1
|
Santos AP, Andreola K, Alvim ID, Moura SCSRD, Hubinger MD. Microencapsulation of Pitanga extract (Eugenia uniflora L.) by ionic gelation: Effect of wall material and fluidized bed drying. Food Res Int 2025; 209:116304. [PMID: 40253150 DOI: 10.1016/j.foodres.2025.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
Pitanga (Eugenia uniflora L.) is a fruit native to Brazil with a large amount of bioactive compounds, antioxidant properties and attractive color. However, it is not yet well studied, despite its high availability. A technique that can improve its application and the stability of its compounds is microencapsulation. Therefore, this work aimed to develop microparticles using ionic gelation (IG), multiple emulsion and fluidized bed drying. The pitanga fruit extract presented high levels of phenolic compounds and antioxidant capacity. The encapsulation efficiency in terms of phenolic compounds ranged from 25.76 to 54.51 %. Microparticles showed D50 ranging from 455 to 676 μm. The temperature and drying time influenced the physicochemical characteristics of the microparticles as they were dried in a fluidized bed. Microparticles dried at a higher temperature, for a shorter time and with a higher final moisture content exhibited a higher concentration of phenolic compounds, lighter color, less agglomeration, but lower carotenoid content. These results demonstrate that the IG and fluidized bed drying process is a promising method to increase the commercialization of pitanga fruit. These techniques have increased the stability of the active compounds of this fruit and can enable its application in foods as a natural colorant and/or functional agent.
Collapse
Affiliation(s)
- Ana Paula Santos
- Food Engineering Faculty, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Kaciane Andreola
- Maua Institute of Technology - IMT, São Caetano do Sul, São Paulo, Brazil
| | | | | | - Míriam Dupas Hubinger
- Food Engineering Faculty, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Tilwani YM, Wani BA, Jom M, Khumbha SB, Varsha P, Saini B, Karthik S, Arul V. Preparation and physicochemical characterization of different biocomposite films blended with bacterial exopolysaccharide EPS MC-5 and bacteriocin for food packaging applications. Int J Biol Macromol 2025; 297:139832. [PMID: 39814298 DOI: 10.1016/j.ijbiomac.2025.139832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The study aims to evaluate how bacteriocin and extracellular polymeric substances (EPS) can influence the development of active packaging for food. The components might enhance the performance of packaging materials in terms of their physicochemical properties and their effectiveness in preserving food. Bacteriocin and EPS exert a significant effect in blocking the transmission of UV and visible light radiations. The molecular stability among the different functional groups of the composite films was evaluated using FT-IR analysis. The MG5 film exhibited the lowest percentage of water solubility (11.27 %) and the highest antibacterial activity against L. monocytogenes and E. coli, with a zone of inhibition measured as 21.32 ± 0.76 and 18.81 ± 0.29 mm, respectively. The TGA results indicated a noteworthy level of thermal stability in the composite films. Specifically, the MG5 bacteriocin blended film exhibited an approved metal chelation activity and demonstrated superior antioxidant activity, as evidenced by enhanced DPPH and ABTS+ scavenging activities. The incorporation of bacteriocin enhanced the interactions among the film components, and surface roughness was greatly impacted as revealed by the FE-SEM analysis. MG5 film exhibited excellent biodegradability in the natural soil environment, according to a soil burial study. To sum up, MG5 films can be an effective food packaging material, particularly for fried or high-fat items that are prone to contamination from microorganisms.
