1
|
Qi L, Wang Z, Yin Z, Liu K, Meenu M, Lu H, Zhao H, Yuan C, Tian Y. Rapid and slow thawing of Takifugu rubripes fillets: TMT-labeled proteomics analysis, biochemical and morphological comparison. Food Chem 2025; 476:143389. [PMID: 39977997 DOI: 10.1016/j.foodchem.2025.143389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This study aimed to investigate how running water (rapid, R) and ice-water (slow, I) thawing methods affect the quality of Takifugu rubripes fillets. Thawing shrinkage and changes in extractable proteins quantified by tandem mass tag (TMT)-labeled quantitative proteomics were compared. The results showed that the rapidly thawed fillets were quickly underwent greater shrinkage, and the smaller gap areas were reduced by 7.5 % compared to slow thawing. Compared with fresh fish fillets, the outflow of proteins such as ATP synthase, NADH dehydrogenase, and aconitase within mitochondria increased in both thawing methods that presents cell membrane damage and significant disruptions in mitochondrial structure. The pyruvate dehydrogenase and cytochrome c were significantly upregulated in slow-thawing group. Whereas myosin and structural proteins including the Z-line related were significantly upregulated in the rapid-thawing group. These differential proteins serve as crucial markers for elucidating mechanism involved in muscle quality deterioration under different thawing conditions.
Collapse
Affiliation(s)
- Lin Qi
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Zhuolin Wang
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Zhongzhuan Yin
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Kaisheng Liu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road, Hangzhou 310058, China
| | - Hang Lu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Hui Zhao
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan; Agri - Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China.
| |
Collapse
|
2
|
Jiang X, He Y, Li X, Huang Y, Liu Y, Wang F. Triple gel enhancement, antioxidant and cryoprotective effects of the enzyme-assisted extracted surimi by-product proteins on unwashed silver carp surimi. Int J Biol Macromol 2025; 309:143167. [PMID: 40239785 DOI: 10.1016/j.ijbiomac.2025.143167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
The limited gel-forming ability and poor storage stability of unwashed surimi hinder its large-scale industrial adoption, requiring targeted solutions. This study aimed to investigate the gel enhancement, antioxidant and cryoprotective effects of enzyme-assisted extracted surimi by-product proteins (EAE-SBPs) on unwashed surimi. The EAE-SBPs were characterized and then incorporated into surimi system to evaluate their influences on the quality of freeze-thaw (FT) treated raw surimi or surimi gel. The results revealed that EAE-SBPs exhibited triple cryoprotective activity (54.90 % yeast cell viability), antioxidant capacity (58.72 % DPPH radical scavenging rate), and gel-strengthening capability. Compared to controls, the raw surimi containing EAE-SBPs demonstrated significantly retarded reduction in protein Ca2+-ATPase activities, and mitigated increase in TBARS levels and protein carbonyl contents during FT process (p < 0.05). After 6 FT cycles, a significantly higher (p < 0.05) gel strength, water holding capacity, and structural integrity of gel network, as well as a more restricted water migration and ice crystal growth, were observed in the EAE-SBPs-added surimi gels than those in controls. These findings offer a knowledge on severing EAE-SBPs as a concurrent cryoprotectant, antioxidant and gel enhancer in unwashed surimi processing, ultimately contributing to the production of unwashed surimi with enhanced quality.
Collapse
Affiliation(s)
- Xiangyao Jiang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuxi He
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
3
|
Tian Y, Li J, Nie M, Wang L, Liu L, Wang F, Tong LT. The impact of gelatinization property differences based on amylopectin structure variations on the glutinous rice flour properties and quality of Daifuku. Food Chem X 2025; 27:102423. [PMID: 40248318 PMCID: PMC12005919 DOI: 10.1016/j.fochx.2025.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
The study investigated the effects of paste viscosity for glutinous rice flour (GRF), based on differences in amylopectin structure, on the physicochemical properties of GRF and the quality of Daifuku. Ten GRF from two types (Indica variety: IGRF and Japonica variety: JGRF) were selected and the results showed the viscosity, amylopectin content, percentage of long-branched chains, enthalpy, and setback value of IGRF were significantly higher than JGRF and the Daifuku maintained an excellent appearance, which was related to higher proportion of B2 and B3 chain can form more double helix structure after pasting, resulting in higher hardness and compact gel network structure with improved water retention capacity. In contrast, the higher proportion of short chains in JGRF exhibited a slow retrogradation rate and formed an unstable gel network structure. All the results showed that IGRF was more suitable than JGRF to prepare Daifuku and the resulting Daifuku had better quality.
Collapse
Affiliation(s)
- Yu Tian
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Science, Beijing 100193, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
4
|
Wang H, Li Q, Yang M, Wang H, Wang M, Lin L, Lu J. High-Quality Application of Crayfish Muscle in Surimi Gels: Fortification of Blended Gels by Transglutaminase. Gels 2025; 11:204. [PMID: 40136908 PMCID: PMC11941840 DOI: 10.3390/gels11030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The application of crayfish muscle in surimi products is a potential way to promote their processing and ensure that it is of a high value. In this study, a one-way completely randomized design was used to prepare mixed surimi gels with different proportions of crayfish muscle. The effect of transglutaminase (TGase) on the improvement in the structural properties, water-binding capacity, micromorphology and protein conformation of blended gels was explored using mass spectrometry, centrifugation, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results of thus study were analyzed by one-way ANOVA showed that in the absence of TGase, crayfish muscle made the microstructure of the blended gel looser and rougher, with a reduction in the strength of the gel and a decrease in the water holding capacity. The addition of 0.6% TGase was able to ameliorate this negative effect by promoting the formation of key chemical bonds and changes in protein conformation, which ultimately led to the enhancement of the crayfish-surimi blended gel properties. Practically, this study provides a viable strategy for incorporating crayfish into surimi products, enabling the development of novel, high-quality seafood products with improved texture and moisture retention, thereby enhancing consumer appeal and reducing waste in crayfish processing.
