020; 159:123-136. [PMID: 33387633 DOI: 10.1016/j.ejpb.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/28/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
This review discusses the physicochemical and mechanical properties of porcine gastrointestinal mucus from a rheological point of view. Considering mucus as a viscoelastic gel that functions as a biological barrier by limiting particles passage, lubricating the gastrointestinal tract, and protecting the stomach from gastric acids. The viscoelastic and protective properties of mucus are mainly produced by its mucin network, which is stabilized through electrostatic, hydrophobic and hydrogen bonding interactions. Otherwise, mucus rheology is determined by its polyanionic nature at physiological pH. At neutral pH, mucus presents a viscous behavior produced by chains crosslinking. While, at acidic pH, mucus exhibits an elastic behavior related with the extended conformation that produces mucus gelation at the stomach. Additionally, rheology studies the degree of adhesion between a polymer-mucus mixture through rheological synergism, and how it varies at different pH conditions. Finally, mucoadhesion phenomenon is exemplified with chitosan (cationic) and poly (lactic-co-glycolic) acid (anionic) polymers.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| |
Collapse
|
39
|
Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties. Carbohydr Polym 2020; 250:116968. [DOI: 10.1016/j.carbpol.2020.116968] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022]
|
40
|
Abdallah Y, Liu M, Ogunyemi SO, Ahmed T, Fouad H, Abdelazez A, Yan C, Yang Y, Chen J, Li B. Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020; 25:E4795. [PMID: 33086640 PMCID: PMC7587532 DOI: 10.3390/molecules25204795] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300-550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
- Department of Plant pathology, Minia University, Elminya 61519, Egypt
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Hatem Fouad
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310027, China;
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12619, Egypt
| | - Amro Abdelazez
- Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt;
| | - Chenqi Yan
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jianping Chen
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| |
Collapse
|
41
|
Sullivan DJ, Cruz-Romero MC, Hernandez AB, Cummins E, Kerry JP, Morris MA. A novel method to deliver natural antimicrobial coating materials to extend the shelf-life of European hake (Merluccius merluccius) fillets. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Bharathala S, Singh R, Sharma P. Controlled release and enhanced biological activity of chitosan-fabricated carbenoxolone nanoparticles. Int J Biol Macromol 2020; 164:45-52. [PMID: 32679335 DOI: 10.1016/j.ijbiomac.2020.07.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology based antimicrobial drugs are developed to enhance their properties to combat multidrug resistant microbes. Carbenoxolone (CBX) is a semi-synthetic derivate of a natural substance from the licorice plant, with anti- (inflammatory, fungal, viral, microbial, fibrotic and cancer) properties. Though used to treat gastric ulcers, its low aqueous stability, low bioavailability and toxicity limited the drug's utility. To enhance its antimicrobial activity and reduce cytotoxicity, a controlled release nanoformulation was developed using natural biodegradable polymer chitosan (CS) as a carrier which is biocompatible, nontoxic with placid antimicrobial property. UV-visible spectroscopy, electron microscopy, and Fourier transform infrared spectroscopy were used for characterization of the resultant CS-CBX nanoparticles (NPs). They were spherical with uniform dispersion, ~200 nm in size with surface charge of +18.6 mV and drug encapsulation of >80%. Drug release kinetics exhibited a controlled release of 86% over 36 h following zero order kinetics. The anti-microbial activity against common pathogenic Gram -ve and +ve bacteria and yeast increased ~2-fold with a concomitant 4-fold reduction in cytotoxicity assessed using human lung adeno carcinoma (A549) cells. This study demonstrates the affirmative aspects of CS-CBX NPs as a promising antibacterial agent and may facilitate repositioning of the drug for diverse applications.
Collapse
Affiliation(s)
- Subhashini Bharathala
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA-201313, India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA-201313, India.
| | - Pankaj Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA-201313, India.
