1
|
Li Y, Mu Z, Jiang Q, Bilawal A, Jiang Z, Hou J. Insights into the oil-water interfacial adsorption properties of whey protein-γ-oryzanol Pickering emulsion gel during in vitro simulated digestion. Food Chem 2025; 470:142543. [PMID: 39733620 DOI: 10.1016/j.foodchem.2024.142543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024]
Abstract
This work elucidated the digestion behavior of low-oil phase Pickering emulsion gel (LOPPEG) stabilized by whey protein isolate (WPI) -γ-Oryzanol (γO) aggregated particles and interfacial adsorption properties of its simulated digestion products. Initially, following simulated digestion, WPI-γO LOPPEG exhibited lower free fatty acid release and protein digestibility compared to WPI LOPPEG. WPI-γO LOPPEG maintained lower interfacial tension and higher interfacial thickness than WPI LOPPEG. The quartz crystal microbalance results further demonstrated that the viscoelasticity and oil-water interfacial adsorption quality of WPI-γO LOPPEG were higher than those of WPI LOPPEG. Ultimately, WPI-γO/pH 7.5 LOPPEG showed the best interfacial adsorption characteristics and anti-digestive properties. This work could provide the theoretical guidance for the development of the slow-digestive foods.
Collapse
Affiliation(s)
- Yongzhi Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Qiuwan Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
2
|
Luo Y, Zhang L, Xie J, Chen J. Structural, physicochemical, and digestive properties of sea buckthorn seeds protein obtained from ultrasound-assisted extraction. J Food Sci 2025; 90:e70137. [PMID: 40111089 DOI: 10.1111/1750-3841.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the effects of ultrasound-assisted treatment with alkaline protease on the structural, physicochemical, and digestive properties of sea buckthorn seed protein (SBSP). Different ultrasound powers (250, 350, 450, 550, 650 W) and times (20, 25, 30, 35, 40 min) were applied to assess these effects. Among these treatments, the ultrasonic treatment of 350 W for 30 min led to an increase in surface hydrophobicity, a significant reduction in average particle size, and enhanced the solubility, emulsifying capacity, and foaming properties of SBSP. Furthermore, the secondary and tertiary structures of SBSP underwent changes during the ultrasound treatment, with a decrease in α-helix content and a 17.5% increase in β-sheet content. X-ray diffraction analysis revealed a reduction in SBSP crystallinity. The in vitro digestibility of the protein was also improved, while the content of undesirable volatile flavor compounds was reduced during extraction. Thus, ultrasound-assisted pretreatment proves to be an effective method for extracting SBSP, improving its functional properties, and providing important implications for the application of SBSP in food products.
Collapse
Affiliation(s)
- Yuhuan Luo
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Liyixia Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, PR China
| |
Collapse
|
3
|
Kupikowska-Stobba B, Niu H, Klojdová I, Agregán R, Lorenzo JM, Kasprzak M. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 2025; 466:142151. [PMID: 39615348 DOI: 10.1016/j.foodchem.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, obesity and its associated health issues have risen dramatically. The COVID-19 pandemic has further exacerbated this trend, underscoring the pressing need for new strategies to manage weight. Functional foods designed to modulate lipid digestion and absorption rates and thereby reduce the assimilation of dietary fats have gained increasing attention in food science as a potentially safer alternative to weight-loss medications. This review provides insights into controlled lipid digestion and customized delivery of fats. The first section introduces basic concepts of lipid digestion and absorption in the human gastrointestinal tract. The second section discusses factors regulating lipid digestion and absorption rates, as well as strategies for modulating lipid assimilation from food. The third section focuses on applications of controlled lipid digestion in developing personalized foods designed for specific consumer groups, with particular emphasis on two target populations: overweight individuals and infants.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Iveta Klojdová
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Ruben Agregán
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
4
|
Yazid NA, Tan KY, Khor SM, Lee HV. Sodium caseinate/cellulose nanofiber-stabilized Pickering emulsions: A study on lipid absorption regulation. Int J Biol Macromol 2025; 291:138876. [PMID: 39694355 DOI: 10.1016/j.ijbiomac.2024.138876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
This study aimed to develop a sustainable and bio-based nano-additive (sodium caseinate/cellulose nanofibers (SC/CNF) complex) to modulate liquid-based oil-in-water (O/W) colloid interfaces, which function as a fat control agent to slow lipid digestion. Edible protein (SC) was grafted onto CNF through facile electrostatic attraction, which reduces solvent and chemical usage for greener process. The physicochemical properties of SC/CNF showed that adding SC increased the interfacial bonding between CNF particles, resulting in higher interfacial pressure by forming dense and compact layers of SC/CNF. This characteristic improves the mechanical strength and colloidal stability of SC/CNF during water-oil stabilization. Further preparation of O/W Pickering emulsions stabilized by SC/CNF complexes was conducted using different parameters (such as SC concentration, dosage of SC/CNF, and O/W ratio) to investigate profile of free fatty acid (FFA) released during lipid digestion via simulated in vitro gastrointestinal tract (GIT) model. The results showed that the optimized emulsion stabilized by the SC/CNF complex rendered a lower value of free fatty acids (FFA) after undergoing in vitro simulated digestion. The lowest FFA release (31.18 %) was achieved under the following conditions: 1 % w/v (SC concentration), 1 % w/w (dosage of SC/CNF), and 20/80 (O/W) ratio. Low FFA release within the digestive system indicated that the nano-emulsions effectively regulated lipid digestion. The changes in physicochemical characteristics in terms of colloidal stability (particle size, microstructure, and surface charge) of the stabilized emulsions corresponding to the FFA released were studied during each digestion phase (including mouth, stomach, and small intestine). This study revealed that the SC/CNF complex is a promising nano-biomaterial that can function as a bio-functional food additive, particle stabilizer, and fat digestion controller. The unique characteristics of SC/CNF complexes in stabilizing oil-water emulsions present a potential interfacial mechanism for modulating lipid bioavailability. The innovation approach allows for the demand for green-label products, promote development of healthier food options, and the pursuit of sustainable food solutions.
