1
|
Luo P, Ai J, Wang Q, Lou Y, Liao Z, Giampieri F, Battino M, Sieniawska E, Bai W, Tian L. Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice. Food Chem 2025; 469:142555. [PMID: 39708646 DOI: 10.1016/j.foodchem.2024.142555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Collapse
Affiliation(s)
- Peihuan Luo
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian Ai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiongyao Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yihang Lou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiwei Liao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Francesca Giampieri
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Xu G, Yu Z, Zhao W. The synergistic immunomodulatory activity of Lycium barbarum glycopeptide and isochlorogenic acid A on RAW264.7 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1961-1969. [PMID: 39435522 DOI: 10.1002/jsfa.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Regulation of the immune system to maintain homeostasis in the organism has become a focus of research, and the synergistic effect of multi-component complexes will effectively improve the immunomodulatory activity. The present study aimed to investigate the interaction and synergistic immunomodulatory activity of isochlorogenic acid A (IAA) and Lycium barbarum glycopeptide (LbGp). RESULTS The results obtained indicated that non-covalent intermolecular interactions were employed to form the LbGp-IAA complex, with a binding ratio of 135.15 mg g-1. The formation of LbGp-IAA complex altered the conformation of LbGp, and IAA was mainly bound to LbGp by van der Waals forces and hydrogen bonds. In addition, LbGp-IAA promoted the proliferation of RAW264.7 cells. The IAA and LbGp interaction had a synergistic effect on the promotion of phagocytosis and the expression of nitric oxide, tumor necrosis faction-α and interleukin-1β, which improved the immunomodulatory effect of LbGp. Furthermore, the combination of LbGp and IAA synergistically inhibited lipopolysaccharide-induced inflammatory response. CONCLUSION In summary, the binding of IAA enhanced the immunomodulatory activity of LbGp and coordinated the immune response, and did not trigger an inflammatory response, which was potentially attributed to the alteration of spatial structure of LbGp through the binding of IAA. The results provide new perspectives for the study of glycopeptide-polyphenol interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
3
|
Tan Z, Yu P, Zhu H, Gao J, Han N, Yang C, Shen Z, Gao C, Yang X. Differential characteristics of chemical composition, fermentation metabolites and antioxidant effects of polysaccharides from Eurotium Cristatum and Fu-brick tea. Food Chem 2024; 461:140934. [PMID: 39197322 DOI: 10.1016/j.foodchem.2024.140934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fu-brick tea (FBT) is predominately fermented by Eurotium Cristatum, FBT polysaccharides (FTPs) and Eurotium Cristatum extracellular polysaccharides (ECPs) are the main active substances in FBT and Eurotium Cristatum, respectively. FTPs was shown to exhibit higher levels of uronic acids, proteins, and polyphenols as compared to ECPs (p < 0.05), contributing to the superior antioxidant activity observed in FTPs. Additionally, FTPs had better water solubility and thermal stability than ECPs. Interestingly, in vitro digestive simulation revealed that FTPs and ECPs resist digestion in the stomach and small intestine. Excitingly, utilizing in vitro fermentation with feces from healthy individuals and type 2 diabetes mellitus (T2DM) patients demonstrated that FTPs and ECPs promote the production of SCFAs. Still, FTPs resulted in greater SCFAs contents than ECPs (p < 0.05). Moreover, FTPs and ECPs fermentation by T2DM patients' fecal microbiota affected different metabolomic pathways. Our findings suggested that FTPs holds great promise for application in functional foods.
Collapse
Affiliation(s)
- Zhengwei Tan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pinglian Yu
- Key Laboratory of Yunnan University for Plateau Characteristic Functional Food, School of Chemistry and Chemical Engineering, Zhaotong University, 657000, China.