Collapse
Affiliation(s)
- Younus Mohd Tilwani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bilal Ahmad Wani
- Department of Environmental Science, Sri Pratap College, M.A. Road, Srinagar, Jammu and Kashmir 190001, India
| | - Magna Jom
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Shekar Babu Khumbha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Prabhakaran Varsha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bharat Saini
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sundaram Karthik
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
3
|
Iñiguez-Moreno M, González-González RB. Effect of gelatin and salicylic acid incorporated in chitosan coatings on strawberry preservation. Int J Biol Macromol 2025; 305:140918. [PMID: 39954885 DOI: 10.1016/j.ijbiomac.2025.140918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Strawberries are highly prone to rapid post-harvest deterioration due to their high nutritional content and lack of protective peel, demanding the development of alternative preservation methods. This study evaluates chitosan (CH) edible coatings enhanced with gelatin (GE) and salicylic acid (SA) for extending shelf life while maintaining fruit quality. Through atomic force microscopy, it was demonstrated that GE and SA showed increased surface roughness, besides improved the ultraviolet barrier properties and reduced water vapor permeability. Over 14 days of storage (3.0 ± 1.0 °C), all coatings minimized weight loss, firmness reduction, and color changes while delaying total soluble solids and pH increases. The effectiveness of the CH (0.8 %) with GE (0.2 %) and SA (2 mM) coating was mainly determined by the reduction of the development of natural disease development (84.30 ± 3.62 %), whereas the physicochemical properties tend to be similar in the assessed formulations. Principal Component Analysis (PCA) was used to investigate the effects of the treatments on strawberry shelf life and to determine the correlations between the responses studied. Considering the variability of the dimensions of the responses, correlation coefficients were used to form the matrix and extract the eigenvalue. PCA showed that the properties of the strawberries change continuously regardless of the treatments and indicated that four principal components accounted for 82.7 % of data variability. This study demonstrates that coatings, combined with cold storage, offer an effective solution for extending the shelf life of strawberries while preserving their quality throughout storage.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| |
Collapse
|
4
|
Martins M, Stanisic D, Santos CD. Effect of microencapsulation on antioxidant activities of Eugenia punicifolia (Kunth) DC hydroethanolic extracts. AN ACAD BRAS CIENC 2024; 96:e20240184. [PMID: 39570170 DOI: 10.1590/0001-3765202420240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 11/22/2024] Open
Abstract
Eugenia punicifolia (Kunth) DC (Myrtaceae) is a folk medicinal plant in the Brazilian Cerrado with antioxidant, anti-inflammatory, antinociceptive, antiulcerogenic activities, etc., usually attributed to its phenolic compounds. Since these compounds are sensitive to heat and light, and to increase their applications, Hydroethanolic Extracts E. punicifolia (HEEP, EtOH:H2O 70% v/v) were encapsulated by freeze-drying in xanthan gum (mesh 80, HEEPX80; mesh 200, HEEPX200) in ratio 1:1(w/w). Flavonoids had the highest encapsulation efficiency in HEEPX80, with a total flavonoid content of 55.56%. The release profile at different pH levels showed that pH = 4.5, a relevant antioxidant activity for HEEPX80 and HEEPX200. Also, in HEEP-modified release, higher antioxidant activity was observed in more acidic media (pH 4.5) than in a more neutral medium (pH 7.4). From these results, we could infer that HEEP encapsulations with Xanthan gum could be a good alternative for preserving antioxidants in these extracts.
Collapse
Affiliation(s)
- Manoela Martins
- Universidade de Campinas - UNICAMP, Departamento de Engenharia de Alimentos, Leμeb - Laboratório de Bioprocessos e Engenharia Metabólica, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Danijela Stanisic
- Universidade de Campinas - UNICAMP, Departamento de Química Orgânica, Instituto de Química, Laboratório de Química Biológica, Rua Monteiro Lobato, 270, 13083-862 Campinas, SP, Brazil
| | - Catarina Dos Santos
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Biológicas, Laboratório de Química da UNESP-Assis (LAQUA), Campus de Assis-SP, Av. Dom Antônio, 2100, 19806-900 Assis, SP, Brazil
| |
Collapse
|
5
|
Guo H, Sun H, Fang Y, Qin H, Wang X, Zhang Y, Zhao M, Wu H, Zhou X, Liu Y. Eco-friendly film with highly efficient sterilization for food preservation by incorporating natural products into starch/polyvinyl alcohol matrix. Int J Biol Macromol 2024; 278:135047. [PMID: 39182859 DOI: 10.1016/j.ijbiomac.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
An advanced biodegradable packaging film with antimicrobial and fresh-maintaining functions was constructed by incorporating berberine and L-arginine into the starch/polyvinyl alcohol (PVA) film matrix. The film was endowed with a dual antibacterial capacity thanks to the intrinsic antibacterial capability of berberine and cascaded photodynamic sterilization. The aggregated berberine presents an excellent photodynamic activity to generate reactive oxygen species (ROS), which further triggers the NO release from L-arginine. Under the synergetic action of ROS and NO, the as-prepared film not only has an antibacterial efficiency of over 99 % against both S. aureus and E. coli but also delays fruit ripening through antagonistic effects on ethylene to extend the shelf life of food. Meanwhile, the as-prepared film presents UV-shielding properties, thermal stability, and considerable mechanical properties. Specifically, the packaging film exhibits good biocompatibility and is biodegradable, with a degradation rate of 56 % within 16 days, which has great potential for improving food safety and environmental events.