Collapse
Affiliation(s)
- Hongyi Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Li
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengru Yang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hong Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengtao Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Lin
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianfeng Lu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Yang C, Shuaibu A, Lan H, Zhao Y, Xu Y, Gao Y, Deng S. Substitution of NaCl by organic sodium salts in cured large yellow croaker (Larimichthys crocea): Improvement of the quality and flavor characteristic. Food Chem 2025; 464:141704. [PMID: 39447266 DOI: 10.1016/j.foodchem.2024.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
For lowering the daily intake of salt, the study evaluated the impact of various organic sodium salts (OSS), including sodium acetate (SA), sodium citrate (SC), and sodium lactate (SL), on the quality and volatile flavor profiles of large yellow croaker. The results showed that the 5 % SC and 5 % SL treatments significantly improved water holding capacity (WHC), texture, and color (p < 0.05). These groups also demonstrated compact microstructures and maintained strong sensory acceptability. However, as the curing concentration increased, protein unfolding and oxidation intensified, and the transition from bound and immobile water to free water was observed. This shift negatively affected WHC, texture, and cell structure. Additionally, gas chromatography-ion mobility spectrometry (GC-IMS) identified 27 volatile compounds, with OSS treatments notably enhancing flavor intensity. These findings offer valuable insights for developing low-sodium practices in the seafood industry.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Abubakar Shuaibu
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Hao Lan
- Faculty of Food Science, Zhejiang Pharmaceutical University, China
| | - Yuying Zhao
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yi Xu
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yuanpei Gao
- College of Food Science and Pharmacy, Zhejiang Ocean University, China.
| | - Shanggui Deng
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| |
Collapse
|
6
|
Lu J, Tong J, Xu D, Wei H, Huang T, Yang W, Jia R. Insight into the mechanism of setting temperature and time on gel properties of Solenocera crassicornis surimi. Food Res Int 2025; 202:115813. [PMID: 39967123 DOI: 10.1016/j.foodres.2025.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
This study explored how setting conditions affect the gel properties of shrimp surimi from Solenocera crassicornis using a two-step heating process with varying temperatures (30, 40, 50 °C) and durations (0-120 min). At 30 °C, increased hydrogen bonds and cross-linking promoted macromolecular polymer formation, with optimal elasticity achieved at 15-30 min, but longer times led to gel aggregation and uneven structure. At 40 °C, macromolecular polymer decreased, while sulfhydryl groups increased, leading to disulfide bond formation, which disrupted hydrogen bonds and increased hydrophobic groups. Gel strength decreased over setting time, with a soft and smooth texture observed after 15-30 min. Setting at 50 °C disrupted chemical bonds, exposed hydrophobic groups, and resulted in less significant changes in storage modulus and loss modulus. After high-temperature gelation at 90 °C, disulfide bonds were further disrupted, reducing the stability of gel properties. Moreover, an increase in the setting temperature affected the internal water distribution within the shrimp surimi gel. A shorter setting time promoted the absorption of water molecules by starch in the gel, thereby reducing the free water content. However, when the setting time exceeded 60 min, the proportions of bound water and immobile water decreased, gradually transforming into free water. This transformation increased the drip loss and softened the texture of gel. In summary, setting conditions significantly influenced moisture distribution, viscoelasticity, and chemical forces in shrimp surimi gels.
Collapse
Affiliation(s)
- Jiafang Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jingjing Tong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Dalun Xu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Huamao Wei
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Tao Huang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Wenge Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| | - Ru Jia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Jiang X, Liang Q, Shi W. Influence of starch on freeze-thaw stability of Hypophthalmichthys molitrix surimi gel observed via ice crystal distribution and gel properties. Food Chem X 2024; 24:101995. [PMID: 39850935 PMCID: PMC11754041 DOI: 10.1016/j.fochx.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/25/2025] Open
Abstract
Starch has been recognized as a vital ingredient in surimi products due to its ability to absorb water, which reduces the deterioration of gels and water loss during freezing and thawing. However, it is essential to ascertain the role of starch in the formation of ice crystals and the texture of surimi gels. The impact of freeze-thaw cycles on the morphology and distribution of ice crystals, as well as the textural characteristics of gelatinized and ungelatinized starch-surimi gels was investigated. The results of light microscopy revealed that the presence of starch, irrespective of whether it was gelatinized, resulted in a reduction in the size of ice crystals within the surimi gel network during the freeze-thaw process. In addition, starch in surimi gels was subjected to freeze-thaw cycles, resulting in the emergence of two distinct states of bound water (0.1-1 ms and 1-10 ms). The higher relative content of immobile water indicated that the gelatinized starch had improved water holding properties. Furthermore, the incorporation of gelatinized starch into surimi enhanced its freeze-thaw stability and retarded the loss of gel strength, hardness, and whiteness. The addition of starch had a synergistic impact, enhancing the gel properties by affecting the formation of ice crystals and water absorption.
Collapse
Affiliation(s)
- Xin Jiang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qianqian Liang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Zhu M, Liu W, Li M, Jiang L, Li H, Wang H, Gao X, Ma H, Kang Z. Enhancing the quality attributes of porcine myofibrillar proteins through low-frequency alternating magnetic field-assisted freezing. Int J Biol Macromol 2024; 283:137918. [PMID: 39577536 DOI: 10.1016/j.ijbiomac.2024.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This study explores the potential of low-frequency alternating magnetic field-assisted freezing (LF-MFF) on enhancing the physicochemical stability and gelling performance of porcine myofibrillar proteins (MPs). We observed that LF-MFF markedly reduced oxidative denaturation of MPs compared to refrigerator freezing (RF), thus maintaining higher gel quality. Notably, LF-MFF treatment at 3-4 mT enhanced MPs' solubility, decreased turbidity, and lowered dityrosine content. LF-MFF at 4 mT also effectively minimized MPs' aggregation and degradation. Rheological measurements revealed that the storage modulus (G') and apparent viscosity of MPs treated with 3-4 mT LF-MFF are comparable to those of fresh samples (FS). Furthermore, LF-MFF at 3-4 mT significantly improved the water-holding capacity (WHC), whiteness, gel strength, and textural properties of MPs. The 3-4 mT LF-MFF was particularly effective in enhancing hydrophobic interactions and hydrogen bonding, thereby inhibiting water mobility and protecting microstructure of MPs gels. In summary, LF-MFF, especially at 4 mT, improved the gelation properties of MPs by reducing oxidative denaturation, providing significant insights for its application in the frozen meat industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang 453003, PR China.
