1
|
Cots A, Camacho NM, Palma SD, Alustiza F, Pedraza L, Bonino F, Carreño J, Flores Bracamonte C, Acevedo D, Bozzo A, Bellingeri R. Chitosan-alginate microcapsules: A strategy for improving stability and antibacterial potential of bovine Lactoferrin. Int J Biol Macromol 2025; 307:141870. [PMID: 40074116 DOI: 10.1016/j.ijbiomac.2025.141870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Lactoferrin, a multifunctional glycoprotein with significant biological properties, presents significant potential for the prevention and treatment of infectious diseases. However, the effectiveness of oral Lactoferrin is limited by its susceptibility to degradation in harsh stomach conditions, reducing its bioavailability and therapeutic efficacy. To address this challenge, this study employs Chitosan/Alginate microparticles to enhance Lactoferrin stability and antibacterial activity. Microparticles were synthesized through external ionic gelation and thoroughly characterized. Chitosan/Alginate microparticles were significantly smaller than Alginate microparticles, with a high loading efficiency of 93.65 %. Fourier transform infrared (FT-IR) spectroscopy confirmed the successful incorporation of Lactoferrin. Release studies demonstrated minimal Lactoferrin release in simulated gastric fluid, while a controlled release was observed in simulated intestinal fluid. Notably encapsulated Lactoferrin retained its structural integrity after exposure to simulated gastrointestinal conditions. Antibacterial assay against Escherichia coli showed that Chitosan/Alginate microcapsules maintain Lactoferrin antibacterial activity after its passage through simulated gastrointestinal conditions. Furthermore, FT-IR spectroscopy and zeta-potential analysis provided novel insights into the mechanism of Lactoferrin's interaction with bacterial LPS, highlighting its ability to destabilize bacterial membrane of this Escherichia coli strain. These findings underscore the Chitosan/Alginate system as a promising strategy for enhancing the therapeutic potential of Lactoferrin.
Collapse
Affiliation(s)
- Agustina Cots
- Instituto de Ciencias Veterinarias, Consejo Nacional de Investigaciones Científicas y Técnicas (INCIVET, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Nahuel Matías Camacho
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de Investigaciones Científicas y Técnicas (UNITEFA, CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de Investigaciones Científicas y Técnicas (UNITEFA, CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Fabrisio Alustiza
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Marcos Juárez, Marcos Juárez 2580, Córdoba, Argentina
| | - Lujan Pedraza
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Marcos Juárez, Marcos Juárez 2580, Córdoba, Argentina
| | - Facundo Bonino
- Department of Basic Sciences, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Joel Carreño
- Department of Basic Sciences, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Carolina Flores Bracamonte
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas (IITEMA, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Diego Acevedo
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas (IITEMA, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Andrea Bozzo
- Instituto de Ciencias Veterinarias, Consejo Nacional de Investigaciones Científicas y Técnicas (INCIVET, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina
| | - Romina Bellingeri
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas (IITEMA, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina.
| |
Collapse
|
2
|
Cao L, Li J, Parakhonskiy B, Skirtach AG. Intestinal-specific oral delivery of lactoferrin with alginate-based composite and hybrid CaCO 3-hydrogel beads. Food Chem 2024; 451:139205. [PMID: 38653102 DOI: 10.1016/j.foodchem.2024.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Sodium alginate hydrogel beads and sodium alginate/gellan gum composite hydrogel beads crosslinked by calcium chloride were prepared with different alginate concentrations (3-20 mg·mL-1). Additionally, a simple method for growing CaCO3in situ on the hydrogel to create novel inorganic-organic hybrid hydrogel beads was presented. FT-IR analysis revealed the involvement of hydrogen bonding and electrostatic interactions in bead formation. Swelling behavior in acidic conditions showed a maximum of 13 g/g for composite hydrogels and CaCO3-incorporated hybrid hydrogels. Lactoferrin encapsulation efficiency within these hydrogels ranged from 44.9 to 56.6%. In vitro release experiments demonstrated that these hydrogel beads withstand harsh gastric environments with <16% cumulative release of lactoferrin, achieving controlled release in intestinal surroundings. While composite sodium alginate/gellan gum beads exhibited slower gastrointestinal lactoferrin digestion, facile synthesis and pH responsiveness of CaCO3-incorporated hybrid hydrogel also provide new possibilities for future studies to construct a novel inorganic-organic synergetic system for intestinal-specific oral delivery.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium.
| | - Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium; Global Institute of Future Technology (GIFT), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
3
|
Gao X, Li Y, Li J, Xiang X, Wu J, Zeng S. Stimuli-responsive materials in oral diseases: a review. Clin Oral Investig 2024; 28:497. [PMID: 39177681 DOI: 10.1007/s00784-024-05884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Oral diseases, such as dental caries, periodontitis, and oral cancers, are highly prevalent worldwide. Many oral diseases are typically associated with bacterial infections or the proliferation of malignant cells, and they are usually located superficially. MATERIALS AND METHODS Articles were retrieved from PubMed/Medline, Web of Science. All studies focusing on stimuli-responsive materials in oral diseases were included and carefully evaluated. RESULTS Stimulus-responsive materials are innovative materials that selectively undergo structural changes and trigger drug release based on shifts at the molecular level, such as changes in pH, electric field, magnetic field, or light in the surrounding environment. These changes lead to alterations in the properties of the materials at the macro- or microscopic level. Consequently, stimuli-responsive materials are particularly suitable for treating superficial site diseases and have found extensive applications in antibacterial and anticancer therapies. These characteristics make them convenient and effective for addressing oral diseases. CONCLUSIONS This review aimed to summarize the classification, mechanism of action, and application of stimuli-responsive materials in the treatment of oral diseases, point out the existing limitations, and speculate the prospects for clinical applications. CLINICAL RELEVANCE Our findings may provide useful information of stimuli-responsive materials in oral diseases for dental clinicians.
Collapse
Affiliation(s)
- Xuguang Gao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jianwen Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Xi Xiang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China.
| |
Collapse
|
4
|
Jiang H, Zhang T, Pan Y, Yang H, Xu X, Han J, Liu W. Thermal stability and in vitro biological fate of lactoferrin-polysaccharide complexes. Food Res Int 2024; 182:114182. [PMID: 38519194 DOI: 10.1016/j.foodres.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Lactoferrin (LF) is a thermally sensitive iron-binding globular glycoprotein. Heat treatment can induce its denaturation and aggregation and thus affect its functional activity. In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), allowed to apply in infant food, were used to form protein-polysaccharide complexes to improve the thermal stability of LF. Meanwhile, in vitro simulated infant digestion and absorption properties of LF were also estimated. The results showed that the complexes formed by CG and XG with LF (LF-CG and LF-XG) could significantly inhibit the loss of α-helix structure of LF against heating. LF-CG and LF-LBG could protect LF from digestion in simulated infant gastric fluid and slow down the degradation of LF under the simulated intestinal conditions. Besides, LF, LF-CG and LF-XG showed no adverse effects on the growth of Caco-2 cells in the LF concentration range of 10-300 μg/mL, and LF-XG exhibited better beneficial to improve the cell uptake of the digestive product than the other protein-polysaccharides at the LF concentration of 100 µg/mL. This study may provide a reference for the enhancement of thermal processing stability of LF and development infant food ingredient with high nutrients absorption efficiency in the gastrointestinal environment in the future.
Collapse
Affiliation(s)
- Hanyun Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tingting Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yujie Pan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hui Yang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Poursadegh H, Amini-Fazl MS, Javanbakht S, Kazeminava F. Magnetic nanocomposite through coating mannose-functionalized metal-organic framework with biopolymeric pectin hydrogel beads: A potential targeted anticancer oral delivery system. Int J Biol Macromol 2024; 254:127702. [PMID: 37956806 DOI: 10.1016/j.ijbiomac.2023.127702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
This study designed magnetic nanocomposite hydrogel beads for a potential targeted anticancer oral delivery system. To end this, nanohybrids of Fe3O4/MIL-88(Fe) (FM) were synthesized through in-situ method by the treatment of terephthalic acid (TPA) and (Fe(NO3)3·9H2O) in the presence of Fe3O4 nanoparticles. They were then modified with mannose sugar as an anticancer receptor to achieve a targeted drug delivery system. After loading methotrexate (MTX), they were coated with pH-sensitive pectin hydrogel beads in the presence of a calcium chloride crosslinker for possible transferring the nanohybrids to the intestine through the acidic environment of the digestive system. The results of different analysis techniques showed that the materials were properly synthesized, coated, and loaded. The designed magnetic nanocomposite hydrogel beads showed pH-sensitive swelling and drug release rate, protecting MTX from the acidic environment of the stomach. MTT test revealed a good cytotoxicity toward colon cancer HT29 cell lines. Remarkably, the functionalization of MTX-loaded FM nanohybrids with mannose (MTX-MFM) enhanced their anticancer properties up to about 20 %. The results recommended that the prepared novel magnetic nanocomposite hydrogel beads have a good potential to be used as a targeted anticancer oral delivery system.