Collapse
Affiliation(s)
- Hanqiong Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hanyue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaomin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
6
|
Farias TRB, Sanches NB, Petrus RR. The amazing native Brazilian fruits. Crit Rev Food Sci Nutr 2024; 64:9382-9399. [PMID: 37195442 DOI: 10.1080/10408398.2023.2212388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A number of native Brazilian plant species are under exploited by the scientific community, despite the country's precious biodiversity. The vast majority of native Brazilian fruits (NBF) is source of compounds that provide many health benefits and can potentially be used to prevent diseases and formulate high-added value products. This review covers the scientific research over the last decade (2012-2022) on eight NBF, and focuses on information about the production and market panorama, physical description, physicochemical characterization, nutritional composition, their functional value of bioactive compounds and health benefits, as well as the potential for utilizations for each. The studies herein compiled reveal the outstanding nutritional value of these NBF. They are sources of vitamins, fibers, minerals and bioactive compounds that exhibit antioxidant activity, and they contain phytochemicals with anti-inflammatory action, anti-obesity and other functions that bring many health benefits to consumers. NBF can be also used as raw material for multiple products such as nectars, juices, jams, frozen pulps, liquor, among others. The dissemination of knowledge about NBF has fundamental implications worldwide.
Collapse
Affiliation(s)
| | | | - Rodrigo Rodrigues Petrus
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|
7
|
Mohammadzadeh P, Marand SA, Almasi H, Zeynali F, Moradi M. Bacterial nanocellulose-based nanopaper activated by β-cyclodextrin/ Salvia officinalis essential oil complexes for shelf life extension of shrimp. Int J Biol Macromol 2024; 275:133354. [PMID: 38945710 DOI: 10.1016/j.ijbiomac.2024.133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Active bacterial nanocellulose (BNC) nanopapers containing Salvia officinalis essential oil (SEO) in free form and encapsulated with β-cyclodextrin (βCD) were prepared, and their effect on the shelf life extension of shrimp was investigated. The GC-MS analysis of the SEO indicated the presence of various active compounds such as Thujone (21.53 %), Ledol (12.51 %) and Eucalyptol (11.28 %) in the essential oil composition. The cytotoxicity of the SEO and SEO-βCD complexes in the L929 cell line was quite low. FTIR analysis revealed new interactions in the nanopapers containing SEO-βCD complexes. Microscopic images showed that SEO-βCD complexation improved the surface morphology of the BNC nanopapers, whereas free SEO had a negative effect. X-ray diffraction patterns of the nanopapers showed higher crystallinity of the SEO-βCD containing nanopapers than that of the SEO-incorporated nanopapers. Moreover, the addition of the SEO-βCD complex improved the thermal properties of the BNC nanopaper. Water contact angle analysis showed higher hydrophobicity of the samples containing free SEO than that of the other samples. Both SEO-βCD and free SEO increased the elongation at break and decreased the tensile strength of the nanopaper. The prepared active films showed a greater antimicrobial effect on L. monocytogenes than on E. coli. The results showed a higher antioxidant capacity of the free SEO-containing nanopapers (58-78 %). The desirable effects of the active nanopapers on shrimp preservation were demonstrated by the results obtained for the microbial load, pH, and volatile nitrogen content of the product. The results demonstrate the potential of the prepared BNC active nanopapers for use in active antioxidant/antimicrobial food packaging.