| | - Wang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Mingzhe Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Lijie Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Hui Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xueli Gao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
9
|
Lu F, Chi Y, Chi Y. Effect of fat replacement in high internal phase emulsions constructed by high temperature saccharification of grafted proteins on gel properties and flavor profiles of sausages. Poult Sci 2024; 103:104358. [PMID: 39383669 PMCID: PMC11490919 DOI: 10.1016/j.psj.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
In order to mitigate the risk of cardiovascular diseases associated with excessive saturated fatty acid intake, utilizing high internal phase emulsions (HIPEs) as a substitute for animal fat in producing high-quality fat-substituted meat products is an ideal approach. This study involves the preparation of glycosylation products of egg white protein (EWP) through saccharification at high temperatures in the presence of fructooligosaccharides (FO). The resulting glycation products of EWP were employed to create colloidal particles, forming HIPEs, which were further utilized to induce the formation of HIPEs gels (HIPEs-Gs). The study investigated the effects of substituting different ratios (25%, 50%, 75%, and 100%) of animal fat with HIPEs and HIPEs-Gs on the gel properties and flavor characteristics of sausages. Results showed that, compared to the control group, substituting fat with HIPEs significantly improved the gel properties, cooking yield, and G' of sausages, while excessive HIPEs-Gs substitution yielded negative effects. Low-field nuclear magnetic resonance results also demonstrated that adding HIPEs improved water and oil distribution in the sausage batter, enhancing protein's binding capacity with water. Scanning electron microscope revealed that HIPEs substitution led to a denser gel network with smaller pores, effectively "locking in" more water. Analysis of volatile compounds indicated accelerated release of aromatic compounds, alkanes, sulfides, and lipids when fat was substituted with HIPEs and HIPEs-Gs. Electronic tongue analysis suggested that HIPEs-Gs substitution reduced response values for umami and saltiness. In conclusion, compared to HIPEs-Gs, using HIPEs as a fat substitute improves the quality of sausages.
Collapse
Affiliation(s)
- Fei Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Wang W, Zhao Y, Ma Y, He L, Shi C, Jia P, Yu Q, Zhang L. Effects of sodium carboxymethyl cellulose-tea polyphenols ice coating on the quality degradation of frozen-thawed beef due to changes in protein structure and fat and protein oxidation. Int J Biol Macromol 2024; 280:135975. [PMID: 39326602 DOI: 10.1016/j.ijbiomac.2024.135975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
During freeze-thaw (FT) cycles, protein structural degradation, lipid and protein oxidation can lead to quality deterioration of beef samples. To address this issue, we developed a cost-effective and easy-to-operate carboxymethyl cellulose sodium-tea polyphenol (CMC-TP) ice coating to inhibit quality deterioration caused by these factors. The beef samples were characterized for various quality attributes, lipid and protein oxidation, and protein structure. The results demonstrated that the CMC-TP ice coating significantly inhibited the deterioration in water-holding capacity (WHC) and tenderness of the beef samples (P < 0.05). Analysis of peroxide value (POV), thiobarbituric acid (TBARS), total volatile basic nitrogen (TVB-N), and carbonyl content revealed that the CMC-TP ice coating significantly suppressed lipid and protein oxidation during FT cycles (P < 0.05). Additionally, assessments of total sulfhydryl content, fluorescence intensity, and surface hydrophobicity indicated that the CMC-TP ice coating effectively mitigated protein structural degradation through antioxidant and cryoprotective effects (P < 0.05). Therefore, the CMC-TP ice coating can enhance the FT stability of beef.
Collapse
Affiliation(s)
- Wanlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanchun Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730030, China
| | - Yabin Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chaoxue Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pei Jia
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Yang J, Yu X, Dong X, Yu C. Improvement of Surimi Gel from Frozen-Stored Silver Carp. Gels 2024; 10:374. [PMID: 38920921 PMCID: PMC11203346 DOI: 10.3390/gels10060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Silver Carp (SC) is an under-utilized, invasive species in North American river systems. In this study, the synergistic effects of manufactured Microfiber (MMF), Transglutaminase (TG), and chicken skin collagen (CLG)) to enhance surimi gel quality from frozen SC were studied. The gel strength, textural properties, rheological properties, water-holding capacity (WHC), water mobility, microstructure, and protein composition of the gel samples were determined to assess the impact of the additives individually and synergistically. The results suggested that TG had the most pronounced effect on the surimi gel properties by promoting protein cross-linking. Synergistic effects between TG, MMF, and CLG can bring effective gel property enhancement larger than the individual effect of each additive alone. With the established response-surface models, the combination of CLG and MMF can be optimized to produce surimi gels with less TG but comparable in properties to that of the optimal result with high TG usage. The findings of this study provided a technical foundation for making high-quality surimi gel products out of frozen-stored SC with synergistic utilization of additives, which could serve as guidelines for the industrial development of new surimi products.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiliang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
12
|
Chang X, Liu H, Zhuang K, Chen L, Zhang Q, Chen X, Ding W. Study on the Quality Variation and Internal Mechanisms of Frozen Oatmeal Cooked Noodles during Freeze-Thaw Cycles. Foods 2024; 13:541. [PMID: 38397519 PMCID: PMC10887751 DOI: 10.3390/foods13040541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Frozen staple food, attributed to its favorable taste and convenience, has a promising development potential in the future. Frequent freezing and thawing, however, will affect its quality. This study simulated several freeze-thaw cycles (FTC) that may occur during the cold chain process of frozen oatmeal cooked noodles (FOCN) production to consumption. The quality changes and their mechanisms were elucidated using methods such as differential scanning calorimetry (DSC), low-field nuclear magnetic resonance (LF-NMR), Fourier-transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), texture analysis, and sensory evaluation. The freezable water content of the FOCN decreased because of the FTC treatment, and the relative content of total water in FOCN also decreased accordingly. The increase in β-Turn after FTC induced disorder in the secondary structure of proteins, causing the protein microstructure to become loose and discontinuous, which in turn reduced the water-holding capacity of FOCN. Additionally, FTC reduced the chewiness and sensory score of FOCN. This research will contribute a theoretical foundation for optimizing the cold chain process.
Collapse
Affiliation(s)
- Xianhui Chang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hairong Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
| | - Kun Zhuang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xi Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Yang J, Huang P, Sun B, Yang W, Ou C, Yuan C, Huang T, Wei H. Comparison of freezing and heating treatment sequence on biochemical properties and flavor of swimming crabs (Portunus Trituberculatus) meat during freeze-thaw cycles. Food Res Int 2024; 175:113758. [PMID: 38128998 DOI: 10.1016/j.foodres.2023.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The objective of this study was to compare the effect of freezing and heating treatment sequences on the biochemical properties and flavor of crab (Portunus trituberculatus) meat during freeze-thaw cycles. The results showed that pH, color, K and microstructure changes in the H-F group were not significant with increasing number of freeze-thaw cycles, but TVB-N values increased and WHC values decreased. However, with the increase in the number of freeze-thaw cycles, pH and WHC significantly decreased and TVB-N, L* and K values significantly increased in the C and F-H groups. Proteins were degraded in all groups, but the lower degree of degradation occurred in the H-F group. Although the total free amino acid content decreased with increasing number of freeze-thaw cycles in each group, the high content of AMP and IMP in the H-F group suggested that it still had a better flavor.