Collapse
Affiliation(s)
- Hossein Poursadegh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Siamak Javanbakht
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Wei YS, Teng MJ, Feng K, Hu TG, Zong MH, Wu H. Improving the bioaccessibility of lipophilic ingredient in its oral intestinal delivery by ultrasound and biological cross-linker. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2762-2772. [PMID: 36220972 DOI: 10.1002/jsfa.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Great efforts have been made to improve the oral bioaccessibility of lipophilic ingredients with multi-functionalities. Achieving intestinal delivery of lipophilic ingredients and their encapsulation in micelles composed of bile salts and lipid hydrolysates (i.e. fatty acids) is critical for improving oral bioaccessibility. Therefore, oil-core microcapsules are considered ideal carriers of lipophilic ingredients. Previous studies have reported oil-core/zein-shell microcapsules constructed by a one-step anti-solvent process. Still, its efficacy as an intestinal delivery system was limited because if the porous shell structure. RESULTS Zein solution was pretreated with ultrasound and tannic acid (TA) cross-linking. Composite oil-core microcapsule (COM) with a compact shell structure was successfully prepared by using modified zein solution in the anti-solvent process. Fourier-transform infrared spectroscopy and circular dichroism analyses indicated that ultrasound and TA synergistically promote the conformational transition of zein from α-helix to β-sheet and enhance the hydrophobic interactions among protein chains. The above changes contribute to the strengthen of shell zein network. Correspondingly, COM presents superior encapsulation efficiency and environmental stability over the simple oil-core microcapsule (SOM) prepared without the use of ultrasound and TA. Furthermore, antioxidant activity of β-carotene was well retained during the encapsulation process. In vitro studies indicated that COM was more resistant to digestibility and acid-induced swelling. More than 87% of β-carotene could be released in the intestine in a sustainable way. The controllable release behavior thus promoted a significant increase in bioaccessibility of β-carotene encapsulated in COM compared to SOM (85.9% versus 48.5%). CONCLUSION The COM generated here shows potential for bioaccessibility improvement of lipophilic ingredients. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Meng-Jing Teng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Min-Hua Zong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Zhao Z, Zhou H, Han X, Han L, Xu Z, Wang P. Rapid, Highly-Efficient and Selective Removal of Anionic and Cationic Dyes from Wastewater Using Hollow Polyelectrolyte Microcapsules. Molecules 2023; 28:molecules28073010. [PMID: 37049773 PMCID: PMC10095712 DOI: 10.3390/molecules28073010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and methylene blue (909.25 mg/g), with an extremely low equilibrium adsorption time (~20 min). The P2P MCs exhibited high adsorption capacities of reactive orange K-G (ROKG) and direct yellow 5G (DY5G) which were 404.79 and 451.56 mg/g. Adsorption processes of all dyes onto microcapsules were best described by the Langmuir isotherm model and a pseudo-second-order kinetic model. In addition, the P2P MCs loaded with reactive dyes (P2P–ROKG), could further adsorb rhodamine B (RhB) dye, and P2 MCs that had adsorbed cationic MB dyes could also be used for secondary adsorption treatment of direct dye waste-water, respectively. The present work confirmed that P2P and P2 MCs were expected to become an excellent adsorbent in the water treatment industry.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Hongbing Zhou
- Zhejiang Huaguang Automotive Interior Decoration Co., Ltd., Rui’an 325200, China
| | - Xu Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| |
Collapse
|
8
|
Fabrication and immediate release characterization of UV responded oregano essential oil loaded microcapsules by chitosan-decorated titanium dioxide. Food Chem 2023; 400:133965. [DOI: 10.1016/j.foodchem.2022.133965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
|
9
|
Wei YS, Feng K, Li SF, Hu TG, Zong MH, Wu H. Highly-hydrophobic nanofiber mat for efficient colonic delivery of lactoferrin: Preparation, characterization and release mechanism. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Jing H, Huang X, Du X, Mo L, Ma C, Wang H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr Polym 2022; 278:118993. [PMID: 34973796 DOI: 10.1016/j.carbpol.2021.118993] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
In this work, a novel synthesis strategy of sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond was described. The beads were prepared by dropping the blends of two polymers into the citric acid solution. Besides hydrogen bonding, electrostatic interactions were also involved in the formation of the hydrogel beads. The thermal stability experiments revealed that the more the content of carboxymethyl chitosan, the better the thermal stability of the beads. The beads exhibited excellent pH sensitivity, pH reversibility, and lactoferrin loading capacity. The swelling ratio of the bead and its protein releasing profile was pH-dependent, which could prevent premature protein release in the gastric environment. Also, the circular dichroism results demonstrated that lactoferrin could maintain its structure during the loading and releasing process. The obtained results revealed that the hydrogel beads prepared in this work could be used as a potential protein carrier for oral delivery.