Collapse
Affiliation(s)
- Nasuha Abu Yazid
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwei Voon Lee
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Pan Y, Liu S, Han Z, Zeng H, Xu X, Shao JH, Xing L, Yin Y. The influence of pH-ultrasonic-induced myofibrillar protein conformation of Penaeus vannamei (Litopenaeus vannamei) on emulsification and digestion characteristics of fish oil oleogel-based emulsions. Int J Biol Macromol 2024; 283:137419. [PMID: 39542286 DOI: 10.1016/j.ijbiomac.2024.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
pH-induced and ultrasound treatment can both adjust spatial conformation to improve the interfacial stability, and fish oil oleogel could be used to enhance oil binding capacity. The relationship between stabilization mechanism and lipid digestion was revealed, considering the protein conformation and interfacial characteristics. The results showed that pH-ultrasonic-induced myofibrillar proteins (MPs) at pH 7.0 had higher interfacial adsorption capacity and surface hydrophobicity as well as more stable secondary structures, which lowered the particle size and enhanced the interfacial stability. In the stomach, the particle size increased along with the decrease in electrostatic repulsion, and β-sheets significantly increased, which promoted aggregation and flocculation. In the small intestine, the reduction of β-sheets favored the interfacial replacement and facilitated the lipid digestion. Therefore, pH-ultrasonic-modified method improved the structure and function of MPs, facilitated the interfacial stability and intestinal digestion.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Huilan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Xuefei Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
6
|
Lüdtke FL, Fernandes JM, Gonçalves RFS, Martins JT, Berni P, Ribeiro APB, Vicente AA, Pinheiro AC. Performance of β-carotene-loaded nanostructured lipid carriers under dynamic in vitro digestion system: Influence of the emulsifier type. J Food Sci 2024; 89:3290-3305. [PMID: 38767864 DOI: 10.1111/1750-3841.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lβ) or Tween 80 (NLC Tβ) as an emulsifier. β-Carotene was entrapped within NLC developed as a promising strategy to overcome β-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of β-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of β-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tβ remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lβ showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tβ also provided high β-carotene protection and delivery capacity (i.e., β-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tβ has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lβ. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of β-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect β-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the β-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Fernanda L Lüdtke
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | | | | | - Joana T Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Paulo Berni
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ana P B Ribeiro
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Ana C Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| |
Collapse
|
7
|
Gohari AS, Nateghi L, Rashidi L, Berenji S. Preparation and characterization of sodium caseinate-apricot tree gum/gum Arabic nanocomplex for encapsulation of conjugated linoleic acid (CLA). Int J Biol Macromol 2024; 261:129773. [PMID: 38296128 DOI: 10.1016/j.ijbiomac.2024.129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Nanocomplexes (NCs) were formed through electrostatic complexation theory using Na-caseinate (NaCa), gum Arabic (GA), and Prunus armeniaca L. gum exudates (PAGE), aimed to encapsulate Conjugated linoleic acid (CLA). Encapsulation was optimized using NaCa (0.1 %-0.5 %), GA/PAGE (0.1 %-0.9 %) and CLA (1 %-5 %), and central composite design (CCD) was employed for numerical optimization. The optimum conditions for NC containing GA (NCGA) were 0.336 %, 0.437 %, and 3.10 % and for NC containing PAGE (NCPAGE) were 0.403 %, 0.730 %, and 4.177 %, of NaCa, GA/PAGE, and CLA, respectively. EE and particle size were 92.46 % and 52.89 nm for NCGA while 88.23 % and 54.76 nm for NCPAGE, respectively. Fourier transform infrared spectroscopy (FTIR) indicated that CLA was physically entrapped. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the electrostatic complex formation. The elastic modulus was predominant for NCGA and NCPAGE dispersions while the complex viscosity of NCPAGE suspension was slightly higher than that of NCGA. The CLA in NCGA-CLA and NCPAGE-CLA exhibited higher oxidative stability than free CLA during 30 days of storage without a significant difference between the results of CLA oxidative stability tests obtained for NCs. Consequently, NCPAGE and NCGA could be applied for the entrapment and protection of nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Alireza Saeed Gohari
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| | - Shila Berenji
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
8
|
Pan Z, Ye A, Fraser K, Li S, Dave A, Singh H. Comparative lipidomics analysis of in vitro lipid digestion of sheep milk: Influence of homogenization and heat treatment. J Dairy Sci 2024; 107:711-725. [PMID: 37776996 DOI: 10.3168/jds.2023-23446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
This study investigated the changes in sheep milk lipids during in vitro gastrointestinal digestion in response to heat treatment (75°C/15 s and 95°C/5 min) and homogenization (200/50 bar) using lipidomics. Homogenized and pasteurized sheep milk had higher levels of polar lipids in gastric digesta emptied at 20 min than raw sheep milk. Intense heat treatment of homogenized sheep milk resulted in a reduced level of polar lipids compared with homogenized-pasteurized sheep milk. The release rate of free fatty acids during small intestinal digestion for gastric digesta emptied at 20 min followed the order: raw ≤ pasteurized < homogenized-pasteurized ≤ homogenized-heated sheep milk; the rate for gastric digesta emptied at 180 min showed a reverse order. No differences in the lipolysis degree were observed among differently processed sheep milks. These results indicated that processing treatments affect the lipid composition of digesta and the lipolysis rate but not the lipolysis degree during small intestinal digestion.