Collapse
Affiliation(s)
- Paria Mohammadzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sina Ardebilchi Marand
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Tessaro L, Pereira AGR, Martelli-Tosi M, Sobral PJDA. Improving the Properties of Gelatin-Based Films by Incorporation of "Pitanga" Leaf Extract and Crystalline Nanocellulose. Foods 2024; 13:1480. [PMID: 38790780 PMCID: PMC11120396 DOI: 10.3390/foods13101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Biopolymer-based films can be activated by the incorporation of active compounds into their matrix. Plant extracts are rich in phenolic compounds, which have antimicrobial and/or antioxidant properties. The aim of this study was to produce gelatin-based active films and nanocomposite films incorporated with "pitanga" (Eugenia uniflora L.) leaf extract (PLE) and/or crystalline nanocellulose extracted from soybean straw (CN), and to study the physicochemical, functional, microstructural, thermal, UV/Vis light barrier, and antioxidant properties of these materials. PLE enhanced some film properties, such as tensile strength (from 30.2 MPa to 40.6 MPa), elastic modulus (from 9.3 MPa to 11.3 MPa), the UV/Vis light barrier, and antioxidant activity, in addition to affecting the microstructural, surface, and color properties. These improvements were even more significant in nanocomposites simultaneously containing PLE and CN (59.5 MPa for tensile strength and 15.1 MPa for elastic modulus), and these composites also had lower moisture content (12.2% compared to 13.5-14.4% for other treatments) and solubility in water (from 48.9% to 44.1%). These improvements may be the result of interactions that occur between PLE's polyphenols and gelatin, mainly in the presence of CN, probably due to the formation of a stable PLE-CN-gelatin complex. These results are relevant for the food packaging sector, as the activated nanocomposite films exhibited enhanced active, barrier, and mechanical properties due to the presence of PLE and CN, in addition to being entirely produced with sustainable components from natural and renewable sources.
Collapse
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
| | - Ana Gabrielle R. Pereira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building Block, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
9
|
Ribeiro DN, Borges KC, Matsui KN, Hoskin RT. Spray dried acerola ( Malpighia emarginata DC) juice particles to produce phytochemical-rich starch-based edible films. J Microencapsul 2024; 41:112-126. [PMID: 38345078 DOI: 10.1080/02652048.2024.2313234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 μM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.
Collapse
Affiliation(s)
- Dayene Nunes Ribeiro
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Kátia Cristina Borges
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Kátia Nicolau Matsui
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Roberta Targino Hoskin
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Department of Food, Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| |
Collapse
|
10
|
Ghiasi F, Hashemi H, Esteghlal S, Hosseini SMH. An Updated Comprehensive Overview of Different Food Applications of W 1/O/W 2 and O 1/W/O 2 Double Emulsions. Foods 2024; 13:485. [PMID: 38338620 PMCID: PMC10855190 DOI: 10.3390/foods13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Double emulsions (DEs) present promising applications as alternatives to conventional emulsions in the pharmaceutical, cosmetic, and food industries. However, most review articles have focused on the formulation, preparation approaches, physical stability, and release profile of encapsulants based on DEs, particularly water-in-oil-in-water (W1/O/W2), with less attention paid to specific food applications. Therefore, this review offers updated detailed research advances in potential food applications of both W1/O/W2 and oil-in-water-in-oil (O1/W/O2) DEs over the past decade. To this end, various food-relevant applications of DEs in the fortification; preservation (antioxidant and antimicrobial targets); encapsulation of enzymes; delivery and protection of probiotics; color stability; the masking of unpleasant tastes and odors; the development of healthy foods with low levels of fat, sugar, and salt; and design of novel edible packaging are discussed and their functional properties and release characteristics during storage and digestion are highlighted.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (S.E.); (S.M.H.H.)