Collapse
Affiliation(s)
- Huijuan Jing
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xin Huang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ling Mo
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chaoyang Ma
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
11
|
Jing H, Du X, Mo L, Wang H. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy. Int J Biol Macromol 2021; 192:1169-1177. [PMID: 34678379 DOI: 10.1016/j.ijbiomac.2021.10.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/19/2021] [Accepted: 10/09/2021] [Indexed: 01/13/2023]
Abstract
Carboxymethyl chitosan (CMCS)-based complex coacervate has attracted much attention in drug oral delivery due to its pH-responsive property. As a unique ampholyte polymer, the self-coacervation of CMCS has great research potential. In this work, CMCS self-coacervates were prepared by adjusting the pH of the CMCS aqueous solution close to its isoelectric point. The Fourier-transformed infrared spectroscopy (FTIR) results revealed that electrostatic interactions, hydrogen bonding, and hydrophobic interactions were involved in the self-coacervation of CMCS. The obtained self-coacervates presented a dense surface structure, and were stable at a wide pH range of 3.0-6.0, and gradually dissolved under basic conditions. Although self-coacervation decreased the crystallinity and thermal stability of CMCS, the obtained coacervates showed excellent pH-responsive properties and ionic strength stability. We also investigated its potential in lactoferrin (LF) encapsulation and oral delivery. The CMCS self-coacervates exhibited a high encapsulation efficiency (EE) of 94.79 ± 0.49% and loading capacity (LC) of 26.29 ± 0.52% when the addition amount of LF was 2 mg. The simulated gastric digestion results demonstrated that CMCS self-coacervates could protect more than 80% of LF from hydrolysis and maintain the bioactivities of LF. Accordingly, the self-coacervation of CMCS could be used as a pH-responsive encapsulation and delivery strategy.
Collapse
Affiliation(s)
- Huijuan Jing
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ling Mo
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
12
|
Jing H, Huang X, Jiang C, Wang L, Du X, Ma C, Wang H. Effects of tannic acid on the structure and proteolytic digestion of bovine lactoferrin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Feng K, Li SF, Wei YS, Zong MH, Hu TG, Wu H, Han SY. Fabrication of nanostructured multi-unit vehicle for intestinal-specific delivery and controlled release of peptide. NANOTECHNOLOGY 2021; 32:245101. [PMID: 33690179 DOI: 10.1088/1361-6528/abed07] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
An oral multi-unit delivery system was developed by incorporating the nanoparticle (NP) into the nanofiber mat and its efficiency for intestinal-specific delivery and controlled release of a peptide (insulin) was investigated. Initially, the influence of deacetylation degree (DD) of chitosan and ionic gelation methods on the properties of NPs was studied. High DD (95%) chitosan was attributed to higher encapsulation efficiency and stability when crosslinked with polyanion tripolyphosphate. Subsequently, the multi-unit system was fabricated using a pH-sensitive polymer (sodium alginate) as the coating layer to further encapsulate the NP. Fiber mat with an average diameter of 481 ± 47 nm could significantly decrease the burst release of insulin in acidic condition and release most amount of insulin (>60%) in the simulated intestinal medium. Furthermore, the encapsulated peptide remained in good integrity. This multi-unit carrier provides the better-designed vehicle for intestinal-specific delivery and controlled release of the peptide.
Collapse
Affiliation(s)
- Kun Feng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shu-Fang Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yun-Shan Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Min-Hua Zong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, People's Republic of China
| | - Hong Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shuang-Yan Han
- College of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
14
|
Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol Res 2021; 167:105564. [PMID: 33744427 DOI: 10.1016/j.phrs.2021.105564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Lactoferrin (Lf) possesses various biological properties and therapeutic potentials being a perspective anti-inflammatory, antibacterial, antiviral, antioxidant, antitumor, and immunomodulatory agent. A significant body of literature has also demonstrated that Lf modulates regenerative processes in different anatomical structures, such as bone, cartilage, skin, mucosa, cornea, tendon, vasculature, and adipose tissue. Hence, this review collected and analyzed the data on the regenerative effects of Lf, as well as paid specific attention to their molecular basis. Furthermore, tissue and condition-specific activities of different Lf types as well as problems of their delivery to the targeted organs were discussed. The authors strongly hope that this review will stimulate researchers to focus on the highlighted topics thus accelerating the progress of Lf's wider clinical application.