| | - Haoyan Zhu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaobei Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ning Han
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuo Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chang Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Bermúdez-Oria A, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Antioxidant activity and inhibitory effects on angiotensin I-converting enzyme and α-glucosidase of trans-p-coumaroyl-secologanoside (comselogoside) and its inclusion complex with β-cyclodextrin. Bioaccessibility during simulated in vitro gastrointestinal digestion. Food Chem 2024; 460:140724. [PMID: 39121769 DOI: 10.1016/j.foodchem.2024.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study explored the impact of complexing comselogoside (COM) with β-cyclodextrin (β-CD) on antioxidant capacity and investigated its in vitro inhibitory effects against α-glucosidase and angiotensin I-converting enzyme (ACE). The COM: β-CD complex in three molar ratios (1:2, 1:1, and 2:1) showed significantly higher antioxidant activity compared to free COM, assessed by DPPH and ferric reducing power assays. COM exhibited weak to moderate α-glucosidase inhibition (IC50 1221 μM) and notable ACE inhibition (IC50 119.4 μM). Encapsulation improved ACE inhibition notably for the 1:2 and 2:1 M ratios. The cleavage of secoiridoid moiety of COM by β-glucosidase further enhanced ACE inhibition from IC50 of 63.91 to 41.75 μg/mL in the hydrolysed mixture. In vitro gastrointestinal digestion revealed 34-40% bioaccessibility of COM and its β-CD complex. This study demonstrates the potential of encapsulated COM as a functional food or supplement for preventing and treating diabetes, hypertension, and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
5
|
Li Y, Huang N, Liu Q, Sun Y, Peng K, Jiang X, Yi Y. Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions. Foods 2024; 13:3543. [PMID: 39593959 PMCID: PMC11592553 DOI: 10.3390/foods13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the interaction between polyphenols and polysaccharides in food products, their specific non-covalent interactions and effects on macrophage functions are not well understood. Therefore, the interaction and mechanism of purified lotus root polysaccharide (PLRP) with polyphenols, and the regulatory mechanisms of the PLRP-polyphenol complex on the macrophage functionals were studied. By combining ferulic acid (FA) and chlorogenic acid (CHA) with PLRP, the complexes PLRP-FA, PLRP-CHA and the physical mixtures PLRP&FA and PLRP&CHA were prepared, where their mass ratios of polyphenols to PLRP were 143.97 and 601.67 mg g-1. Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), Ultraviolet (UV), and Transmission electron microscopy (TEM) analyses confirmed that PLRP and polyphenols may engage in non-covalent interactions via hydrogen bonds and hydrophobic interactions. We confirmed that non-covalent interactions led to high molecular weight, dense complexes. Both PLRP and its polyphenol complexes stimulated NO production by macrophages to varying degrees without exacerbating lipopolysaccharide-induced inflammatory responses. PLRP and PLRP-polyphenol complexes repaired cells with impaired antioxidant capacity, depending on doses. Those results indicated that after the combination of lotus root polysaccharide and polyphenol, the molecular weight and conformation changed significantly, which influenced the biological activity. RNA-seq analysis suggested that the regulatory mechanism of PLRP-polyphenol complex in macrophages may mainly involve oxidative phosphorylation, FoxO, TNF, IL-17, MAPK, NF-kappa B, and other signaling pathways. This study investigated the effects of polyphenol binding on the physicochemical characteristics and functional activities of polysaccharides, which provided references for the development of polysaccharide functional products and the control of nutritional quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueyu Jiang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (N.H.); (Q.L.); (Y.S.); (K.P.); (Y.Y.)
| | | |
Collapse
|
6
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
7
|
Rivas MÁ, Ruiz-Moyano S, Vázquez-Hernández M, Benito MJ, Casquete R, Córdoba MDG, Martín A. Impact of Simulated Human Gastrointestinal Digestion on the Functional Properties of Dietary Fibres Obtained from Broccoli Leaves, Grape Stems, Pomegranate and Tomato Peels. Foods 2024; 13:2011. [PMID: 38998517 PMCID: PMC11241623 DOI: 10.3390/foods13132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to analyse the impact of a simulated human digestion process on the composition and functional properties of dietary fibres derived from pomegranate-peel, tomato-peel, broccoli-stem and grape-stem by-products. For this purpose, a computer-controlled simulated digestion system consisting of three bioreactors (simulating the stomach, small intestine and colon) was utilised. Non-extractable phenols associated with dietary fibre and their influence on antioxidant capacity and antiproliferative activity were investigated throughout the simulated digestive phases. Additionally, the modifications in oligosaccharide composition, the microbiological population and short-chain fatty acids produced within the digestion media were examined. The type and composition of each dietary fibre significantly influenced its functional properties and behaviour during intestinal transit. Notably, the dietary fibre from the pomegranate peel retained its high phenol content throughout colon digestion, potentially enhancing intestinal health due to its strong antioxidant activity. Similarly, the dietary fibre from broccoli stems and pomegranate peel demonstrated anti-proliferative effects in both the small and the large intestines, prompting significant modifications in colonic microbiology. Moreover, these fibre types promoted the growth of bifidobacteria over lactic acid bacteria. Thus, these results suggest that the dietary fibre from pomegranate peel seems to be a promising functional food ingredient for improving human health.