| |
Collapse
|
43
|
Biodegradable zein active film containing chitosan nanoparticle encapsulated with pomegranate peel extract for food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100511] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Çakır MA, Icyer NC, Tornuk F. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 2020; 151:230-238. [DOI: 10.1016/j.ijbiomac.2020.02.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
45
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh A, Dubey NK. Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110000. [PMID: 31787384 DOI: 10.1016/j.ecoenv.2019.110000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The present study deals with encapsulation of Myristica fragrans essential oil (MFEO) into chitosan nano-matrix, their characterization and assessment of antimicrobial activity, aflatoxin inhibitory potential, safety profiling and in situ efficacy in stored rice as environment friendly effective preservative to control the postharvest losses of food commodities under storage. Surface morphology of MFEO-chitosan nanoemulsion as well as encapsulation of MFEO was confirmed through SEM, FTIR and XRD analysis. In vitro release characteristics with biphasic burst explained controlled volatilization from nanoencapsulated MFEO. Unencapsulated MFEO exhibited fungitoxicity against 15 food borne molds and inhibited aflatoxin B1 secretion by toxigenic Aspergillus flavus LHP R14 strain. In contrast, nanoencapsulated MFEO showed better fungitoxicity and inhibitory effect on aflatoxin biosynthesis at lower doses. In situ efficacy of unencapsulated and nanoencapsulated MFEO on stored rice seeds exhibited effective protection against fungal infestation, aflatoxin B1 contamination, and lipid peroxidation. Both the unencapsulated and nanoencapsulated MFEO did not affect the germination of stored rice seeds confirming non-phytotoxic nature. In addition, negligible mammalian toxicity of unencapsulated MFEO (LD50 = 14,289.32 μL/kg body weight) and MFEO loaded chitosan nanoemulsion (LD50 = 9231.89 μL/kg body weight) as revealed through favorable safety profile recommend the industrial significance of nanoencapsulated MFEO as an effective green alternative to environmentally hazardous synthetic pesticides for protection of food commodities during storage.
Collapse
Affiliation(s)
- Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Kecel-Gunduz S, Budama-Kilinc Y, Cakir-Koc R, Zorlu T, Bicak B, Kokcu Y, E Ozel A, Akyuz S. In Silico design of AVP (4-5) peptide and synthesis, characterization and in vitro activity of chitosan nanoparticles. ACTA ACUST UNITED AC 2020; 28:139-157. [PMID: 31942695 DOI: 10.1007/s40199-019-00325-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Arginine-vasopressin (AVP) is a neuropeptide and provides learning and memory modulation. The AVP (4-5) dipeptide corresponds to the N-terminal fragment of the major vasopressin metabolite AVP (4-9), has a neuroprotective effect and used in the treatment of Alzheimer's and Parkinson's disease. METHODS The main objective of the present study is to evaluate the molecular mechanism of AVP (4-5) dipeptide and to develop and synthesize chitosan nanoparticle formulation using modified version of ionic gelation method, to increase drug effectiveness. For peptide loaded chitosan nanoparticles, the synthesized experiment medium was simulated for the first time by molecular dynamics method and used to determine the stability of the peptide, and the binding mechanism to protein (HSP70) was also investigated by molecular docking calculations. A potential pharmacologically features of the peptide was also characterized by ADME (Absorption, Distribution, Metabolism and Excretion) analysis. The characterization, in vitro release study, encapsulation efficiency and loading capacity of the peptide loaded chitosan nanoparticles (CS NPs) were performed by Dynamic Light Scattering (DLS), UV-vis absorption (UV), Scanning Electron Microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy techniques. Additionally, in vitro cytotoxicity of the peptide on human neuroblastoma cells (SH-SY5Y) was examined with XTT assay and the statistical analysis was evaluated. RESULTS The results showed that; hydrodynamic size, zeta potential and polydispersity index (PdI) of the peptide-loaded CS NPs were 167.6 nm, +13.2 mV, and 0.211, respectively. In vitro release study of the peptide-loaded CS NPs showed that 17.23% of the AVP (4-5)-NH2 peptide was released in the first day, while 61.13% of AVP (4-5)-NH2 peptide was released in the end of the 10th day. The encapsulation efficiency and loading capacity were 99% and 10%, respectively. According to the obtained results from XTT assay, toxicity on SHSY-5Y cells in the concentration from 0.01 μg/μL to 30 μg/μL were evaluated and no toxicity was observed. Also, neuroprotective effect was showed against H2O2 treatment. CONCLUSION The experimental medium of peptide-loaded chitosan nanoparticles was created for the first time with in silico system and the stability of the peptide in this medium was carried out by molecular dynamics studies. The binding sites of the peptide with the HSP70 protein were determined by molecular docking analysis. The size and morphology of the prepared NPs capable of crossing the blood-brain barrier (BBB) were monitored using DLS and SEM analyses, and the encapsulation efficiency and loading capacity were successfully performed with UV Analysis. In vitro release studies and in vitro cytotoxicity analysis on SHSY-5Y cell lines of the peptide were conducted for the first time. Grapical abstract.