| | | | | | | |
Collapse
|
11
|
Yang J, Gu Z, Cheng L, Li Z, Li C, Hong Y, Qian JY. Formation Mechanism of Starch-Based Double Emulsions from the Interfacial Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17154-17164. [PMID: 37974415 DOI: 10.1021/acs.langmuir.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Double emulsions are of significant practical value in protecting the core material owing to their multicomponent structure and have thus been applied in various fields, such as food, cosmetics, and drugs. However, the mechanism of double emulsion formation by native starch is not well established. Herein, we demonstrate a facile route to develop type-A, type-B, and type-C double emulsions using native starch and develop an innovative design for a carrier. Interfacial interaction, enthalpy changes of starch, and interfacial properties are key factors governing the formation of double emulsions and controlling the type of double emulsions formed. Therefore, the results of this study provide a better understanding of how and what type of starch-based double emulsions are formed.
Collapse
Affiliation(s)
- Jie Yang
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhengbiao Gu
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
12
|
Chen R, Zhang Y, Zhang Z, Yao L, Liu L, Wang J, Wang R. Open roads and bridge: Preservation of fresh beef by a packaging film constructed from photosensitizing bacterial cellulose. Food Chem 2023; 437:137789. [PMID: 39491247 DOI: 10.1016/j.foodchem.2023.137789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Food packaging is now widely used in everyday life to protect food from certain environmental factors. In this work, we have successfully prepared a bacterial cellulose/chitosan-TPE-COOH composite film (BC/CS-TPE), which can achieve broad-spectrum killing of bacteria through a variety of antibacterial mechanisms and ensure the freshness of the beef. In this complex film, CS acts as "advance team", responsible for breaking through the cell wall or outer membrane of bacteria, while the reactive oxygen species produced by photosensitizer under irradiation attacks bacteria, further increasing the destructive effect on the bacterial cell membrane. This allows the film to have outstanding antibacterial properties that can kill 108 CFU/mL pathogens in 10 min. At the same time, cell experiments and hemolysis experiments proved that the film has good biocompatibility. Therefore, BC/CS-TPE film, as the efficient functional food packaging film, has a broad future application prospect.
Collapse
Affiliation(s)
- Rui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yajie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Zuwang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Lizhi Liu
- Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shanxi, China.
| |
Collapse
|
13
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
14
|
Biodegradable fish gelatin/chitosan-based active films alter chill-stored golden pomfret (Trachinotus blochii) metabolites mainly through modulating four metabolic pathways. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Effects of pre-emulsion prepared using sucrose esters with different hydrophile-lipophile balances on characteristics of soy protein isolate emulsion films. Food Res Int 2023; 165:112542. [PMID: 36869455 DOI: 10.1016/j.foodres.2023.112542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The preparation of emulsion films using pre-emulsification has received extensive attention due to the enhancement of oil binding capacity. However, the different effects of water in oil (W/O) and oil in water (O/W) pre-emulsions on the physicochemical properties of films are still unclear. Therefore, the soy protein isolate (SPI) based emulsion films were prepared by W/O or O/W pre-emulsion using sucrose esters with different hydrophile-lipophile balances to investigate the properties of SPI emulsion (SPIE) films. The viscosity, storage moduli, and loss moduli of film-forming solutions (FFSs) with O/W pre-emulsion were higher than those of FFSs with W/O pre-emulsion. The oil droplets of FFSs with W/O pre-emulsion were large and uneven, and the oil droplet size increased after drying. Phase separation and macroporous network appeared in cross-sectional of SPIE films with W/O pre-emulsion according to scanning electron microscope images. Meanwhile, the SPIE films with W/O pre-emulsion demonstrated higher oil concentration and hydrophobicity on the upper surface compared with the SPIE films with O/W pre-emulsion. Low tensile strength, glass transition temperature, and high elongation at break and transparency value of SPIE films with O/W pre-emulsions were founded. The water vapor permeability of SPIE films with W/O pre-emulsion increased with the addition of oil, whereas the opposite trend appeared in that with O/W pre-emulsion. In conclusion, the structure and porosity of emulsion films could be affected by the pre-emulsion types, which can determine the application ranges.