Collapse
Affiliation(s)
- Zheng Pan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Karl Fraser
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; AgResearch, Palmerston North 4442, New Zealand
| | - Siqi Li
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
9
|
Cheng Y, Ye A, Singh H. Characterizations of emulsion gel formed with the mixture of whey and soy protein and its protein digestion under in vitro gastric conditions. Curr Res Food Sci 2023; 8:100674. [PMID: 38283161 PMCID: PMC10818200 DOI: 10.1016/j.crfs.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Partially replacing animal proteins with plant proteins to develop new products has much attention. To get knowledge of their application in emulsion gels, heat-induced composite protein emulsion gels were fabricated using the mixtures of whey protein isolate (WPI) and soy protein isolate (SPI) with the final total protein concentration of 10% (w/w). The water holding capacity (WHC), mechanical and rheological properties and microstructure of mixed protein emulsion gels prepared at different WPI to SPI ratios (100:0, 90:10, 70:30, 50:50, 30:70, 10:90, 0:100, w/w) were investigated. The ratios of WPI to SPI showed little effect on the WHC of the mixed protein emulsion gels (p > 0.05). Increasing the ratio of SPI decreased the hardness and storage modulus (G') of mixed protein emulsion gels, whereas the porosity of mixed protein emulsion gels in the microstructure increased, as shown by CLSM. Both β-lactoglobulin and α-lactalbumin from WPI and 7 S and 11 S from SPI participated in forming the gel matrix of mixed protein emulsion gels. More protein aggregates existed as the gel matrix filler at the high soy protein levels. Interestingly, the G' of mixed protein emulsion gels at the WPI to SPI ratio of 50:50 was higher than the sum of G' of individual WPI and SPI emulsion gels. The whey protein network predominated the gel matrix, while soy protein predominated in the active filling effect. When subjected to an in vitro dynamic gastric digestion model, soy protein in the gels (WPI:SPI = 50:50) degraded faster than whey protein during gastric digestion. This study provided new information on the characteristics of composite protein emulsion gel fabricated with the WPI and SPI mixture.
Collapse
Affiliation(s)
- Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Riddet Institute, Massey University, Private Bag, Palmerston North 4442, 11 222, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag, Palmerston North 4442, 11 222, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag, Palmerston North 4442, 11 222, New Zealand
| |
Collapse
|
10
|
Li N, Wang R, Deng Z, Zhou J, Li W, Du Q, Zheng L. Structural Characterization of Zinc-Sucrose Complex and Its Ability to Promote Zinc Absorption in Caco-2 Monolayer Cells and Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12094-12104. [PMID: 37493257 DOI: 10.1021/acs.jafc.3c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Sucrose emerges as a metal-ion chelating agent with excellent stability that may increase metal-ion absorption. This study aimed to characterize the structure of zinc-sucrose complex and investigate its ability to promote zinc absorption in Caco-2 monolayer cells and mice. Based on the results of the inductively coupled plasma emission spectrometer (ICP-ES), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy (FT-IR), it can be inferred that zinc and sucrose were chelated at a 1:1 ratio, with the hydroxyl groups playing a significant role. The Caco-2 monolayer cell model revealed that zinc-sucrose complex increased the amount of zinc uptake, retention, and transport in a dose- and time-dependent manner. Through the upregulation of genes and proteins for ZIP4, MT1, and DMT1, treatment with zinc-sucrose complex improved the proportion of absorbed zinc utilized for transport compared to ZnCl2 (26.21 ± 4.96 versus 8.50 ± 1.51%). Pharmacokinetic analysis of mice confirmed the zinc absorption-promoting effect of zinc-sucrose complex, as indicated by the considerably higher serum zinc level (4.16 ± 0.53 versus 2.56 ± 0.45 mg/L) and intestinal ZIP4, MT1, and DMT1 gene expression than ZnCl2. Further treatment of different zinc channel inhibitors and CETSA demonstrated the direct interaction of zinc-sucrose complex with ZIP4 protein and ZIP4-mediated cellular transport of zinc-sucrose complex. These findings provide a novel insight into the zinc absorption-promoting mechanism of zinc-sucrose complex, which could be used as an ingredient in functional foods to treat zinc deficiency.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Ruiyan Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, P. R. China
| | - Jianqun Zhou
- Nanning Zeweier Feed Co., Ltd., Nanning 530221, P. R. China
| | - Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Qian Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| |
Collapse
|
11
|
Luo X, Ao S, Wu H, McClements DJ, Fang L, Huang M, Zhou Y, Yin X, Xi M, Cai T, Zhu K. Hyaluronic Acid Poly(glyceryl) 10-Stearate Derivatives: Novel Emulsifiers for Improving the Gastrointestinal Stability and Bioaccessibility of Coenzyme Q10 Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37436914 DOI: 10.1021/acs.jafc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Fish oils are a rich source of polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, which are reported to exhibit therapeutic effects in a variety of human diseases. However, these oils are highly susceptible to degradation due to oxidation, leading to rancidity and the formation of potentially toxic reaction products. The aim of this study was to synthesize a novel emulsifier (HA-PG10-C18) by esterifying hyaluronic acid with poly(glyceryl)10-stearate (PG10-C18). This emulsifier was then used to formulate nanoemulsion-based