Collapse
Affiliation(s)
- Jingjing Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Peiyuan Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Bolun Sun
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Feng X, Cen K, Yu X, Huang C, Yang W, Yang Y, Tang X. Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: Maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation. Int J Biol Macromol 2023; 253:126682. [PMID: 37666398 DOI: 10.1016/j.ijbiomac.2023.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
In this work, the effects of quinoa protein Pickering emulsion (QPPE) on protein oxidation, structure and gastrointestinal digestion property of myofibrillar protein gels (MPGs) after freeze-thaw (F-T) cycles are revealed. SDS-PAGE results indicated that 5.0 %-10.0 % QPPE addition slowed down the protein degradation. Meanwhile, 5.0 %-7.5 % QPPE maintained the stability of the protein secondary and tertiary structure of MPGs after F-T cycles. The sulfhydryl group, disulfide bond and dityrosine content increased with QPPE supplementation. The conformations of disulfide bond changed from g-g-t and t-g-t to g-g-g after F-T cycles, and 5.0 %-7.5 % QPPE stabilized the changes of t-g-t conformation. Furthermore, the increase of dityrosine content after F-T cycles was significantly reduced with 7.5 % QPPE addition, indicating its effect to slow down protein oxidation of MPGs. In addition, MPGs with 5.0 % and 7.5 % QPPE showed noticeably higher zeta potential values than other groups, indicating the enhanced electrostatic repulsion and weakened aggregation caused by F-T damage. This work showed that 7.5 % QPPE improved the F-T stability of MPGs and reduced the protein denaturation and oxidation caused by F-T treatments, exerting no side effect on the digestion property of MPGs. QPPE can be used as a green and effective antifreeze in meat industry.
Collapse
Affiliation(s)
- Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kaiyue Cen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
15
|
Zhang X, Mao M, Zhang S, Wang Z, Liu S, Yang W, Gao Y, Jia R. Investigation of the changes in gelation properties of hydroxypropyl distarch phosphate-surimi gel under different gelation-freezing treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7877-7887. [PMID: 37467419 DOI: 10.1002/jsfa.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Frozen storage often leads to quality deterioration of surimi-based products. At present, most of the research focuses on improving the quality of surimi products by adding cryoprotectants, and there are few studies available on preparation technology. Therefore, the effects of different gelation-freezing treatments, high temperature heating-freezing treatment (HF), low temperature heating-high temperature heating-freezing treatment (LHF) and low temperature heating-freezing-high temperature heating treatment (LFH) on the quality changes of surimi gels containing hydroxypropyl distarch phosphate (HPDSP) during frozen storage were investigated. RESULTS With the extension of frozen storage time, the quality of surimi gel in all groups decreased, but the quality of surimi gel with HPDSP was better than that of surimi gel without HPDSP. Compared with HF and LHF, the change range of breaking force, hardness, gumminess, whiteness and disulfide bond content of HPDSP-surimi gel treated with LFH was the least during the frozen storage. In the reheating process of LFH, HPDSP could absorb the water lost during freezing. Therefore, the change in the transverse relaxation time of HPDSP-surimi gels treated with LFH was smaller, with more immobile water and less free water and P22 of 96.81% and P23 of 0% at 16 weeks. In addition, the breaking deformation, cohesiveness, resilience, springiness and protein composition of surimi gels with and without HPDSP treated with HF, LHF and LFH did not change significantly during frozen storage. CONCLUSION The combination of LFH and HPDSP could effectively reduce the quality change of surimi gel during frozen storage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinxin Zhang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Min Mao
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shutong Zhang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhufen Wang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Siqi Liu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Wenge Yang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yuanpei Gao
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Jia
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Liu Y, Huang Y, Zhang L, Li S, Cheng Q, Zhu B, Dong X. Effects of pork fat and linseed oil as additives on gel quality of fish cake. J Texture Stud 2023; 54:693-705. [PMID: 37119016 DOI: 10.1111/jtxs.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Pork fat (PF) is a necessary ingredient in making traditional fish cakes (TFCs), which contains saturated fatty acids with potential health concerns. While linseed oil (LO) containing α-linolenic acid is a potential nutrient-enhancing fat substitute. In this study, the effect of pork fat and linseed oil level on gel quality, sensory characteristics, microstructure, and protein conformation of TFCs were characterized. Results showed that the TFCs with 30% pork fat (wt/wt) had the highest gel strength. Additionally, sensory evaluation determined that TFCs with 30% pork fat scored the best by a sensory panel with high gel strength, water-holding capacity, and fresh and sweet taste. The gel strength, chewiness, and hardness of nutrient-enriched fish cakes with 20% linseed oil replaced for pork fat were higher than that only with pork fat (wt/wt) without changing in tenderness and elasticity. Visual results showed that the network was uniform at a moderate level of linseed oil addition (20% LO/PF replacement ratio). The results of this study provided technical guidelines for standardizing the TFC manufacture processes, and useful insight for the development of fish cakes with reduced animal fat content for additional health benefits for consumers.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yizhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Lin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Shengjie Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Beiwei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| |
Collapse
|
17
|
Inhibition mechanism of membrane-separated silver carp hydrolysates on ice crystal growth obtained through experiments and molecular dynamics simulation. Food Chem 2023; 414:135695. [PMID: 36809728 DOI: 10.1016/j.foodchem.2023.135695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The membrane-separated silver carp hydrolysates (>10 kD, 3-10 kD and < 3 kD) displayed abilities to mitigate oxidation and denaturation of myofibrillar protein and cryoprotective activities for frozen surimi. However, the mechanism of the membrane-separated fractions on ice crystal growth in the system is still unknown. Therefore, the cryoprotective activities (recrystallization inhibition, RI and thermal hysteresis activity, THA) of the fractions were investigated and the mechanism was explored by molecular dynamics (MD) simulation to predict the probable binding sites and model the possible interactions between the peptides and water/ice. The fractions < 3 kD displayed remarkable RI activity, with significantly higher THA (0.60 ± 0.13 °C) and lower amount of ice nuclei (4.74 ± 0.53%) than that of fractions > 10 kD and 3-10 kD. The results of MD simulation certified that the main peptides in the fractions < 3 kD interacted firmly with water molecules and inhibited growth of ice crystals with mechanism compatible with Kelvin effect. Hydrophilic and hydrophobic amino acid residues in the membrane-separated fractions offered synergistic effects on the inhibition of ice crystals.
