1
|
Tao L, Zhang J, Lan W, Liu H, Wu Q, Yang S, Song S, Yu L, Bi Y. Neutral oligosaccharides from ginseng (Panax ginseng) residues vs. neutral ginseng polysaccharides: A comparative study of structure elucidation and biological activity. Food Chem 2025; 464:141674. [PMID: 39426268 DOI: 10.1016/j.foodchem.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This study aimed to compare the structural and biological activities of neutral ginseng residue oligosaccharides (GRO-N) and neutral ginseng polysaccharides (GP-N). Their structures of GRO-N and GP-N were established based on their molecular weight (Mw), monosaccharide composition, Fourier-transform infrared spectroscopy, methylation, and nuclear magnetic resonance analyses. The Mws of GRO-N and GP-N were 1121.0 Da and 12,791.0 Da, respectively. Both had major chain structures comprising α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4)-α/β-D-Glcp, with branch points at →4,6)-α-D-Glcp-(1→. Moreover, the branched chain of GRO-N was α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→. The branched chain of GP-N was α-D-Glcp-(1→ and →4)-α-D-Glcp-(1→. GRO-N, with a lower Mw and more diverse glycosidic bonds, exhibited higher antioxidant, hypoglycemic, and immune activities than GP-N. Cell viability peaked (202.81 ± 4.80 %) at a GRO-N concentration of 200 μg/mL. These findings provide a theoretical basis for further utilization of ginseng residual saccharides.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shenglong Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Roberto T AD, Virginia CA, Ángeles AAM, Casimiro CG, Claudia PM, Eduardo U, Félix ÁG, Nathalie K, Félix L F, Sergey D. Antitumor and antioxidant activities of polysaccharides from the seaweed Durvillaea antarctica. Chem Biol Drug Des 2024; 103:e14392. [PMID: 37945521 DOI: 10.1111/cbdd.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
The present study was carried out to determine the antitumor and antioxidant activities of the seaweed Durvillaea antarctica. Extraction and purification of polysaccharides from D. antarctica were performed. They were characterized by FT-IR and GC-MS, identifying isomers of arabinose, fucose, mannose, and galactose. The antioxidant capacity of polysaccharides was analyzed using the ABTS method (14.3 ± 0.5 μmol TE g-1 PS) and the DPPH method (21.82 ± 0.32 μmol TE g-1 PS). The antitumor capacity of polysaccharides was studied by MTT colorimetric assays in human leukemia, colon, breast, and lung cancer cell lines, obtaining the lowest IC50 in colon cancer (19.99 μg mL-1 ). In the line of healthy human gingival fibroblasts (HGF-1), an IC50 of 444.39 μg mL-1 was obtained. Flow cytometry in the HL60 cell line showed that polysaccharides at concentrations higher than IC50 inhibited cell proliferation, demonstrating a possible antitumor capacity in vitro. In the proteomic analysis with HGF-1, nine proteins involved in different biological processes were identified. In conclusion, polysaccharides from D. antarctica could be considered powerful nutraceuticals, mainly against colon cancer.