delivery systems to co-deliver fish oil and coenzyme Q10 (Q10). Q10-loaded fish oil-in-water nanoemulsions were fabricated, and then their physicochemical properties, digestibility, and bioaccessibility were measured. The results indicated that the environmental stability and antioxidant activity of oil droplets coated with HA-PG10-C18 surpassed those coated with PG10-C18 due to the formation of a denser interfacial layer that blocked metal ions, oxygen, and lipase. Meanwhile, the lipid digestibility and Q10 bioaccessibility of nanoemulsions formulated with HA-PG10-C18 (94.9 and 69.2%) were higher than those formulated with PG10-C18 (86.2 and 57.8%), respectively. These results demonstrated that the novel emulsifier synthesized in this study could be used to protect chemically labile fat-soluble substances from oxidative damage, while still retaining their nutritional value.
Collapse
Affiliation(s)
- Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Sha Ao
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Likun Fang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Mengyu Huang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
12
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Strategies for modulating the lipid digestion of emulsions in the gastrointestinal tract. Crit Rev Food Sci Nutr 2023; 64:9740-9755. [PMID: 37267158 DOI: 10.1080/10408398.2023.2215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural changes in emulsion products can be used to control the bioavailability of fatty acids and lipophilic compounds. After ingestion, lipid droplets undergo breakdown and structural changes as they pass through the gastrointestinal tract. The oil-water interface plays a critical role in modulating the digestive behavior of lipid droplets because changes in the interfacial layer control the adsorption of lipase and bile salts and determine the overall rate and extent of lipid digestion. Therefore, lipid digestibility can be tuned by selecting the appropriate types and levels of stabilizers. The stabilizer can change the lipase accessibility and exposure of lipid substrates, resulting in variable digestion rates. However, emulsified lipids are not only added to food matrixes but are also co-ingested from other dietary components. Therefore, overall consumption behaviors can affect the digestion rate and digestibility of emulsified lipids. Although designing an emulsion structure is challenging, controlling lipid digestion can improve the health benefits of products. Therefore, a thorough understanding of the process of emulsified lipid digestion is required to develop food products that enable specific physiological responses. The targeted or delayed release of lipophilic molecules and fatty acids through emulsion systems has significant applications in healthcare and pharmaceuticals.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
13
|
Zhang M, Zuo Z, Zhang X, Wang L. Food biopolymer behaviors in the digestive tract: implications for nutrient delivery. Crit Rev Food Sci Nutr 2023; 64:8709-8727. [PMID: 37216487 DOI: 10.1080/10408398.2023.2202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Infantes-Garcia MR, Verkempinck SHE, Carriére F, Hendrickx ME, Grauwet T. Pre-duodenal lipid digestion of emulsions: Relevance, colloidal aspects and mechanistic insight. Food Res Int 2023; 168:112785. [PMID: 37120232 DOI: 10.1016/j.foodres.2023.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Fréderic Carriére
- CNRS, Aix-Marseille Université, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 9, France
| | - Marc E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
15
|
Lin Q, Ouyang C, Luo N, Ye A. Coagulation of model infant formulae: Impact on their in vitro dynamic gastric digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Yin Z, Wang M, Zeng M. Novel Pickering emulsion stabilized by natural fiber polysaccharide-protein extracted from Haematococcus pluvialis residues. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Melchior S, Moretton M, Alongi M, Calligaris S, Cristina Nicoli M, Anese M. Comparison of protein in vitro digestibility under adult and elderly conditions: The case study of wheat, pea, rice, and whey proteins. Food Res Int 2023; 163:112147. [PMID: 36596099 DOI: 10.1016/j.foodres.2022.112147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
In this study an in vitro static digestion method mimicking the elderly gastrointestinal conditions was designed by adapting the physiological parameters described in the INFOGEST standardized static in vitro digestion protocol, i.e., pH, digestive phase duration, concentrations of enzymes and bile salts, to the aged GI transit. The digestibility of proteins from different sources (pea, rice, wheat, and milk whey) was then assessed. Protein digestive behaviour was monitored after gastric and intestinal phases by BCA assay and SDS-PAGE to assess protein hydrolysis both from a quantitative and a qualitative point of view. Digested samples were also analysed for physical characteristics in terms of particle size and zeta potential. Data acquired under elderly gastrointestinal conditions were compared to those obtained by using the INFOGEST protocol designed to study adult digestion. Results clearly showed that the elderly gastrointestinal conditions deeply affected proteolysis leading to a general reduction of protein digestibility in comparison to the adult model. The proteolysis extent depended on the protein source with whey and rice proteins showing about 20% reduction using the model mimicking the elderly gut, followed by pea (about 10% reduction) and wheat (about 4% reduction) proteins. The knowledge of protein digestibility under elderly gastrointestinal conditions generated in this study could be useful in the attempt to develop age-tailored products.