Collapse
|
18
|
Mechanism study of the gel-forming ability of heat-induced gel from Peruvian hake (Merluccius gayi peruanus) surimi. Food Chem 2023; 413:135635. [PMID: 36804742 DOI: 10.1016/j.foodchem.2023.135635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The commercial value of Peruvian hake (Merluccius gayi peruanus) meat is low because of its soft texture. This study investigated the major factor contributing to the gel-forming ability of Peruvian hake surimi by comparing the effects of endogenous protease activity and parasitic infection. Heat-induced gels could not be obtained at 50 °C-90 °C. Surimi with severe parasitic infection showed a stronger gel-forming ability. The endogenous protease activities were the main factor influencing the Peruvian hake meat proteolysis and contributed to the low gel-forming ability, rather than parasitic infection. Specifically, endogenous cysteine proteases played an essential role in protein degradation and low gel-forming ability. Moreover, endogenous transglutaminase was also shown to be involved in the gel-forming ability upon heating at 40 °C. These results suggested that Peruvian hake meat could be used as a raw material of frozen surimi for fish gel by inhibiting the activity of endogenous proteases.
Collapse
|
19
|
Shang S, Wang Y, Jiang P, Fu B, Dong X, Qi L. Progress in the application of novel cryoprotectants for the stabilization of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:9756-9770. [PMID: 37222573 DOI: 10.1080/10408398.2023.2215874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this review, the physicochemical and conformational changes of myofibrillar proteins (MPs) of freeze-induced mince-based aquatic foods were comprehensively summarized in depth. Studies have demonstrated that temperature fluctuation and long-time freezing negatively affect food quality, resulting in texture alteration, drip fluid, flavor degradation, and nutrition loss due to MPs denaturation, aggregation, and oxidation. Attempts have been made in ice-recrystallization inhibition, freezing point depression, and ice shape and growth control for better cryopreservation. Moreover, to further minimize the quality deterioration, cryoprotectants were acknowledged to reduce the denaturation and aggregation of the MPs effectively. Recently, interest in novel functional ingredients, including oligosaccharides, protein hydrolysates, and natural polyphenols demonstrated excellent cryoprotective effects while avoiding health concerns and undesirable flavor caused by traditional sugar-based or phosphates-based cryoprotectants. Therefore, the present review provides a systematic overview of these low molecular weight multifunctional substances with a particular sequence and highlights their underlying mechanism in the inhibition of ice recrystallization the stabilization of MPs.
Collapse
Affiliation(s)
- Shan Shang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yueyue Wang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Baoshang Fu
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Libo Qi
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
20
|
Cen K, Huang C, Yu X, Gao C, Yang Y, Tang X, Feng X. Quinoa protein Pickering emulsion: A promising cryoprotectant to enhance the freeze-thaw stability of fish myofibril gels. Food Chem 2023; 407:135139. [PMID: 36512908 DOI: 10.1016/j.foodchem.2022.135139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
In this work, the effects of different QPE addition on the freeze-thaw (F-T) stability of fish myofibrillar protein (MP) gels were revealed. During freezing process, QPE decreased the freezing point of MP gels and shortened the time to pass through the maximum-ice-crystal-formation zone. The occurrence of thermal hysteresis effect led to the formation of small ice crystals and alleviated the damage to MP gel network. The incorporation of 7.5% QPE also reduced the free water amount to 19.23% and improved the water holding capacity of MP gels. Furthermore, the incorporation of QPE decreased the carbonyl content of MP gels after F-T cycles and delayed the protein oxidation. Meanwhile, QPE addition maintained the stability of the tertiary structure of MP gels via stabilizing the microenvironment of tyrosine and tryptophan. Overall, QPE shows the potential as a new cryoprotectant to improve the F-T stability of MP gel products.
Collapse
Affiliation(s)
- Kaiyue Cen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
21
|
Zhang H, Li X, Sun S, Wang Y, Li Z, Kang H, Peng X. Effects of carboxymethyl chitosan on the oxidation stability and gel properties of myofibrillar protein from frozen pork patties. Int J Biol Macromol 2023; 234:123710. [PMID: 36801276 DOI: 10.1016/j.ijbiomac.2023.123710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
The effect of carboxymethyl chitosan (CMCH) on the oxidation stability and gel properties of myofibrillar protein (MP) from frozen pork patties was investigated. The results showed that CMCH could inhibit the denaturation of MP induced by freezing. Compared with the control group, the protein solubility was significantly (P < 0.05) increased, while the carbonyl content, the loss of sulfhydryl groups, and the surface hydrophobicity were decreased, respectively. Meanwhile, the incorporation of CMCH could alleviate the influence of frozen storage on water mobility and reduce the water loss. With the increased concentration of CMCH, the whiteness, strength, and water-holding capacity (WHC) of MP gels were significantly improved, in which the maximum value was at addition level of 1 %. In addition, CMCH inhibited the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. By scanning electron microscopy (SEM) observation, CMCH stabilized the microstructure of the gel and maintained the relative integrity of the gel tissue. These findings suggest that CMCH could be used as a cryoprotectant to maintain the structural stability of MP in pork patty during frozen storage.
Collapse
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Xinling Li
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shuoshuo Sun
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Yuantu Wang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Ziyan Li
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huaibin Kang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264025, China
| |
Collapse
|
22
|
Gao H, Zeng J, Qin Y, Zeng J, Wang Z. Effects of different storage temperatures and time on frozen storage stability of steamed bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2116-2123. [PMID: 36254097 DOI: 10.1002/jsfa.12277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUNDS This research intended to explore the effects of different frozen storage temperatures and time on the stability of steamed bread. The quality characteristics, moisture content and microstructure of steamed bread were determined after quick-frozen for 30 min at -32 °C and frozen storage at -6, -12, -18, -24 and -30 °C for 1-4 weeks. RESULTS When the frozen storage temperature is lower, the moisture content, specific volume, pH and the strong bound water in the steamed bread increase, the water loss rate and the contents of freezable water, the weak bound water and free water decreased. With the extension of frozen storage time, the pH value and water loss of steamed bread first increased and then decreased, while the trend of water content was opposite. The specific volume, cohesion and elasticity of steamed bread decreased, while the freezable water content, hardness and chewiness increased. The bound water of steamed bread gradually migrated to free water. In addition, the longer the frozen storage time and the higher the temperature, and the more serious the damage to the microstructure was. CONCLUSION The shelf life of steamed bread frozen storage at -12 °C could be up to 3 weeks, and the quality of steamed bread stored at -30 °C for more than 3 weeks was the best. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jingjing Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueqi Qin
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhaojun Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
23
|
Liu C, Feng R, Li J, Hu Z, Xu Y, Xia W, Jiang Q. The migration and loss of water in emulsified surimi gels prepared with different phase states of lipids: Effect of freeze-thawing treatments. J Food Sci 2023; 88:1253-1267. [PMID: 36789876 DOI: 10.1111/1750-3841.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
The freeze-thawing (FT) stability generally correlates well with the economic value and acceptability of frozen surimi-based products. However, quality changes of emulsified surimi gels under FT conditions are still unclear. Therefore, the gel properties of samples with different phase states of lipids (lard, lard + soybean oil, and soybean oil) were investigated at FT conditions. Results showed that the soybean oil evidently improved the rheological behaviors of sols/gels compared to the lard group. The moisture content of samples with different lipids decreased by 2.40%-2.71% after 4 FT cycles. With increasing FT cycles, the water-holding capacity decreased accompanied by the increase of cooking loss. Spin-spin relaxation spectra and hydrogen proton density images proved the occurrence of water migration of gels during these processes. Better gel integrity was observed in samples consisting of soybean oil, where the proportion of pores was lower than those with lard regardless of FT treatments. Additionally, the intermolecular forces of gels also changed under FT treatments. There results suggested that the lipids with different phase states affected the migration and loss of water in emulsified surimi gels under FT cycles. PRACTICAL APPLICATION: The quality changes of heating-induced surimi gel products under frozen storage have been ignored, especially the emulsified surimi gels. This study discloses the changes of the gel properties in emulsified gel products with different phase states of lipids after FT treatments, which provides critical insights into the quality improvement of this novel emulsified surimi product during processing, storage, and transportation.