Collapse
Affiliation(s)
- Abdala Díaz Roberto T
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Casas-Arrojo Virginia
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | | | | | - Pérez Manríquez Claudia
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Uribe Eduardo
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Álvarez-Gómez Félix
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Korbee Nathalie
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Figueroa Félix L
- Universidad de Málaga, Instituto de Biotecnologia y Desarrollo Azul (IBYDA), Experimental Center Grice Hutchinson, Malaga, Spain
| | - Dobretsov Sergey
- Department of Marine Science and Fisheries, Sultan Qaboos University, Muscat, Oman
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
3
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Hu T, Wu P, Zhan J, Wang W, Shen J, Wang M, Ho CT, Li S. Structure variety and its potential effects on biological activity of tea polysaccharides. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Qiao X, Wang B, Yuan Z, Yu F, Zhang Y, Wang Y, Yang Y, Tang J, Jiang Z, Lin L, Zhang L, Du Z, Zhang Y. The polysaccharides from Yiqi Yangyin complex attenuated mammary gland hyperplasia: Integrating underlying biological mechanisms and network pharmacology. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Oh JH, Chung JO, Lee CY, Yun Y, Park MY, Hong YD, Kim WG, Cha HY, Shin KS, Hong GP, Shim SM. Characterized Polysaccharides from Green Tea Inhibited Starch Hydrolysis and Glucose Intestinal Uptake by Inducing Microstructural Changes of Wheat Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14075-14085. [PMID: 34784711 DOI: 10.1021/acs.jafc.1c04274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of the current study was to investigate the effect of green tea ethanol extract (GTE) and polysaccharide fractions from green tea (PFGs) on the hydrolysis of wheat starch, microstructural changes, and intestinal transport of glucose. The amount of resistant starch (RS) was significantly lowered in the water-soluble polysaccharide (WSP), water-soluble polysaccharide-pectinase (WSP-P), and water-insoluble polysaccharide-alkali soluble (WISP-Alk-Soluble; p < 0.05). The microstructures of gelatinized wheat starch granules with WSP, WSP-P, and WISP-Alk-Soluble were spherical with small cracks. The amount of intestinal transported glucose from digested wheat starch was 2.12-3.50 times lower than the control group. The results from the current study suggest that water- and alkali-soluble PFGs could be potential ingredients to lower starch hydrolysis as well as to control the postprandial blood glucose level when foods that contain starch are consumed.
Collapse
Affiliation(s)
- Jeong-Ho Oh
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Jin-Oh Chung
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Chan-Yang Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Youngchan Yun
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Mi-Young Park
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Yong-Deog Hong
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Wan-Gi Kim
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Ha-Young Cha
- Department of Food Science and Biotechnology, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Republic of Korea
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| |
Collapse
|
7
|
Zhao Y, Liu X, Zheng Y, Liu W, Ding C. Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT1/NF-κB signaling pathway and gut microbiota. Sci Rep 2021; 11:20558. [PMID: 34663844 PMCID: PMC8523697 DOI: 10.1038/s41598-021-00071-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Aronia melanocarpa is a natural medicinal plant that has a variety of biological activities, its fruit is often used for food and medicine. Aronia melanocarpa polysaccharide (AMP) is the main component of the Aronia melanocarpa fruit. This research evaluated the delay and protection of AMP obtained from Aronia melanocarpa fruit on aging mice by D-Galactose (D-Gal) induction and explored the effect of supplementing AMP on the metabolism of the intestinal flora of aging mice. The aging model was established by intraperitoneal injection of D-Gal (200 mg/kg to 1000 mg/kg) once per 3 days for 12 weeks. AMP (100 and 200 mg/kg) was given daily by oral gavage after 6 weeks of D-Gal-induced. The results showed that AMP treatment significantly improved the spatial learning and memory impairment of aging mice determined by the eight-arm maze test. H&E staining showed that AMP significantly reversed brain tissue pathological damage and structural disorders. AMP alleviated inflammation and oxidative stress injury in aging brain tissue by regulating the AMPK/SIRT1/NF-κB and Nrf2/HO-1 signaling pathways. Particularly, AMP reduced brain cell apoptosis and neurological deficits by activating the PI3K/AKT/mTOR signaling pathway and its downstream apoptotic protein family. Importantly, 16S rDNA analysis indicated the AMP treatment significantly retarded the aging process by improving the composition of intestinal flora and abundance of beneficial bacteria. In summary, this study found that AMP delayed brain aging in mice by inhibiting inflammation and regulating intestinal microbes, which providing the possibility for the amelioration and treatment of aging and related metabolic diseases.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
8
|
Saravanakumar K, Park S, Sathiyaseelan A, Mariadoss AVA, Park S, Kim SJ, Wang MH. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants (Basel) 2021; 10:1372. [PMID: 34573005 PMCID: PMC8471597 DOI: 10.3390/antiox10091372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