Collapse
Affiliation(s)
- María Ángeles Rivas
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María Vázquez-Hernández
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María José Benito
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Rocío Casquete
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Alberto Martín
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
8
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Elayeb R, Bermúdez-Oria A, Lazreg Aref H, Majdoub H, Ritzoulis C, Mannu A, Le Cerf D, Carraro M, Achour S, Fernández-Bolaños J, Trigui M. Antioxidant polysaccharide-enriched fractions obtained from olive leaves by ultrasound-assisted extraction with α-amylase inhibition, and antiproliferative activities. 3 Biotech 2024; 14:92. [PMID: 38425411 PMCID: PMC10899153 DOI: 10.1007/s13205-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Polysaccharide-rich materials were extracted from the alcohol-insoluble solids of Olea europaea l. **leaves. Structural characteristics were determined by colorimetric techniques, FT-IR, GC-MS, SEC/MALS/VD/DRI, and NMR (1H,13C). The extract and its main macromolecular components were characterized to assess their ability toward antioxidant, α-amylase inhibition, and antiproliferative activities. Results revealed that the ultrasound olive leave extract comprises polysaccharides with uronic acid, galactose, arabinose, and glucose in molar percentages of 11.7%, 11.3%, 7.5%, and 4.9% respectively, constituting 41% of the total mass. In addition, polyphenols (21%) and proteins (9%) are associated with these polysaccharides. Further, the extract showed noticeable ORAC and free radical scavenging abilities, in addition to high in vitro antiproliferative activity against Caco-2 colon carcinoma cell lines. Similarly, the extract exhibited a strong, uncompetitive inhibition of α-amylase by 75% in the presence of the extract with 0.75 µg/mL of concentration. This research concludes that ultrasound extraction method can be used for the extraction of polysaccharide-polyphenol-protein complexes. These conjugates exhibit the potential for combined biological activities resulting from a synergistic effect of its compounds, making them promising ingredients for the development of functional food.
Collapse
Affiliation(s)
- Rania Elayeb
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Houda Lazreg Aref
- Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Christos Ritzoulis
- Department of Food Technology, ATEI of Thessaloniki, 57400 Thessaloniki, Greece
| | - Alberto Mannu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, CNRS, PBS, Normandie University, 76000 Rouen, France
| | - Massimo Carraro
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sami Achour
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Maher Trigui
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
10
|
Zhang W, Zhang QY, Li J, Ren XN, Zhang Y, Niu Q. Study on the Digestive Behavior of Chlorogenic Acid in Biomimetic Dietary Fiber and the Antioxidative Synergistic Effect of Polysaccharides and Chlorogenic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2634-2647. [PMID: 38267223 DOI: 10.1021/acs.jafc.3c08886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Chlorogenic acid (CA) is often combined with dietary fiber polysaccharides in plant foods, which may affect its digestive behavior and antioxidant activity. This study constructed a biomimetic dietary fiber (BDF) model by combining bacterial cellulose (BC) and pectin with CA and investigated the digestive behavior of CA in BDF. Additionally, the study examined the interaction and synergistic effects of polysaccharides and CA against oxidation. Results showed that BDF and natural dietary fiber had similar microstructures, group properties, and crystallization properties, and polysaccharides in BDF were bound to CA. After simulated gastrointestinal digestion, 41.03% of the CA existed in a conjugated form, and it was possibly influenced by the interaction between polysaccharides and CA. And the release of CA during simulated digestion potentially involved four mechanisms, including the disintegration of polysaccharide-CA complex, the dissolution of pectin, escape from BC-pectin (BCP) network structure, and diffusion release. And polysaccharides and CA may be combined through noncovalent interactions such as hydrogen bonding, van der Waals force, or electrostatic interaction force. Meanwhile, polysaccharides-CA combination had a synergistic antioxidant effect by the results of free-radical scavenging experiments, it was probably related to the interaction between polysaccharides and CA. The completion of this work has a positive significance for the development of dietary intervention strategies for oxidative damage.