Collapse
Affiliation(s)
- Cikun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruonan Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongliang Hu
- Taizhou Anjoy Food Share Co. Ltd., Taizhou, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
Zhang G, Lin L, Zheng X, Yang J, Ma Z, Chen X, Wang L, Huang Y, Zhang C, Yang X, Dai J. Effect of storage period on the quality characteristics of frozen beef and mechanisms of change from the corresponding physical and microstructural perspectives. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Influence mechanisms of different setting time at low temperature on the gel quality and protein structure of Solenocera crassicornis surimi. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
You S, Yang S, Li L, Zheng B, Zhang Y, Zeng H. Processing Technology and Quality Change during Storage of Fish Sausages with Textured Soy Protein. Foods 2022; 11:foods11223546. [PMID: 36429138 PMCID: PMC9689813 DOI: 10.3390/foods11223546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
The addition of textured soy protein (TSP) to surimi products extends the supply of fish protein and improves nutritional and sensory properties, which has attracted considerable research interest. In this study, a single-factor experiment and orthogonal experiment were used to determine the optimal process conditions and to assess the quality indicators of fish sausages during frozen storage. The results indicated that the optimal process conditions were as follows: the addition of 15% TSP, 8% potato starch, and 5% lard oil, resulting in a gel strength of 1894.32 g·cm. During storage of the formulation-optimized fish sausages for 180 days, the water-holding capacity, whiteness, texture properties, and gel strength of the fish sausages all decreased, whereas cooking loss, thawing loss, thiobarbituric acid reactive substances value, and total volatile base nitrogen value all increased. Consequently, TSP is beneficial to improve the gel strength and sensory score of fish sausages. The quality of fish sausages with added TSP was acceptable after storage at -18 °C, for 120 days.
Collapse
Affiliation(s)
- Shuyi You
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqi Yang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
27
|
Zheng M, Hong J, Chuai P, Chen Y, Ni H, Li Q, Jiang Z. Impacts of agar gum and fucoidan on gel properties of surimi products without phosphate. Food Sci Nutr 2022; 10:3759-3771. [PMID: 36348786 PMCID: PMC9632187 DOI: 10.1002/fsn3.2973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphate is widely used in surimi products to improve the gel properties. However, excess addition of phosphate occurs, which can harm the consumer's health. This study aimed to evaluate the effects of agar gum and fucoidan on maintaining the gel properties of surimi products instead of phosphate. Interestingly, our results showed that 0.125% of agar gum and fucoidan to replace phosphate could enhance water-holding capacity and maintain gel strength and textual properties of surimi products well. Especially at frozen storage for 1 year, 0.125% of agar gum reduced the expressible moisture content of surimi products by around 10% (p < .05). Sensory evaluation showed that 0.125% of agar gum and fucoidan instead of phosphate can improve tissue and fondness of surimi products in refrigerated storage for 24 h but not in frozen storage for 1 year. The addition of agar gum and fucoidan at a high concentration >0.50% increased the WHC, but significantly decreased gel strength and springiness of surimi products (p < .05). Particularly, 1.00% of agar gum and fucoidan reduced gel strength by around 20% (p < .05). It might be due to the destruction of the gel network structure of surimi protein following the excess addition of these polysaccharides. It can be concluded that 0.125% of agar gum and fucoidan can replace phosphate to develop high-quality surimi products, and excessive addition of them have negative effects.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Jinling Hong
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
| | - Pengjie Chuai
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
| | - Yanhong Chen
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Hui Ni
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Qingbiao Li
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Zedong Jiang
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| |
Collapse
|
28
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
29
|
Zhang N, Yang N, Yu W, Jin Z, Jiang P, Yu C, Dong X. Effects of microbial transglutaminase on textural, water distribution, and microstructure of frozen-stored longtail southern cod (Patagonotothen ramsayi) fish mince gel. J Texture Stud 2022; 53:844-853. [PMID: 34921420 DOI: 10.1111/jtxs.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022]
Abstract
Frozen-stored fish mince tend to have poor gelling ability due to significant myosin denaturation caused by freezing. In this study, microbial transglutaminase (MTGase) was used to improve the quality of fish mince gel products made from frozen-stored longtail southern cod (LSC). The gel strength of the gel product increased with the addition of MTGase and reached a plateau value of ~19 N mm beyond 300 U/kg of MTGase, at the same condition, T22 was reduced from 57.22 to 49.77 ms, T23 was reduced from 1,273.88 to 1,072.27 ms. As the MTGase addition increased from 0 to 400 U/kg, the hardness of the fish surimi gel increased from 14.52 to 21.36 N, and the microstructure changed from loose to dense, respectively. This study showed that MTGase could promote gelation to improve the quality of frozen-stored LSC fish mince gel, especially at 300 U/kg, which potentially can be utilized to produce good surimi gel products out of frozen-stored fish.