In this work, a total of six polysaccharides were isolated from culture filtrate (EPS1, EPS2) and mycelia (IPS1-IPS4) of Trichoderma harzianum. The HPLC analysis results showed that EPS1, EPS2, IPS1, and IPS2 were composed of mannose, ribose, glucose, galactose, and arabinose. The FT-IR, 1H, and 13C NMR chemical shifts confirmed that the signals in EPS1 mainly consist of (1→4)-linked α-d-glucopyranose. EPS1 and IPS1 showed a smooth and clean surface, while EPS2, IPS2, and IPS3 exhibited a microporous structure. Among polysaccharides, EPS1 displayed higher ABTS+ (47.09 ± 2.25% and DPPH (26.44 ± 0.12%) scavenging activities, as well as higher α-amylase (69.30 ± 1.28%) and α-glucosidase (68.22 ± 0.64%) inhibition activity than the other polysaccharides. EPS1 exhibited high cytotoxicity to MDA-MB293 cells, with an IC50 of 0.437 mg/mL, and this was also confirmed by cell staining and FACS assays. These results report the physicochemical and bioactive properties of polysaccharides from T. harzianum.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Anbazhagan Sathiyaseelan
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Soyoung Park
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Seong-Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, Samcheok-si 24949, Korea
| | - Myeong-Hyeon Wang
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| |
Collapse
|
9
|
Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules 2021; 26:molecules26113457. [PMID: 34200163 PMCID: PMC8201348 DOI: 10.3390/molecules26113457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures. Due to the vast variation nature of monosaccharide units and their connections, the structure of TPSs is extremely complex, which is also affected by several major factors including tea species, processing technologies of tea and isolation methods of TPSs. As a result of the complexity, there are few studies on their fine structures and chain conformation. In the present review, we aim to provide a detailed summary of the multiple factors influencing the characteristics of TPS chemical structures such as variations of tea species, degree of fermentation, and preparation methods among others as well as their applications. The main aspects of understanding the structural difference of TPSs and influencing factors are to assist the study of the structure and bioactivity relationship and ultimately, to control the production of the targeted TPSs with the most desired biological activity.
Collapse
|
10
|
Gao Y, Wang Y, Ji X, Xiao Y, Xiao B, Peng P. Tea polysaccharides from Camellia sinensis: chemical analysis, structural characterization, and inhibition of HeLa cells activity. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1877957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China
| | | | - Xuening Ji
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yao Xiao
- Department of Foreign Languages, Northwest A&F University, Yangling, China
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Shan S, Xiong Y, Liu M, Zeng D, Song C, Baranenko D, Cheng D, Lu W. Structural characterization and immunomodulatory activity of a new polysaccharide isolated from the radix of
Platycodon grandiflorum. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shan Shan
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients Harbin China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients Harbin China
| | - Mengyao Liu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients Harbin China
| | - Deyong Zeng
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients Harbin China
| | - Chen Song
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients Harbin China
| | - Denis Baranenko
- Biotechnologies of the Third Millennium ITMO University Saint‐Petersburg Russia
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients Harbin China
- Institute of Extreme Environment Nutrition and Protection Harbin Institute of Technology Harbin China
| |
Collapse
|
12
|
Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity. Int J Biol Macromol 2020; 164:1124-1132. [PMID: 32682045 DOI: 10.1016/j.ijbiomac.2020.07.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
An acidic tea polysaccharide (TPSA) isolated from green tea was fractionated using a precipitation-fractionation method into seven fractions with different molecular weights. TPSA was characterized as a hyperbranched polysaccharide with a globular homogeneous conformation by analysis of solution parameters of each fraction using static light scattering and viscosity analyses. Observation by transmission electron microscopy confirmed that TPSA occurred as globular homogeneous particles with size in the range of 20-40 nm. To simulate the branched chain segments of TPSA, four model molecules were designed based on chemical structure of TPSA. Molecular docking analysis indicated that the branched chain segments of TPSA similar to the TPSA-4 model molecule showed preferential binding to α-amylase to form the TPSA/α-amylase complex through hydrogen bonding interactions. Circular dichroism spectroscopy showed that the structure of α-amylase was not significantly affected by TPSA. The mechanism of α-amylase inhibitory activity of TPSA was simulated by molecular docking analysis. The branched chain segments of TPSA similar to the TPSA-4 model molecule likely act as a potential competitor to the starch substrate to inhibit the activity of α-amylase.