Collapse
Affiliation(s)
- Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Maria Cristina Nicoli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
18
|
Wang W, Sun R, Xia Q. Influence of gelation of internal aqueous phase on in vitro controlled release of W1/O/W2 double emulsions-filled alginate hydrogel beads. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Li M, Sun Y, McClements DJ, Yao X, Ma C, Liu X, Liu F. Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Luisa Lüdtke F, Aparecida Stahl M, Grimaldi R, Bruno Soares Forte M, Lúcia Gigante M, Paula Badan Ribeiro A. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers. Food Res Int 2022; 160:111746. [DOI: 10.1016/j.foodres.2022.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/04/2022]
|
21
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
In Vitro Digestion Assays Using Dynamic Models for Essential Minerals in Brazilian Goat Cheeses. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zaeim D, Liu W, Han J, Wilde PJ. Effect of non-starch polysaccharides on the in vitro gastric digestion of soy-based milk alternatives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Wang X, Ye A, Dave A, Singh H. Structural changes in oat milk and an oat milk‒bovine skim milk blend during dynamic in vitro gastric digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Zaeim D, Mulet-Cabero AI, Read SA, Liu W, Han J, Wilde PJ. Effect of oil droplet size on the gastric digestion of milk protein emulsions using a semi-dynamic gastric model. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Hu Z, Wu P, Wang L, Wu Z, Chen XD. Exploring in vitro release and digestion of commercial DHA microcapsules from algae oil and tuna oil with whey protein and casein as wall materials. Food Funct 2022; 13:978-989. [PMID: 35015017 DOI: 10.1039/d1fo02993b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microencapsulation is a promising technique to improve the bioavailability and mask the unpleasant smell of DHA oils. Yet, how the encapsulated DHA oils are 'released' and 'digested' within the gastrointestinal tract (GIT) and the effect of the wall material and source of DHA have been largely unknown. Here, two commercial DHA microcapsules from algae oil (A-DHA) and tuna oil (T-DHA) with 100% whey protein (WP) and 80% casein and 20% WP (C-WP) as wall materials were evaluated in vitro respectively. The release ratio was nearly linearly increased to 77.7% and 41.7% after the simulated gastric phase for T-DHA and A-DHA microcapsules, respectively. In contrast to A-DHA microcapsules for which the release of DHA approached equilibrium in the later intestinal phase, a decline in the release ratio was shown for T-DHA microcapsules perhaps due to the interaction of T-DHA with bile salts resulting in the formation of micelles. The more stable release behaviors might suggest a better performance of A-DHA coated by WP, which enables sustainable release during GIT digestion. This is supported by the better ability to resist gastric proteolysis for A-DHA microcapsules. Additionally, T-DHA (27.5%) showed a lower lipid digestibility than A-DHA (68.5%) in the end due to their structure difference. Significantly positive correlations were found for both microcapsules between DHA release ratio and protein hydrolysis. This study has provided quantitative information on the in vitro release and digestion of DHA microcapsules as influenced by the wall protein and DHA source. The findings are practically meaningful for future formulation of DHA microcapsules with controlled release rates at target sites of the GIT.
Collapse
Affiliation(s)
- Zejun Hu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Peng Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Luping Wang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Zongyu Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiao Dong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
27
|
Wang X, Wolber FM, Ye A, Stroebinger N, Hamlin A, Zhu P, Montoya CA, Singh H. Gastric digestion of cow milk, almond milk and oat milk in rats. Food Funct 2022; 13:10981-10993. [DOI: 10.1039/d2fo02261c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, gastric digestion of isocaloric and iso-macronutrient cow milk, almond milk and oat milk were compared in rats euthanized at different post-feeding times.