Collapse
Affiliation(s)
- Nana Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Ning Yang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Wanying Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Zheng Jin
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Pengfei Jiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| |
Collapse
|
30
|
Shen Z, Li S, Wu J, Wang F, Li X, Yu J, Liu Y, Ma X. Effect of different oil incorporation on gelling properties, flavor and advanced glycation end-products of silver carp surimi sausages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
31
|
Tokay FG, Alp AC, Yerlikaya P. RSM Based Process Variables Optimization of Restructured Fish Meat. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Fahrettin Gokhun Tokay
- Fisheries Faculty, Department of Fish Processing Technology, Akdeniz University, Antalya, Turkey
| | - Ali Can Alp
- Fisheries Faculty, Department of Fish Processing Technology, Akdeniz University, Antalya, Turkey
| | - Pinar Yerlikaya
- Fisheries Faculty, Department of Fish Processing Technology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
32
|
Mao M, Jia R, Gao Y, Yang W, Tong J, Xia G. Effects of innovative gelation and modified tapioca starches on the physicochemical properties of surimi gel during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min Mao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Ru Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Yuanpei Gao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Jingjing Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Geran Xia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| |
Collapse
|
33
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
34
|
Cen K, Yu X, Gao C, Yang Y, Tang X, Feng X. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel. Food Chem 2022; 394:133456. [PMID: 35717909 DOI: 10.1016/j.foodchem.2022.133456] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
The effects of quinoa protein Pickering emulsion (QPE) on the gel properties, protein structure and intermolecular interactions of myofibrillar protein (MP) gels were studied. Compared with the MP gels without QPE, the MP gels with 5.0%-7.5% added QPE showed significant increasing trends in storage modulus (G'), whiteness, gel strength and water holding capacity (WHC). The content of disulfide bonds in the gel increased with the addition of QPE and the disulfide bond conformation changed from gauche-gauche-gauche to gauche-gauche-trans. Moreover, the increase of hydrogen bonds after QPE addition confirmed the transformation from α-helix to β-sheet, as β-sheet structure was stabilized by interchain hydrogen bonds. The added QPE also enhanced the hydrophobic interaction and electrostatic interaction of MP gels. To conclude, the addition of 5.0%-7.5% QPE improved the intermolecular interactions and the structure stability of MP gels, and enhanced the gelation and WHC of MP gels.
Collapse
Affiliation(s)
- Kaiyue Cen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, 999078, Macau
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
35
|
Wu Q, Wang W, Li X, Yi S, Mi H, Xu Y, Li J. Gel Properties of Blue Round Scad (Decapterus Maruadsi) Mince as Influenced by the Addition of Egg White Powder. J Texture Stud 2022; 53:563-576. [PMID: 35580190 DOI: 10.1111/jtxs.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The use of egg white powder (EWP) to enhance the physicochemical properties, molecular structure, and thermal stability of Decapterus maruadsi mince gels was investigated. The thermal stability was analyzed by adding spray-dried EWP (0%, 0.2%, 0.4%, 0.6%, 0.8%, 1%) to the mince, and mince gels were prepared to study the changes in their fracture constant, water distribution, microstructure and protein conformation of mince gels. In addition, the stress-strain curve of the EWP-mince gel was measured to obtain its compressive modulus (E). The formation of the mince gel was promoted by EWP, and the whiteness, fracture constant, water-holding capacity, and immobilized water were all enhanced. At 0.8% addition of EWP, the fracture constant increased from 176.715±2.463 N/m to 348.631±3.144 N/m (p<0.05), which was a nearly twofold improvement. Additionally, the water-holding capacity increased from 75.21% to 79.99%, and the percentage of immobilized water increased from 94.03% to 94.91%. The EWP-mince gel network structure was the most uniform and dense, and there were increases in hydrogen bonds, disulfide bonds, β-sheets, and β-turns in mince gels, as well as the storage modulus (G') and enthalpy (ΔH). In contrast to the control group, the relative content of α-helixes decreased from 53.34% to 37.09% and transformed into other secondary structures, and the bulk water and cooking loss also decreased to 2.41% and 8.51%, respectively. Consequently, EWP effectively improved the quality of mince products, and the effect was most apparent when 0.8% was added.
Collapse
Affiliation(s)
- Qi Wu
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Wei Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Hongbo Mi
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Yongxia Xu
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - JianRong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| |
Collapse
|
36
|
Jiang Q, Wu W, Han J, Chung HY, Gao P, Yu D, Yu P, Xu Y, Xia W. Characteristics of silver carp surimi gel under high temperature (≥100 °C): quality changes, water distribution and protein pattern. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Food and Nutritional Sciences Programme School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Wenmin Wu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Jingwen Han
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
37
|
Lan W, Zhao Y, Liu J, Xie J. Effects of Chitosan-Grafted-Phenolic Acid Coating on Quality and Microbiota Composition of Vacuum-Packaged Sea Bass (Lateolabrax japonicus) Fillets during Chilled Storage. J Food Prot 2022; 85:803-814. [PMID: 35202469 DOI: 10.4315/jfp-21-341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The aim of this research was to experimentally assess the effect of chitosan (CS)-grafted phenolic acid (CS-g-PA) derivatives on the quality and microbiota composition of vacuum-packaged sea bass (Lateolabrax japonicus). Samples were treated by deionized water (CK), 1% CS, 1% CS-g-PA copolymer, and 1% CS-grafted gallic acid (CS-g-GA) copolymer for 10 min and combined with vacuum packaging stored at 4°C to analyze the microbiological and physicochemical indicators; they were also combined with 16s RNA high-throughput sequencing to explore the effects of CS derivatives on quality and microbial composition. The results showed that the treatment of CS-g-GA and CS-g-PA could retard the increase of pH, total volatile basic nitrogen, and the K value. The degradation of ATP-related compounds, production of biogenic amines, and growth of spoilage bacteria were inhibited by CS-g-GA and CS-g-PA. Moreover, CS-g-GA and CS-g-PA performed better in the inhibition of lipid oxidation by the analysis of thiobarbituric acid reactive substances and relative fluorescence intensity. According to the results of high-throughput sequencing, the diversity of microbial composition in all groups was decreased significantly during chilled storage, especially in the CK group. The predominant microorganism was Acinetobacter in the middle period of storage, while Pseudomonas and Shewanella became predominant at the end of storage. The treatment of CS-g-GA and CS-g-PA had significant effects inhibiting the growth of Shewanella during storage. On the basis of the analysis of the microorganism and physicochemical quality, compared with the CK group, CS-g-GA and CS-g-PA can maintain the good quality of sea bass fillets and prolong the shelf life for another 12 days. HIGHLIGHTS
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, People's Republic of China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Technology, Shanghai 201306, People's Republic of China
| | - Jiali Liu
- College of Food Science and Technology, Shanghai 201306, People's Republic of China
| | - Jing Xie
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, People's Republic of China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| |
Collapse
|
38
|