Collapse
|
13
|
Physicochemical characterization of a polysaccharide from Agrocybe aegirita and its anti-ageing activity. Carbohydr Polym 2020; 236:116056. [DOI: 10.1016/j.carbpol.2020.116056] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
|
14
|
Yin L, Fu S, Wu R, Wei S, Yi J, Zhang LM, Yang L. A neutral polysaccharide from green tea: Structure, effect on α-amylase activity and hydrolysis property. Arch Biochem Biophys 2020; 687:108369. [PMID: 32335047 DOI: 10.1016/j.abb.2020.108369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
A neutral tea polysaccharide (TPSN) was isolated from green tea. Gas chromatography analysis showed that TPSN was composed of d-glucose, l-arabinose and d-galactose residues at a molar ratio of 90.0: 9.1: 0.9. The weight-averaged molecular weight of TPSN was determined as about 2.0 × 105 g mol-1 using static light scattering analysis. The result of nuclear magnetic resonance (NMR) spectroscopy indicated that TPSN and water-soluble starch had similar structures. TPSN exhibited inhibitory activity towards α-amylase through the noncompetitive inhibition mechanism, but the tertiary structure of α-amylase related to enzymatic activity, analyzed using circular dichroism spectroscopy, was not affected by TPSN. Meanwhile, TPSN exhibited hydrolysis properties catalyzed by α-amylase. Molecular docking analysis revealed that the various behaviors of TPSN to α-amylase could be attributed to that the different chain segments of TPSN combined with different amino acid residues of α-amylase.
Collapse
Affiliation(s)
- Lin Yin
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shanshan Fu
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Roujun Wu
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuyue Wei
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Juzhen Yi
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Sun T, Zhang H, Li Y, Liu Y, Dai W, Fang J, Cao C, Die Y, Liu Q, Wang C, Zhao L, Gong G, Wang Z, Huang L. Physicochemical properties and immunological activities of polysaccharides from both crude and wine-processed Polygonatum sibiricum. Int J Biol Macromol 2020; 143:255-264. [DOI: 10.1016/j.ijbiomac.2019.11.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
|
16
|
Fan S, Li J, Bai B. Purification, structural elucidation and in vivo immunity-enhancing activity of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 2019; 83:2334-2344. [DOI: 10.1080/09168451.2019.1650635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT
Quinoa crude polysaccharides (QPS) were extracted from Chenopodium quinoa Willd. The soluble non-starch polysaccharide fraction (QPS1) was subsequently purified by DEAE-52 cellulose and Sephadex G-50 gel chromatography, using QPS as raw materials. Its chemical structure was identified using FT-IR, NMR, AFM, SEM and Congo red staining. High performance gel permeation chromatography (HPGPC) was used to determine molecular weight, and composition by HPLC. QPS1, with a molecular weight of 34.0 kDa, was mainly composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose at a molar ratio of 2.63:2.40:1.64:6.28:1.95:2.48:5.01. In addition, we evaluated the ameliorative effects of QPS1 on the improvement of anti-cyclophosphamide (CTX)-induced immunosuppression in ICR mice. The result exhibited significantly immune-enhancing activity: QPS1 successfully improved the content of IFN-γ, IL-6, IFN-ɑ, IgM and lysozyme (LYSO) in serum for three weeks, enhanced the phagocytic function of mononuclear macrophages and ameliorated delayed allergy in mice.