Collapse
Affiliation(s)
- Xin Wang
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Frances M. Wolber
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Natascha Stroebinger
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aimee Hamlin
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Peter Zhu
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
28
|
Formation and creaming stability of alginate/micro-gel particle-induced gel-like emulsions stabilized by soy protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
30
|
Cheng L, Ye A, Hemar Y, Singh H. Modification of the interfacial structure of droplet-stabilised emulsions during in vitro dynamic gastric digestion: Impact on in vitro intestinal lipid digestion. J Colloid Interface Sci 2021; 608:1286-1296. [PMID: 34758419 DOI: 10.1016/j.jcis.2021.10.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
The in-vitro gastrointestinal digestion behaviour of an oil-in-water emulsion with an interface consisting of nano-sized droplets coated with caseinate particles, referred to as a droplet-stabilised emulsion (DSE), was explored using the human gastric simulator and pH-stat models. A caseinate-particle-stabilised emulsion (PSE) was used as a control, with a similar droplet size distribution and the same composition as the DSE. The nanodroplet-stabilised interface of the DSE was preserved during the first 180 min of gastric digestion. During 240 min, the droplet sizes of the DSE and the PSE increased from 22.71 ± 1.14 to 63.34 ± 6.57 μm and from 17.98 ± 1.16 to 85.11 ± 9.35 μm respectively. The small droplet size of the DSE that was released from the gastric phase contributed to slightly higher total free fatty acid (FFA) release (56.18 ± 3.55%) than that from the PSE (49.4 ± 2.67%). The FFA release rate of the DSE (1.21 % min-1) was greater than that of the PSE (1.06 % min-1) during the first 30 min of small intestinal digestion; similar FFA release rates (0.5 µmol s-1 m-2 × 10-4) were obtained for both emulsions beyond 30 min of digestion. This study provides new information on lipid digestion using a novel interfacial layer that was stabilised with nanodroplets.
Collapse
Affiliation(s)
- Lirong Cheng
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Yacine Hemar
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
31
|
Zhong M, Sun Y, Sun Y, Fang L, Qi B, Xie F, Li Y. Dynamic gastric stability and in vitro lipid digestion of soybean protein isolate and three storage protein-stabilized emulsions: Effects of ultrasonic treatment. Food Res Int 2021; 149:110666. [PMID: 34600668 DOI: 10.1016/j.foodres.2021.110666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
The emulsification of vegetable protein is closely related to solubility. The purpose of this study was to evaluate the effect of ultrasound on protein emulsification and to provide a prospective method for assessing the digestive properties of emulsions. In this article, we investigate the emulsion stability of ultrasonic pretreated soy protein isolate (SPI), and its three storage proteins, namely β-conglycinin (7S), lipophilic protein (LP), and glycinin (11S), under dynamic gastric conditions. The effects of these emulsions on lipolysis during digestion in the small intestine are also assessed using an in vitro dynamic human stomach simulator and a small intestine model. Particle size and ζ-potential measurements, as well as confocal laser scanning microscopy, revealed that during dynamic gastric digestion, the flocculation degree and floc size of 7S and soybean LP emulsions are larger than that of 11S and SPI emulsions. Meanwhile, ultrasound pretreatment of the proteins was found to prevent the agglomeration of the emulsion in a dynamic gastric environment. Moreover, enhanced flocculation delayed oil droplet delivery to the small intestine and subsequently retarded the release of lipophilic nutrients. The droplet size, molecular weight, and protein secondary structures of the ultrasonicated proteins were conducive to relatively higher rates and degrees of lipolysis in intestinal digestion than those of unsonicated proteins. Additionally, the slow-release effect of LP was superior to that of 11S and SPI, whereas 7S was comparatively more difficult to digest. The present study elucidated the fate of soy protein in the digestive tract and may facilitate microstructural food design to regulate physiological responses during digestion.
Collapse
Affiliation(s)
- Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Fang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
32
|
Pan Z, Ye A, Li S, Dave A, Fraser K, Singh H. Dynamic In Vitro Gastric Digestion of Sheep Milk: Influence of Homogenization and Heat Treatment. Foods 2021; 10:1938. [PMID: 34441714 PMCID: PMC8393485 DOI: 10.3390/foods10081938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Milk is commonly exposed to processing including homogenization and thermal treatment before consumption, and this processing could have an impact on its digestion behavior in the stomach. In this study, we investigated the in vitro gastric digestion behavior of differently processed sheep milks. The samples were raw, pasteurized (75 °C/15 s), homogenized (200/20 bar at 65 °C)-pasteurized, and homogenized-heated (95 °C/5 min) milks. The digestion was performed using a dynamic in vitro gastric digestion system, the human gastric simulator with simulated gastric fluid without gastric lipase. The pH, structure, and composition of the milks in the stomach and the emptied digesta, and the rate of protein hydrolysis were examined. Curds formed from homogenized and heated milk had much looser and more fragmented structures than those formed from unhomogenized milk; this accelerated the curd breakdown, protein digestion and promoted the release of protein, fat, and calcium from the curds into the digesta. Coalescence and flocculation of fat globules were observed during gastric digestion, and most of the fat globules were incorporated into the emptied protein/peptide particles in the homogenized milks. The study provides a better understanding of the gastric emptying and digestion of processed sheep milk under in vitro gastric conditions.
Collapse
Affiliation(s)
- Zheng Pan
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (Z.P.); (S.L.); (A.D.); (K.F.); (H.S.)
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (Z.P.); (S.L.); (A.D.); (K.F.); (H.S.)
| | - Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (Z.P.); (S.L.); (A.D.); (K.F.); (H.S.)
| | - Anant Dave
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (Z.P.); (S.L.); (A.D.); (K.F.); (H.S.)
| | - Karl Fraser
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (Z.P.); (S.L.); (A.D.); (K.F.); (H.S.)