Collapse
|
15
|
Li J, Yang X, Li X, Zhang Z, Wei Z, Xing Z, Deng S, Duan F. Okra polysaccharides/gelatin complex coacervate as pH-responsive and intestine-targeting delivery protects isoquercitin bioactivity. Int J Biol Macromol 2020; 159:487-496. [PMID: 32422271 DOI: 10.1016/j.ijbiomac.2020.05.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023]
Abstract
Okra polysaccharides (OPs) belong to RG I pectin branched with neutral saccharide side chains, which possesses distinctive structure and physicochemical properties from the commonly used HG pectin. Until now, the application of RG I pectin as wall material of microcapsule remains unclear. Here, we obtained OPs/gelatin complex coacervate at the maximum yield of 86.8% (pH 3.5, gelatin/OPs ratio 9:1 and 2% (w/v) total polymer concentration) by response surface methodology. Isoquercitin (IQ)-loaded OPs/gelatin complex coacervate (OGIQ) showed porous spongy-like surface structure with average particle size, encapsulation efficiency and surface porosity at 334 nm, 81.6% and 31.9%, respectively. OGIQ was found to be pH-responsive and intestine-targeting. The IQ-release rate of OGIQ was assayed to be 89.4% in intestine fluid and below 2% in acidic and simulated gastric digestion, respectively. Accordingly, embedding in OGIQ protected IQ in digestion and improved its postdigestive α-glucosidase inhibitory rate by 88.7%. The differential scanning calorimetry curves showed that OGIQ effectively prevented IQ from thermal decomposition. The XRD, FT-IR and CD spectra indicated that IQ was embedded in OGIQ in amorphous state by hydrogen bonds and electrostatic interaction. Compared with HG, the neutral saccharide side chains of OPs could induce different secondary conformation change of gelatin during complex coacervation.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Xiaoran Yang
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Xiao Li
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Zihan Zhang
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Sha Deng
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China
| | - Feixia Duan
- Department of Food Engineering, College of Biomass Science and Engineering & Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
16
|
Wei YS, Niu ZC, Wang FQ, Feng K, Zong MH, Wu H. A novel Pickering emulsion system as the carrier of tocopheryl acetate for its application in cosmetics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110503. [PMID: 32228963 DOI: 10.1016/j.msec.2019.110503] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
Pickering emulsion (PE) stabilized by bio-compatible polymer nanoparticles (NPs) was first developed for the encapsulation of lipophilic tocopheryl acetate (TA) for its application in cosmetics. The poly(lactide-co-glycolide) (PLGA)/poly(styrene-co-4-styrene-sulfonate) (PSS) NPs were prepared by solvent displacement, and then they were used as emulsifier particles to fabricate TA-encapsulated PE. It was found that the TA encapsulation efficiency was >98%. Scanning electron microscope analysis showed that the obtained PE exhibited 'shell' structure. The PE droplets had spherical shape with diameter around 2 μm and good dispersibility as evidenced by laser scanning confocal microscope. In addition, the PE was stable at the pH range of 4.29-7.07 which was compatible to skin pH. Meanwhile, the PE also showed good storage stability since there was no obvious change in its diameter, PDI and TA retention after storage at 4 °C for 30 days. The DPPH method confirmed that TA retained its antioxidation in the PE preparation process. Moreover, an improved UV irradiation stability was observed for the TA after being encapsulated in the PE. The results of cytotoxicity test suggested that the PE was compatible to the Hacat cell line (human immortalized keratinocytes). And there is negligible influence in the cellular uptake of TA after its encapsulation in the PE. However, the cellular antioxidant activity (CAA) of encapsulated TA presented a significant increase from 1.32 to 1.56 μM quercetin equivalent/mg·mL-1. Hence, the prepared PE was promising as the carrier of TA for its cosmetic application.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhi-Cheng Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng-Qi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
17
|
Javanbakht S, Shadi M, Mohammadian R, Shaabani A, Amini MM, Pooresmaeil M, Salehi R. Facile preparation of pH-responsive k-Carrageenan/tramadol loaded UiO-66 bio-nanocomposite hydrogel beads as a nontoxic oral delivery vehicle. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101311] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|