Collapse
|
16
|
Iaccheri E, Siracusa V, Ragni L, De Aguiar Saldanha Pinheiro AC, Romani S, Rocculi P, Dalla Rosa M, Sobral PJDA. Studying physical state of films based on casava starch and/or chitosan by dielectric and thermal properties and effects of pitanga leaf hydroethanolic extract. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Wang M, Yin Z, Zeng M. Construction of 3D printable Pickering emulsion gels using complexes of fiber polysaccharide-protein extracted from Haematococcus pluvialis residues and gelatin for fat replacer. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
do Amaral Sobral PJ, Gebremariam G, Drudi F, De Aguiar Saldanha Pinheiro AC, Romani S, Rocculi P, Dalla Rosa M. Rheological and Viscoelastic Properties of Chitosan Solutions Prepared with Different Chitosan or Acetic Acid Concentrations. Foods 2022; 11:2692. [PMID: 36076877 PMCID: PMC9455163 DOI: 10.3390/foods11172692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Chitosan (Ch) is a partially crystalline biopolymer, insoluble in pure water but soluble in acid solutions. It has attracted interest from researchers to prepare solutions using different acid types and concentrations. This research aims to study both the effect of chitosan (Ch) or acetic acid (Ac) concentrations, at different temperatures, on rheological and viscoelastic properties of Ch solutions. To study the effect of Ch, solutions were prepared with 0.5−2.5 g Ch/100 g of solution and Ac = 1%, whereas to study the effect of Ac, the solutions were prepared with 2.0 g of Ch/100 g of solution and Ac = 0.2−1.0%. Overall, all analyzed solutions behaved as pseudoplastic fluid. The Ch strongly affected rheological properties, the consistency index (K) increased and the index flow behavior (n) decreased as a function of Ch. The activation energy, defined as the energy required for the molecule of a fluid to move freely, was low for Ch = 0.5%. The effect of Ac was less evident. Both K and n varied according to a positive and negative, respectively, parabolic model as a function of Ac. Moreover, all solutions, irrespective of Ch and Ac, behaved as diluted solutions, with G” > G’. The relaxation exponent (n”) was always higher than 0.5, confirming that these systems behaved as a viscoelastic liquid. This n” increased with Ch, but it was insensitive to Ac, being slightly higher at 45 °C.
Collapse
Affiliation(s)
- Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, Sao Paulo 05508-080, SP, Brazil
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Gebremedhin Gebremariam
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Federico Drudi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | | | - Santina Romani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, Campus of Food Science, 47521 Cesena, Italy
| |
Collapse
|
19
|
Ghiasi F, Golmakani MT. Innovative design of bio-functional Persian gum-based edible films by incorporating crocin and cinnamaldehyde: Free versus single and double emulsion fabrication techniques. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Lin X, Chen S, Wang R, Li C, Wang L. Fabrication, characterization and biological properties of pectin and/or chitosan-based films incorporated with noni (Morinda citrifolia) fruit extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Kabirou Olatounde Odjo A, Ali Al-Maqtari Q, Yu H, Xie Y, Guo Y, Li M, Du Y, Kun Feng L, Chen Y, Yao W. Preparation and characterization of chitosan-based antimicrobial films containing encapsulated lemon essential oil by ionic gelation and cranberry juice. Food Chem 2022; 397:133781. [DOI: 10.1016/j.foodchem.2022.133781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|
23
|
Novel hydrophobic colorimetric films based on ethylcellulose/castor oil/anthocyanins for pork freshness monitoring. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Muralidharan V, Janardhanam S, Palanivel S, Madhan B. Sustainable fabrication of bio-derived hybrid films using biomolecules extracted from animal skin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Effects of Additional Polyvinyl Alcohol (PVA) on the Physiochemical Properties of Chitosan-Glutaraldehyde-Gelatine Bioplastic. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.3.130-136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigated the effects of additional PVA on the physicochemical properties of the chitosan-glutaraldehyde/gelatin bioplastic composite. The best results of the bioplastic film were obtained at a concentration of 3% PVA, with a tensile strength value of 3.3 MPa, flexibility reached 54%, a thickness value of 0.24 mm, percentage of inhibition against E. coli and S. aureus was 21.8% and 8.8% respectively. The FTIR spectrum results showed no change in the wavenumber of the chitosan and gelatin chitosan spectrum with OH, CO, and NH functional groups. The spectrum indicates that only physical interactions occurred. The bioplastics are similar in thermal stability and have slight differences in bioplastic morphological contours. The average thickness of the bioplastics is between 0.20–0.26 mm. Based on the Japanese Industrial Standard (JIS), all bioplastics meet the standard thickness, which is < 0.25 mm, excluding chitosan, which has a thickness of 0.26 mm. The addition of PVA into the bioplastics structure increased the hydrophobicity, pH resistance, and flexibility of bioplastics. Meanwhile, additional PVA decreased biodegradability, only degraded by 60% at eight weeks. Based on these data, not all bioplastics can meet the degradation time criteria set by the international bioplastic standard ASTM D-6002, that bioplastics must be 100% degraded within eight weeks. Bioplastics made from chitosan and chitosan-gelatin have been degraded by 90% for 48 weeks. Based on the antibacterial properties, the inclusion of PVA into the bioplastic structure enhances the antibacterial properties.