- AgResearch, Private Bag 11 008, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; (Z.P.); (S.L.); (A.D.); (K.F.); (H.S.)
| |
Collapse
|
33
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. In vitro digestion of curcumin-nanoemulsion-enriched dairy protein matrices: Impact of the type of gel structure on the bioaccessibility of curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Jiang J, Nie Y, Sun X, Xiong YL. Partial Removal of Phenolics Coupled with Alkaline pH Shift Improves Canola Protein Interfacial Properties and Emulsion in In Vitro Digestibility. Foods 2021; 10:foods10061283. [PMID: 34199750 PMCID: PMC8227346 DOI: 10.3390/foods10061283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The effect of polyphenol removal (“dephenol”) combined with an alkaline pH shift treatment on the O/W interfacial and emulsifying properties of canola seed protein isolate (CPI) was investigated. Canola seed flour was subjected to solvent extraction to remove phenolic compounds, from which prepared CPI was exposed to a pH12 shift to modify the protein structure. Dephenoled CPI had a light color when compared with an intense dark color for the control CPI. Up to 53% of phenolics were removed from the CPI after the extraction with 70% ethanol. Dephenoled CPI showed a partially unfolded structure and increased surface hydrophobicity and solubility. The particle size increased slightly, indicating that soluble protein aggregates formed after the phenol removal. The pH12 shift induced further unfolding and decreased protein particle size. Dephenoled CPI had a reduced β subunit content but an enrichment of disulfide-linked oligopeptides. Dephenol improved the interfacial rheology and emulsifying properties of CPI. Although phenol removal did not promote peptic digestion and lipolysis, it facilitated tryptic disruption of the emulsion particles due to enhanced proteolysis. In summary, dephenol accentuated the effect of the pH shift to improve the overall emulsifying properties of CPI and emulsion in in vitro digestion.
Collapse
Affiliation(s)
- Jiang Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.J.); (Y.N.); (X.S.)
| | - Yunqing Nie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.J.); (Y.N.); (X.S.)
| | - Xuemei Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.J.); (Y.N.); (X.S.)
| | - Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
- Correspondence: ; Tel.: +1-859-257-5318
| |
Collapse
|
36
|
Ye A. Gastric colloidal behaviour of milk protein as a tool for manipulating nutrient digestion in dairy products and protein emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106599] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Infantes-Garcia MR, Verkempinck SHE, Hendrickx ME, Grauwet T. Kinetic Modeling of In Vitro Small Intestinal Lipid Digestion as Affected by the Emulsion Interfacial Composition and Gastric Prelipolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4708-4719. [PMID: 33856215 DOI: 10.1021/acs.jafc.1c00432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research evaluated the impact of the emulsion interfacial composition on in vitro small intestinal lipolysis kinetics with the inclusion of rabbit gastric lipase resulting in a gastric prelipolysis step. O/w emulsions contained 5% triolein (w/w) and 1% (w/w) of the following emulsifiers: sodium taurodeoxycholate, citrus pectin, soy protein isolate, soy lecithin, and tween 80. Emulsions were subjected to static in vitro digestion and diverse lipolysis species quantified via a HPLC-charged aerosol detector. Single-response modeling indicated that the kinetics of lipolysis in the small intestinal phase were impacted by the emulsion particle size at the beginning of this phase. Multiresponse modeling permitted the elucidation of the lipolysis mechanism under in vitro conditions. The final reaction scheme included enzymatic and chemical conversions. The modeling strategies used in this research allowed to gain more insights into the kinetics and mechanism of in vitro lipid digestion.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
38
|
Choki K, Li S, Ye A, Jameson GB, Singh H. Fate of hydroxyapatite nanoparticles during dynamic in vitro gastrointestinal digestion: the impact of milk as a matrix. Food Funct 2021; 12:2760-2771. [PMID: 33683238 DOI: 10.1039/d0fo02702b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the behavior of nano-sized particles of hydroxyapatite (nHA) during dynamic in vitro gastrointestinal digestion, alone or dispersed within skim milk. The dissolution and the structural changes of nHA were investigated by analyzing the dissolution of calcium and using transmission electron microscopy and X-ray diffraction. The dissolution of nHA during gastric digestion involved a rapid early stage and a much slower later stage. It was incomplete by the end of gastric digestion, both with and without milk. However, there was no sign of nHA recrystallization in the intestinal phase. X-ray diffraction analysis of digesta showed the breakdown of the crystalline structure of nHA and the formation of potentially new calcium phosphate phases during digestion. Skim milk formed a structural clot and significantly retarded the dissolution of nHA during gastric digestion. Possible mechanisms leading to the incomplete dissolution of nHA and the matrix effect of milk are discussed.