Collapse
Affiliation(s)
- Wen Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian-Yu Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Zhejiang Xianju Pharmaceutical Co., Ltd., Taizhou 317300, China
| | - Ji Li
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue-Ning Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Niu
- CCIC Northwest Ecological Technology (Shaanxi), Xi'an 710021, China
| |
Collapse
|
11
|
Bermúdez-Oria A, Castejón ML, Rubio-Senent F, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Isolation and structural determination of cis- and trans-p-coumaroyl-secologanoside (comselogoside) from olive oil waste (alperujo). Photoisomerization with ultraviolet irradiation and antioxidant activities. Food Chem 2024; 432:137233. [PMID: 37651786 DOI: 10.1016/j.foodchem.2023.137233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
p-Coumaroyl-6́-secologanoside (comselogoside) is a secoiridoid identified in large amounts in olive fruits, although no studies in vitro or in vivo of comselogoside have been reported. This work focuses on the recovery and purification of this compound from olive mill waste (alperujo). The successive isolation on Amberlite XAD-16 and Sephadex LH-20 resins, allowed a comselogoside extract with 80-85% of purity. A photoisomerization of the vinyl-double bond in the p-coumaroyl moiety occurred when the extract was exposed to ultraviolet radiation and a mixture of the trans and cis-isomers was obtained. Both isomers were characterized using NMR, mass spectroscopy, and UV spectrometry. The J (coupling constant) of the protons on the C7 and C8 on the unsaturated chain were found to be the difference between cis (12.8 Hz) and trans- (15.9 Hz) comselogoside. Cis-isomer exhibited lower radical-scavenging activity than trans, although a synergistic effect occurred when the cis-isomer was supplement by the trans-isomer.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - María Luisa Castejón
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - África Fernández-Prior
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
12
|
Ke S, Wang X, Wang A, Zhuang M, Zhou Z. Study of the acetylation-induced changes in the physicochemical and functional characteristics of insoluble dietary fiber from wheat bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:32-41. [PMID: 37506335 DOI: 10.1002/jsfa.12887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/22/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Wheat bran is rich in dietary fiber (DF), particularly insoluble dietary fiber (IDF). Although the benefits for human health following the consumption of these DFs have been documented, the lower water retention capacity (WRC) and other properties still limit the applications of DF. Therefore, the current research investigated the impact of acetylation on the changes in the corresponding physicochemical and functional properties of DF. RESULTS The current results indicated the acetylated group restricted the alignment of the molecular chains, which led to an increased amorphous phase in the fiber structure, followed by an enhanced thermal sensitivity and a reduced crystallinity as evidenced by X-ray diffraction (XRD). Moreover, the acetylation of the IDFs enhanced the cholesterol absorption capacity, but the corresponding antioxidant capacity and cation exchange capacity were reduced, which might be due to the partial loss of the phenolic compounds onto the polysaccharides during the modification. Interestingly, a lower degree of substitution (DS) of the IDF achieved from water-acetic anhydride modification led to a higher WRC and water swelling capacity (WSC). In contrast, a higher DS from acetic anhydride modification demonstrated a greatly improved in vitro hypoglycemic performance of the IDF, including α-amylase inhibitory activity and glucose dialysis retardation index (GDRI), compared to the other samples. CONCLUSION This study highlights a new approach to modify the functionality of IDFs via acetylation and the design of a novel IDF with hypoglycemic activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sheng Ke
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
13
|
Chen Y, Gao X, Li B, Tian J. Konjac glucomannan-dihydromyricetin complex improves viscosity and hydration capacity of konjac glucomannan as well as the thermal stability of dihydromyricetin. Int J Biol Macromol 2023; 242:124666. [PMID: 37121418 DOI: 10.1016/j.ijbiomac.2023.124666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The nutritional benefits of soluble dietary fiber were mainly attributed to its viscosity and hydration capacity. This study was aimed to investigate the effects of the interaction between konjac glucomannan (KGM) and dihydromyricetin (DMY) on the viscosity and hydration capacity of KGM and the thermal stability of DMY. In contrary to most reports, the addition of DMY to KGM resulted in an increase of viscosity and hydration capacity determined via rheology and nuclear magnetic resonance spectroscopy characterization. Meanwhile the prototype retention of DMY in the presence of heating condition at 60 °C and 100 °C were improved. The radical scavenging capacity of DMY under heating condition was improved at 100 °C via the quantification of ABTS+ and DPPH. KGM-DMY complex was a non-covalent compound connected by hydrogen bonds which was characterized with particle size analyses, zeta potential analyses, transmission electron microscopy, infrared spectroscopy, X-ray diffraction, and isothermal titration calorimetry. This study was beneficial to the development of polyphenol-enriched nutrition based on KGM, especially in the aspects of satiety, appetite regulation and glucose regulation.