Collapse
|
26
|
Benoso P, Bittante AMQB, Moraes ICF, do Amaral Sobral PJ. Rheological and viscoelastic properties of colloidal solutions based on gelatins and chitosan as affected by pH. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Paula Benoso
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga SP Brazil
| | | | - Izabel Cristina Freitas Moraes
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga SP Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga SP Brazil
- Food Research Center (FoRC) University of São Paulo Rua do Lago São Paulo SP Brazil
| |
Collapse
|
27
|
Ma K, Zhe T, Li F, Zhang Y, Yu M, Li R, Wang L. Sustainable films containing AIE-active berberine-based nanoparticles: A promising antibacterial food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Edible active film based on gelatin and Malpighia emarginata waste extract to inhibit lipid and protein oxidation in beef patties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Zong X, Zhang X, Bi K, Zhou Y, Zhang M, Qi J, Xu X, Mei L, Xiong G, Fu M. Novel emulsion film based on gelatin/polydextrose/camellia oil incorporated with Lactobacillus pentosus: Physical, structural, and antibacterial properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Huang S, Tu Z, Sha X, Hu Y, Chen N, Wang H. Fabrication and performance evaluation of pectin-fish gelatin-resveratrol preservative films. Food Chem 2021; 361:129832. [PMID: 34023688 DOI: 10.1016/j.foodchem.2021.129832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Resveratrol-loaded fish gelatin (FG)-low methoxyl pectin (LMP) composite films with different FG:LMP mass ratios were prepared and evaluated as food packaging materials. With increasing FG contents, the water solubility of the films decreased. Moreover, the UV (315-400 nm) blocking efficiency and opacity increased with increasing LMP contents. The elongation of the films at breaking and tensile strengths were adjusted using the ratio of FG and LMP. The lowest water vapour permeability was observed at an FG:LMP mass ratio of 2:1. All films exhibited good antioxidant properties and significantly delayed oil deterioration when used for beef tallow preservation. The release behaviour of resveratrol in 95% ethanol as a food simulant was determined by film composition. The fabricated films exhibit significant potential for beef tallow preservation applications. Furthermore, LMP can improve the stability of resveratrol-FG complexes and compete with resveratrol for binding FG to accelerate resveratrol release.
Collapse
Affiliation(s)
- Sheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center for Freshwater Fish High-value Utilization of Jiangxi, Jiangxi Normal University, Nanchang 330022, China.