Collapse
Affiliation(s)
- Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Rabia Cakir-Koc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Tolga Zorlu
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey.,Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Bilge Bicak
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.,Institute of Graduate Studies in Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Yagmur Kokcu
- Institute of Graduate Studies in Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Aysen E Ozel
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
47
|
Chen W, Rong X, Peng J, Tang Q, Luo H, Fan L, Feng K, Zheng H. Assessment of a novel nanostructured flocculant with elevated flocculation and antimicrobial activity. CHEMOSPHERE 2020; 239:124736. [PMID: 31494326 DOI: 10.1016/j.chemosphere.2019.124736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel process involving the preparation of nanochitosan-grafted flocculants (CPAM-g-NCS) to treat low turbid and salmonella suspensions simultaneously was introduced. Nanotechnology was employed to enhance the adsorption-adhesion and sterilization abilities of dual-functional flocculants. The monomers of chitosan, acrylamide, methacryloyl ethyl trimethyl ammonium chloride, and sodium tripolyphosphate were utilized for flocculants copolymerization. Then, using fourier-transform infrared spectroscopy, nuclear magnetic resonance hydrogen spectrum, and thermogravimetric and differential scanning calorimetry analysis, the successful synthesis of CPAM-g-NCS was verified. Scanning electron microscopy and size analysis suggested that nanostructured flocculants with irregular morphology and nanocolloids of 60.44 nm were formed. CPAM-g-NCS was applied to treat a series of simulated low turbid and salmonella suspensions. The simulation results showed that the minimum residual turbidity of 1.97 NTU and optical density of 0.16 (initial 0.89) can be achieved at dosages of 2.5 and 8.75 mg L-1, respectively, which were superior to conventional organics flocculants. Mechanistic studies suggested that the excellent adsorption property, and large numbers of quaternary ammonium and amino groups of nanoflocculants contributed to the superior flocculation and antibacterial performance of CPAM-g-NCS.
Collapse
Affiliation(s)
- Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China.
| | - Xiang Rong
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Jiujing Peng
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Qian Tang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China
| | - Liangqian Fan
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Chengdu, 611830, China
| | - Keqin Feng
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
48
|
Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106786] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Oveissi F, Tavakoli N, Minaiyan M, Mofid MR, Taheri A. Alginate hydrogel enriched with Ambystoma mexicanum epidermal lipoxygenase-loaded pectin nanoparticles for enhanced wound healing. J Biomater Appl 2019; 34:1171-1187. [PMID: 31886725 DOI: 10.1177/0885328219896704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidermal lipoxygenase enzyme extracted from Ambystoma mexicanum (AmbLOXe) is known to accelerate the wound-healing process. AmbLOXe as a protein suffers from inactivation and losing its activity during formulation. Therefore, a delivery system that protects AmbLOXe from inactivation and preserves its activity is needed. We prepared AmbLOXe-loaded pectin nanoparticles (AmbLOXe Pec-NPs) and placed them into an alginate hydrogel. AmbLOXe Pec-NPs incorporation into the alginate hydrogel provides a means for controlled and sustained delivery of AmbLOXe to the wound site. Furthermore, the suitable swelling behavior and mechanical properties of AmbLOXe Pec-NPs alginate hydrogel make it feasible for clinical use. AmbLOXe Pec-NPs alginate hydrogel significantly enhanced the wound-healing process on the rat full-thickness excisional wounds, increased the rate of wound closure, enhanced the re-epithelialization and decreased the incidence of abnormal scarring. AmbLOXe Pec-NPs alginate hydrogel can be proposed as an effective wound hydrogel for improving wound healing with minimal scarring.
Collapse
Affiliation(s)
- Farnoush Oveissi
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery System Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Tavakoli
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery System Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry, Isfahan Pharmaceutical Sciences Research Center and Bioinformatics Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery System Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci 2019; 20:5776. [PMID: 31744157 PMCID: PMC6888098 DOI: 10.3390/ijms20225776] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/06/2023] Open
Abstract
The development of advanced nanomaterials and technologies is essential in biomedical engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent advances in chitosan derivatives and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review the main concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safety using tissue cultures and animal models, and also their potential environmental impact. At the end of this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.
Collapse
Affiliation(s)
- Balsam R. Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar;
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin N. Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| |
Collapse
|