Collapse
Affiliation(s)
- Yan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China
| | - Xuefeng Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China; Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, PR China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China; Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
14
|
Liu Q, Zou X, Yi Y, Sun Y, Wang H, Jiang X, Peng K. Physicochemical and Functional Changes in Lotus Root Polysaccharide Associated with Noncovalent Binding of Polyphenols. Foods 2023; 12:foods12051049. [PMID: 36900568 PMCID: PMC10001286 DOI: 10.3390/foods12051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
To promote the functional applications of lotus root polysaccharides (LRPs), the effects of noncovalent polyphenol binding on their physicochemical properties, as well as antioxidant and immunomodulatory activities, were investigated. Ferulic acid (FA) and chlorogenic acid (CHA) were spontaneously bound to the LRP to prepare the complexes LRP-FA1, LRP-FA2, LRP-FA3, LRP-CHA1, LRP-CHA2 and LRP-CHA3, and their mass ratios of polyphenol to LRP were, respectively, 121.57, 61.18, 34.79, 2359.58, 1276.71 and 545.08 mg/g. Using the physical mixture of the LRP and polyphenols as a control, the noncovalent interaction between them in the complexes was confirmed by ultraviolet and Fourier-transform infrared spectroscopy. The interaction increased their average molecular weights by 1.11~2.27 times compared to the LRP. The polyphenols enhanced the antioxidant capacity and macrophage-stimulating activity of the LRP depending on their binding amount. Particularly, the DPPH radical scavenging activity and FRAP antioxidant ability were positively related to the FA binding amount but negatively related to the CHA binding amount. The NO production of the macrophages stimulated by the LRP was inhibited by the co-incubation with free polyphenols; however, the inhibition was eliminated by the noncovalent binding. The complexes could stimulate the NO production and tumor necrosis factor-α secretion more effectively than the LRP. The noncovalent binding of polyphenols may be an innovative strategy for the structural and functional modification of natural polysaccharides.
Collapse
Affiliation(s)
- Qiulan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqin Zou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (Y.Y.); (Y.S.); Tel.: +86-138-8615-2207 (Y.Y.); +86-151-7150-7535 (Y.S.)
| | - Ying Sun
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (Y.Y.); (Y.S.); Tel.: +86-138-8615-2207 (Y.Y.); +86-151-7150-7535 (Y.S.)
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kaidi Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
15
|
Liu S, Fang Z, Ng K. Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases. Crit Rev Food Sci Nutr 2022; 63:6860-6884. [PMID: 35225102 DOI: 10.1080/10408398.2022.2043236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phenolics have been shown by in vitro and animal studies to have multiple pharmacological effects against various colonic diseases. However, their efficacy against colonic diseases, such as inflammatory bowel diseases, Crohn's disease, and colorectal cancer, is significantly compromised due to their chemical instability and susceptibility to modification along the gastrointestinal tract (GIT) before reaching the colonic site. Dietary fibers are promising candidates that can form phenolic-dietary fiber composites (PDC) to carry phenolics to the colon, as they are natural polysaccharides that are non-digestible in the upper intestinal tract but can be partially or fully degradable by gut microbiota in the colon, triggering the release at this targeted site. In addition, soluble and fermentable dietary fibers confer additional health benefits as prebiotics when used in the PDC fabrication, and the possibility of synergistic relationship between phenolics and fibers in alleviating the disease conditions. The functionalities of PDC need to be characterized in terms of their particle characteristics, molecular interactions, release profiles in simulated digestion and colonic fermentation to fully understand the metabolic fate and health benefits. This review examines recent advancements regarding the approaches for fabrication, characterization, and evaluation of PDC in in vitro conditions.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Bermúdez-Oria A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Fernández-Prior Á, Fernández-Bolaños J. Effect of the Olive Oil Extraction Process on the Formation of Complex Pectin-Polyphenols and Their Antioxidant and Antiproliferative Activities. Antioxidants (Basel) 2021; 10:1858. [PMID: 34942961 PMCID: PMC8698574 DOI: 10.3390/antiox10121858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to investigate the interaction of phenols and pectic polysaccharides during the olive oil extraction process. For this, pectin was extracted from fresh olive fruits and compared to the pectin isolated from the paste resulting from the extraction of the olive oil after milling with malaxation at 30 °C/30 min and subsequent centrifugation of the olive paste from the same lot of olive fruits in a system called ABENCOR (AB). The results indicate that these interactions were enhanced during the olive oil extraction process. In addition, the resulting AB extracts exhibited high antioxidant activity (ORAC) and strong antiproliferative activity in vitro against colon carcinoma Caco-2 cell lines compared to olive fruit extracts. The polyphenols associated mainly with the acidic pectin substance, with a higher content in AB extracts, seem to be responsible for these activities, and appear to maintain their activities in part after complexation. However, even in olive fruit extracts with smaller amounts of phenols in their compositions, pectic polysaccharides may also be involved in antioxidant and antiproliferative activities.