| | - Xiaomei Sha
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center for Freshwater Fish High-value Utilization of Jiangxi, Jiangxi Normal University, Nanchang 330022, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Ning Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
31
|
Wang H, Ding F, Ma L, Zhang Y. Recent advances in gelatine and chitosan complex material for practical food preservation application. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongxia Wang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Fuyuan Ding
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | - Liang Ma
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| |
Collapse
|
32
|
Luciano CG, Tessaro L, Lourenço RV, Bittante AMQB, Fernandes AM, Sobral PJA. Bi‐layer gelatin active films with “Pitanga” leaf hydroethanolic extract and/or natamycin in the second layer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carla G. Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Rodrigo V. Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Ana Mônica Q. B. Bittante
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Andrezza M. Fernandes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Paulo J. A. Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
- Food Research Center (FoRC) University of São Paulo São Paulo Brazil
| |
Collapse
|
33
|
Tessaro L, Lourenço RV, Martelli-Tosi M, do Amaral Sobral PJ. Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with "Pitanga" (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. Int J Biol Macromol 2021; 186:328-340. [PMID: 34246680 DOI: 10.1016/j.ijbiomac.2021.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
Mechanical properties of biopolymer films can be a limitation for their application as packaging. Soybean straw crystalline nanocelluloses (NC) can act as reinforcement load to improve these material properties, and W/O/W double emulsion (DE) as encapsulating bioactive agents can contribute to produce active packaging. DE droplets were loaded with pitanga leaf (Eugenia uniflora L.) hydroethanolic extract. The mechanical, physicochemical, and barrier properties, and the microstructure of gelatin and/or chitosan films incorporated with NC or NC/DE were determined by classical methods. Film antioxidant activities were determined by ABTS and DPPH methods. The incorporation of NC/DE in gelatin and/or chitosan films (NC/DE films) changed the morphology of these films, which presented more heterogeneous air-side surfaces and cross-sections. They presented rougher topographies, notably greater resistance and stiffness, higher barrier properties to UV/Vis light and higher antioxidant activity than the NC films. Moisture content, solubility in water and water vapor permeability decreased due to the presence of DE. Overall, the NC/DE films improved all properties, when compared to the properties of NC films or those of films with only DE, from a previously published study. In spite of not having antimicrobial activity against the studied bacteria, NC/DE films did display a great antioxidant activity.
Collapse
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil.
| | - Rodrigo Vinícius Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C, 05508-080 São Paulo, SP, Brazil
| |
Collapse
|
34
|
Dammak I, Luciano CG, Pérez-Córdoba LJ, Monteiro ML, Conte-Junior CA, Sobral PJDA. Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Adv 2021; 11:28148-28168. [PMID: 35480739 PMCID: PMC9038010 DOI: 10.1039/d1ra04888k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The attention towards active films has increased due to consumer demand for high-quality foods without chemical additives. Active biopolymer-based films have shown great potential for active films by impacting food safety, acting as the carriers of various natural antioxidant and antimicrobial compounds, and decreasing environmental pollution from petrol-derived packaging materials. However, there is a wide range of challenges concerning the different characteristics of biopolymers and plasticizers, often hygroscopic/hydrophilic, compared to numerous lipophilic bioactive compounds. Therefore, recent studies have focused on applying oil-in-water emulsion-based systems to enhance the lipophilic bioactive compounds' dispersibility into the film matrix, improving their performance. It is worth emphasizing that resulting complex systems give rise to new challenges such as (i) dispersion technology of the bioactive compounds with minimum adverse effects on its bioactivities, (ii) interactions between different components of the active films, giving rise to new physicochemical properties, and (iii) the change of the diffusion properties of bioactive compounds into the active films, resulting in different release properties. These challenges are profound and critically discussed in this review, as well as the encapsulation techniques employed in preparing emulsions loaded with lipophilic bioactive compounds for the active film development. An outlook of future directions in the research, development, and application of these active films are given.
Collapse
Affiliation(s)
- Ilyes Dammak
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | | | - Maria Lúcia Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
- Food Research Center (FoRC), University of São Paulo (USP) São Paulo (SP) Brazil
| |
Collapse
|
35
|
Tessaro L, Luciano CG, Martins MFL, Ramos AP, Martelli-Tosi M, do Amaral Sobral PJ. Stable and bioactive W/O/W emulsion loaded with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1949339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Maria Fernanda Libório Martins
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, São Paulo, SP, Brazil
| |
Collapse
|
36
|
TESSARO L, MARTELLI-TOSI M, SOBRAL PJDA. Development of W/O emulsion for encapsulation of “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract: droplet size, physical stability and rheology. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.65320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|