Collapse
Affiliation(s)
- Kinley Choki
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
39
|
Luo N, Ye A, Wolber FM, Singh H. Effect of Gel Structure on the In Vitro Gastrointestinal Digestion Behaviour of Whey Protein Emulsion Gels and the Bioaccessibility of Capsaicinoids. Molecules 2021; 26:molecules26051379. [PMID: 33806537 PMCID: PMC7961952 DOI: 10.3390/molecules26051379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of gel structure on the digestion of heat-set whey protein emulsion gels containing capsaicinoids (CAP), including the bioaccessibility of CAP. Upon heat treatment at 90 °C, whey protein emulsion gels containing CAP (10 wt% whey protein isolate, 20 wt% soybean oil, 0.02 wt% CAP) with different structures and gel mechanical strengths were formed by varying ionic strength. The hard gel (i.e., oil droplet size d4,3 ~ 0.5 μm, 200 mM NaCl), with compact particulate gel structure, led to slower disintegration of the gel particles and slower hydrolysis of the whey proteins during gastric digestion compared with the soft gel (i.e., d4,3 ~ 0.5 μm, 10 mM NaCl). The oil droplets started to coalesce after 60 min of gastric digestion in the soft gel, whereas minor oil droplet coalescence was observed for the hard gel at the end of the gastric digestion. In general, during intestinal digestion, the gastric digesta from the hard gel was disintegrated more slowly than that from the soft gel. A power-law fit between the bioaccessibility of CAP (Y) and the extent of lipid digestion (X) was established: Y = 49.2 × (X - 305.3)0.104, with R2 = 0.84. A greater extent of lipid digestion would lead to greater release of CAP from the food matrix; also, more lipolytic products would be produced and would participate in micelle formation, which would help to solubilize the released CAP and therefore result in their higher bioaccessibility.
Collapse
Affiliation(s)
- Nan Luo
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
- Correspondence: (A.Y.); (H.S.)
| | - Frances M. Wolber
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
- Correspondence: (A.Y.); (H.S.)
| |
Collapse
|
40
|
An efficient small intestine-targeted curcumin delivery system based on the positive-negative-negative colloidal interactions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Wang X, Ye A, Dave A, Singh H. In vitro digestion of soymilk using a human gastric simulator: Impact of structural changes on kinetics of release of proteins and lipids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Tan Y, McClements DJ. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem 2021; 348:129148. [PMID: 33515946 DOI: 10.1016/j.foodchem.2021.129148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The potency of oil-soluble vitamins (vitamins A, D, E and K) in fortified foods can be improved by understanding how food matrices impact their bioavailability. In this review, the major food matrix effects influencing the bioavailability of oil-soluble vitamins are highlighted: oil content, oil composition, particle size, interfacial properties, and food additives. Droplet size and aggregation state in the human gut impact vitamin bioavailability by modulating lipid digestion, vitamin release, and vitamin solubilization. Vitamins in small isolated oil droplets typically have a higher bioavailability than those in large or aggregated ones. Emulsifiers, stabilizers, or texture modifiers can therefore affect bioavailability by influencing droplet size or aggregation. The dimensions of the hydrophobic domains in mixed micelles depends on lipid type: if the domains are too small, vitamin bioavailability is low. Overall, this review highlights the importance of carefully designing food matrices to improve vitamin bioavailability.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
43
|
Infantes-Garcia M, Verkempinck S, Gonzalez-Fuentes P, Hendrickx M, Grauwet T. Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106163] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release 2020; 327:444-455. [DOI: 10.1016/j.jconrel.2020.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
45
|
Silva M, Zisu B, Chandrapala J. INFLUENCE OF MILK PROTEIN COMPOSITION ON PHYSICOCHEMICAL AND MICROSTRUCTURAL CHANGES OF SONO-EMULSIONS DURING IN VITRO DIGESTION. FOOD STRUCTURE 2020. [DOI: 10.1016/j.foostr.2020.100157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chem 2020; 319:126514. [DOI: 10.1016/j.foodchem.2020.126514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022]
|
47
|
Ye A, Wang X, Lin Q, Han J, Singh H. Dynamic gastric stability and in vitro lipid digestion of whey-protein-stabilised emulsions: Effect of heat treatment. Food Chem 2020; 318:126463. [PMID: 32135421 DOI: 10.1016/j.foodchem.2020.126463] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
The stability behaviours of whey-protein-stabilised emulsions under gastric conditions and the effects on the lipolysis of the emulsions were investigated using an in vitro dynamic human gastric simulator and a subsequent small intestinal model. Under gastric conditions, heated whey-protein-stabilised emulsions flocculated to a greater extent and with a larger floc size, whereas unheated emulsions were more prone to coalescence. The greater extent of flocculation delayed the delivery of oil droplets to the small intestine, leading to a lower amount of oil in the emptied gastric digesta from the heated emulsion in the early period of digestion. The differences in oil content, droplet size and interfacial composition led to a greater rate and extent of lipolysis in the subsequent intestinal digestion in the heated emulsion than the unheated emulsion. The results suggest that the lipid digestion of whey-protein-stabilised emulsions in the intestinal stage could be manipulated by thermal treatment.
Collapse
Affiliation(s)
- Aiqian Ye
- College of Food and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Xin Wang
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Quanquan Lin
- College of Food and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Jianzhong Han
- College of Food and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
48
|
|
49
|
Effects of anionic polysaccharides on the digestion of fish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Res Int 2020; 127:108768. [DOI: 10.1016/j.foodres.2019.108768] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022]
|
50
|
Tan Y, Li R, Zhou H, Liu J, Muriel Mundo J, Zhang R, McClements DJ. Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food Funct 2020; 11:174-186. [DOI: 10.1039/c9fo01669d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioaccessibility of hydrophobic bioactives may be greatly reduced in the presence of calcium.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- 8 Nanchang
- PR China
| | - Hualu Zhou
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Jinning Liu
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | | - Ruojie Zhang
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | |
Collapse
|