Collapse
Affiliation(s)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo Olavide University, Building 46, Ctra de Utrera km 1, 41013 Seville, Spain; (A.B.-O.); (E.R.-J.); (G.R.-G.); (Á.F.-P.)
| |
Collapse
|
17
|
Comprehensive characterization of lotus root polysaccharide-phenol complexes. Food Chem 2021; 366:130693. [PMID: 34358960 DOI: 10.1016/j.foodchem.2021.130693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
To explore the effects of phenolic binding on the structure and activity of lotus root polysaccharides (LRPs), five LRP-phenol complexes containing catechin (61.22 mg/g), gallic acid (9.37 mg/g), ferulic acid (29.28 mg/g), chlorogenic acid (83.80 mg/g) or caffeic acid (14.80 mg/g) were prepared via noncovalent intermolecular interaction, respectively. The interaction was confirmed by the differences among LRPs, phenols and their complexes in ultraviolet-visible and Fourier-transform infrared spectra. The phenolic binding caused significant changes in the molecular weight (MW) distribution and aggregation behavior of LRPs, particularly their average MW (34.49 kDa) increased by 3.73-8.30 times. Compared to LRPs, the complexes all showed stronger antioxidant activities. Notably, the binding of catechin improved the macrophage-stimulating effect of LRPs, specifically promoting the NO production at normal condition and inhibiting the NO overproduction induced by lipopolysaccharide. The noncovalent interaction with phenolic compounds is a promising method for the structural and functional improvement of LRPs.
Collapse
|
18
|
Effects of insoluble dietary fiber and ferulic acid on the quality of steamed bread and gluten aggregation properties. Food Chem 2021; 364:130444. [PMID: 34186483 DOI: 10.1016/j.foodchem.2021.130444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
The effects of insoluble dietary fiber (IDF) and ferulic acid (FA) on steamed bread quality and gluten aggregation properties were investigated. IDF and FA increased the hardness and decreased the specific volume of steamed bread, except for 0.3 g of FA. Compared to the control sample, the hardness of steamed bread with 0.3 g of FA decreased by 36%, and the specific volume increased by 10.91%. FA promoted gluten aggregation through a cross-linking reaction because the sodium dodecyl sulfate extractable protein (SDSEP) of gluten with 1.8 g of FA decreased by 61.32% compared to the control sample under non-reducing condition. The ζ-potential of gluten during the proofing and steaming stages decreased by 46.64% and 68.10% with the increase in IDF, which showed that IDF promoted gluten aggregation by reducing the electrostatic repulsion. Gluten aggregation caused by IDF and FA could be the main reason for steamed bread deterioration.
Collapse
|
19
|
Strategies to Broaden the Applications of Olive Biophenols Oleuropein and Hydroxytyrosol in Food Products. Antioxidants (Basel) 2021; 10:antiox10030444. [PMID: 33805715 PMCID: PMC8000085 DOI: 10.3390/antiox10030444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Oleuropein (OLE) and hydroxytyrosol (HT) are olive-derived phenols recognised as health-promoting agents with antioxidant, anti-inflammatory, cardioprotective, antifungal, antimicrobial, and antitumor activities, providing a wide range of applications as functional food ingredients. HT is Generally Recognised as Safe (GRAS) by the European Food Safety Authority (EFSA) and the Food and Drug Administration (FDA), whereas OLE is included in EFSA daily consumptions recommendations, albeit there is no official GRAS status for its pure form. Their application in food, however, may be hindered by challenges such as degradation caused by processing conditions and undesired sensorial properties (e.g., the astringency of OLE). Among the strategies to overcome such setbacks, the encapsulation in delivery systems and the covalent and non-covalent complexation are highlighted in this review. Additionally, the synthesis of OLE and HT derivatives are studied to improve their applicability. All in all, more research needs however to be carried out to investigate the impact of these approaches on the sensory properties of the final food product and its percussions at the gastrointestinal level, as well as on bioactivity. At last limitations of these approaches at a scale of the food industry must also be considered.
Collapse
|
20
|
Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00774-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
22
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|