Collapse
Affiliation(s)
- Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan, P. R. China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, P. R. China
| | - Jiani Li
- College of Life Science, Shanxi University, Taiyuan, P. R. China
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan, P. R. China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, P. R. China
| |
Collapse
|
17
|
Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis. Carbohydr Polym 2019; 205:63-71. [DOI: 10.1016/j.carbpol.2018.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022]
|
18
|
Zhu Y, Yang L, Zhang C, Tian Y, Zhang F, Li X. Structural and functional analyses of three purified polysaccharides isolated from Chinese Huaishan-yams. Int J Biol Macromol 2018; 120:693-701. [DOI: 10.1016/j.ijbiomac.2018.08.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 01/16/2023]
|
19
|
Gao Y, Zhou Y, Zhang Q, Zhang K, Peng P, Chen L, Xiao B. Hydrothermal extraction, structural characterization, and inhibition HeLa cells proliferation of functional polysaccharides from Chinese tea Zhongcha 108. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
21
|
Scoparo CT, Souza LM, Dartora N, Sassaki GL, Santana-Filho AP, Werner MFP, Borato DG, Baggio CH, Iacomini M. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect. Int J Biol Macromol 2016; 86:772-81. [PMID: 26861826 DOI: 10.1016/j.ijbiomac.2016.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/18/2023]
Abstract
In order to obtain polysaccharides from green and black teas (Camellia sinensis), commercial leaves were submitted to infusion and then to alkaline extraction. The extracts were fractionated by freeze-thawing process, giving insoluble and soluble fractions. Complex arabinogalactan protein from the soluble fractions of both teas (GTPS and BTPS) were determined by methylation analysis and (1)H/(13)C-HSQC spectroscopy, showing a main chain of (1→3)-β-Galp, substituted at O-6 by (1→6)-linked β-Galp with side chains of α-Araf and terminal units of α-Araf, α-Fucp and α-Rhap. A highly branched heteroxylan from the insoluble fractions (GTPI and BTPI) showed in methylation analysis and (1)H/(13)C-HSQC spectroscopy the main chain of (1→4)-β-Xylp, substituted in O-3 by α-Araf, β-Galp and α-Glcp units. Evaluating their gastroprotective activity, the fractions containing the soluble heteropolysaccharides from green (GTPS) and black teas (BTPS) reduced the gastric lesions induced by ethanol. Furthermore, the fraction of insoluble heteropolysaccharides of green (GTPI) and black (BTPI) teas also protected the gastric mucosa. In addition, the maintenance of gastric mucus and reduced glutathione (GSH) levels was involved in the polysaccharides gastroprotection.
Collapse
Affiliation(s)
- Camila T Scoparo
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lauro M Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdade Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nessana Dartora
- Department of Biology, Sector of Biological Sciences, State University of Centro-Oeste, Guarapuava, PR, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Arquimedes P Santana-Filho
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria Fernanda P Werner
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Débora G Borato
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Cristiane H Baggio
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
22
|
Isolation, preliminary structural characterization and hypolipidemic effect of polysaccharide fractions from Fortunella margarita (Lour.) Swingle. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.05.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Ma X, Meng M, Han L, Cheng D, Cao X, Wang C. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4–mitogen-activated protein kinases–nuclear factor κB pathways. Food Funct 2016; 7:2763-72. [DOI: 10.1039/c6fo00279j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We isolated a neutral polysaccharide from the fruiting body of a mushroom Grifola frondosa (GFP-A).
Collapse
Affiliation(s)
- Xiaolei Ma
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Meng Meng
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Lirong Han
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Dai Cheng
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Xiaohong Cao
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Chunling Wang
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| |
Collapse
|
24
|
Zeng H, Miao S, Zheng B, Lin S, Jian Y, Chen S, Zhang Y. Molecular Structural Characteristics of Polysaccharide Fractions fromCanarium album(Lour.) Raeusch and Their Antioxidant Activities. J Food Sci 2015; 80:H2585-96. [DOI: 10.1111/1750-3841.13076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Hongliang Zeng
- College of Food Science; Fujian Agriculture and Forestry Univ; Fuzhou Fujian 350002 P. R. China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark; Fermoy, Co. Cork Ireland
| | - Baodong Zheng
- College of Food Science; Fujian Agriculture and Forestry Univ; Fuzhou Fujian 350002 P. R. China
| | - Shan Lin
- College of Food Science; Fujian Agriculture and Forestry Univ; Fuzhou Fujian 350002 P. R. China
| | - Yeye Jian
- College of Food Science; Fujian Agriculture and Forestry Univ; Fuzhou Fujian 350002 P. R. China
| | - Shen Chen
- College of Food Science; Fujian Agriculture and Forestry Univ; Fuzhou Fujian 350002 P. R. China
| | - Yi Zhang
- College of Food Science; Fujian Agriculture and Forestry Univ; Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
25
|
Xiao JB, Jiang H. A review on the structure-function relationship aspect of polysaccharides from tea materials. Crit Rev Food Sci Nutr 2015; 55:930-938. [PMID: 24915319 DOI: 10.1080/10408398.2012.678423] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tea (Camellia sinensis) has a long history of medicinal use in the world. The chemical components of tea mainly consist of polyphenols (TPP), proteins, polysaccharides (TPS), chlorophyll, alkaloids, and so on. Great advances have been made in chemical and bioactive studies of catechins and TPP from tea in recent decades. However, the TPS from tea materials have received much less consideration than that of TPP. The number of relevant publications on the TPS from tea leaves and flowers has increased rapidly in recent years. This mini-review summarizes the structure-function relationship of TPS from tea leaves and flowers. The application of purified TPS from tea material as functional or nutritional foods was still little. It will help to develop the function foods with tea TPS and better understand the structure-bioactivity relationship of tea TPS.