Jia G, Chen Y, Sun A, Orlien V. Control of ice crystal nucleation and growth during the food freezing process. Compr Rev Food Sci Food Saf 2022; 21:2433-2454. [DOI: 10.1111/1541-4337.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yimeng Chen
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - AiDong Sun
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Vibeke Orlien
- Department of Food Science Faculty of Science University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
39
|
Effects of phenolic acid grafted chitosan on moisture state and protein properties of vacuum packaged sea bass (Lateolabrax japonicus) during refrigerated storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Fan L, Ruan D, Shen J, Hu Z, Liu C, Chen X, Xia W, Xu Y. The role of water and oil migration in juiciness loss of stuffed fish ball with the fillings of pig fat/meat as affected by freeze-thaw cycles and cooking process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
|
42
|
Cao Y, Zhao L, Huang Q, Xiong S, Yin T, Liu Z. Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Chen X, Wu J, Li X, Yang F, Yu L, Li X, Huang J, Wang S. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides. Food Chem 2022; 371:131054. [PMID: 34555708 DOI: 10.1016/j.foodchem.2021.131054] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Freezing technology is important for storage of animal products such as surimi. However, mechanical damage caused by ice crystals would lead to quality deterioration. This study aims to investigate the protective effect of antifreeze peptides (AFPs) on the quality of surimi during freezing storage and its possible mechanism. We found that AFPs exhibited a strong inhibition of ice crystal recrystallization, and the molecular weight ranged from 180 to 3000 Da. AFPs can prevent the degeneration of myofibrillar protein by reducing the loss of Ca2+-ATPase activity, slowing oxidation of sulfhydryl groups to disulfide bonds, and maintaining surface hydrophobicity and solubility of myofibrillar protein. Moreover, AFPs can reduce the influence of freezing stress on water mobility, thereby protecting the surimi from losing immobilized water and bound water during frozen storage. These findings indicate that AFPs could potentially serve as a food ingredient with antifreeze functional for the storage of surimi products.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaozhen Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Luhan Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaokun Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
44
|
Lan W, Yang X, Gong T, Xie J. Predicting the shelf life of Trachinotus ovatus during frozen storage using a back propagation (BP) neural network model. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Wang H, Shi W, Wang X. Establishment of quality evaluation method for frozen tilapia (
Oreochromis niloticus
) fillets stored at different temperatures based on fractal dimension. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongli Wang
- College of Food Science and Technology Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
| |
Collapse
|
46
|
Chu Y, Deng S, Lv G, Li M, Bao H, Gao Y, Jia R. Improvement of Gel Quality of Squid ( Dosidicus gigas) Meat by Using Sodium Gluconate, Sodium Citrate, and Sodium Tartrate. Foods 2022; 11:foods11020173. [PMID: 35053905 PMCID: PMC8775022 DOI: 10.3390/foods11020173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
In order to improve the quality of squid surimi products, squid surimi gels were prepared using several types of organic salts under two heating conditions to study the effects of organic salts on squid gel properties. Compared with the NaCl group, organic salts reduced the solubilization capacity of myofibrillar protein, and significant (p < 0.05) decreases in the breaking force, breaking distance, texture, and water-holding capacity of the gel were observed in the sodium gluconate group, while significant (p < 0.05) increases in the breaking force, breaking distance, texture, and water-holding capacity of the gel were observed in the sodium citrate and sodium tartrate groups. Although the mixed addition of NaCl and organic salt improved surimi gel quality, the effective improvement was still lower than that of only organic salt. Rheological properties indicated that sodium citrate and sodium tartrate had high viscoelasticity. The squid surimi gel prepared by direct heating exhibited better properties than gels prepared by two-step heating. The chemical force of squid gel prepared with sodium citrate and sodium tartrate formed a stronger matrix than the gels prepared with other salts. For color, the addition of sodium citrate resulted in an undesirable color of squid surimi gels, while the addition of sodium tartrate improved the whiteness of the surimi gel. The results showed that the quality of surimi gel was dependent upon the choice of heating method and the types of salt used. Sodium citrate and sodium tartrate could significantly improve the gel properties of squid surimi. This study provides reliable guidance for improving the overall quality of squid surimi gels.
Collapse
Affiliation(s)
- Yanjiao Chu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.C.); (S.D.); (G.L.); (M.L.); (H.B.)
| | - Shanggui Deng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.C.); (S.D.); (G.L.); (M.L.); (H.B.)
| | - Guancheng Lv
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.C.); (S.D.); (G.L.); (M.L.); (H.B.)
| | - Mingao Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.C.); (S.D.); (G.L.); (M.L.); (H.B.)
| | - Hongli Bao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.C.); (S.D.); (G.L.); (M.L.); (H.B.)
| | - Yuanpei Gao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.C.); (S.D.); (G.L.); (M.L.); (H.B.)
- Correspondence: (Y.G.); (R.J.)
| | - Ru Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: (Y.G.); (R.J.)
| |
Collapse
|
47
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
48
|
Jiang X, Chen Q, Xiao N, Du Y, Feng Q, Shi W. Changes in Gel Structure and Chemical Interactions of Hypophthalmichthys molitrix Surimi Gels: Effect of Setting Process and Different Starch Addition. Foods 2021; 11:foods11010009. [PMID: 35010135 PMCID: PMC8750783 DOI: 10.3390/foods11010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The modifications of histological properties and chemical forces on heated surimi gels with starch addition (0-12 g/100 g surimi) were investigated. Two types of heating processes (direct heating and two-step heating) were carried out on surimi gels in order to reveal the effect of setting on mixed matrices. The results of transverse relaxation time showed less immobile water and free water converted into bound water in a matrix subjected to the setting process. Scanning electron microscope and light microscopy images revealed inefficient starch-swelling in two-step heated gels. Chemical interactions and forces in direct cooking gels were more vulnerable to starch addition, resulting in significant decreases in hydrophobic interaction and sulfhydryl content (p < 0.05). With the increment of starch, the disulfide stretching vibrations of the gauche-gauche-gauche conformation were reduced in both gel matrices. The structural variations of different components collectively resulted in changes in texture profile analysis and water holding capacity. Overall, the results demonstrated that starch addition had a great and positive effect on the weak gel matrix by direct heating.
Collapse
Affiliation(s)
- Xin Jiang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Qing Chen
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Naiyong Xiao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Yufan Du
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Qian Feng
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
- National Research and Development Center for Processing Technology of Freshwater Aquatic Products (Shanghai), Shanghai 201306, China
- Correspondence: ; Tel.: +86-156-9216-5859
| |
Collapse
|
49
|
Tokay FG, Alp AC, Yerlikaya P. Production and shelf life of restructured fish meat binded by microbial transglutaminase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Nakamura Y, Takahashi S, Takahashi K. Long-term suppression of suwari phenomenon for improvement in the manufacturing process of surimi gel product. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|