Collapse
Affiliation(s)
- Jian Bo Xiao
- a Department of Biology , College of Life & Environment Science, Shanghai Normal University , Shanghai , 200234 , PR China
| | | |
Collapse
|
26
|
Zhang X, Liu L, Lin C. Isolation, structural characterization and antioxidant activity of a neutral polysaccharide from Sisal waste. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Jalali Ghassam B, Ghaffari H, Prakash HS, Kini KR. Antioxidant and hepatoprotective effects of Solanum xanthocarpum leaf extracts against CCl4-induced liver injury in rats. PHARMACEUTICAL BIOLOGY 2014; 52:1060-1068. [PMID: 24646306 DOI: 10.3109/13880209.2013.877490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Solanum xanthocarpum Schard. and Wendl. (Solanaceae) has been used in traditional Indian medicines for its antioxidant, anti-inflammatory, and antiasthmatic properties. OBJECTIVE The present study demonstrates the antioxidant and hepatoprotective effects of S. xanthocarpum. On the basis of in vitro antioxidant properties, the active fraction from column chromatography of the methanol extract of S. xanthocarpum leaves (SXAF) was chosen as the potent fraction and used for hepatoprotective studies in rats. MATERIALS AND METHODS The antioxidant activity was evaluated by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and reducing power assays. Rats were pre-treated with 100 and 200 mg/kg b.w. of SXAF for 14 d with a single dose of CCl4 in the last day. Hepatoprotective properties were determined by serum biochemical enzymes, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), antioxidant enzymes (SOD, CAT, GSH, and GST), and histopathology studies. RESULTS SXAF exhibited significant antioxidant activity in scavenging free radicals with IC50 values of 11.72 µg (DPPH) and 17.99 µg (ABTS). Rats pre-treated with SXAF demonstrated significantly reduced levels of serum LDH (1.7-fold), ALP (1.6-fold), and AST (1.8-fold). Similarly, multiple dose SXAF administration at 200 mg/kg b.w. demonstrated significantly enhanced levels of SOD (1.78 ± 0.13), CAT (34.63 ± 1.98), GST (231.64 ± 14.28), and GSH (8.23 ± 0.48) in liver homogenates. Histopathological examination showed lowered liver damage in SXAF-treated groups. DISCUSSION AND CONCLUSION These results demonstrate that SXAF possesses potent antioxidant properties as well as hepatoprotective effects against CCl4-induced hepatotoxicity.
Collapse
Affiliation(s)
- Behrouz Jalali Ghassam
- Department of Studies in Biotechnology, University of Mysore , Manasagangotri, Mysore, Karnataka , India
| | | | | | | |
Collapse
|
28
|
Wang H, Wei G, Liu F, Banerjee G, Joshi M, Bligh SWA, Shi S, Lian H, Fan H, Gu X, Wang S. Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea. Int J Mol Sci 2014; 15:9963-78. [PMID: 24901527 PMCID: PMC4100133 DOI: 10.3390/ijms15069963] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023] Open
Abstract
Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked α-D-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells.
Collapse
Affiliation(s)
- Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Guodong Wei
- Unilever R&D Shanghai, 66 Lin Xin Road, Linkong Economic Development Zone, Shanghai 200335, China.
| | - Fei Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Gautam Banerjee
- Unilever R&D Bangalore, 66 Main Road, Whitefield, Bangalore 560066, India.
| | - Manoj Joshi
- Unilever R&D Bangalore, 66 Main Road, Whitefield, Bangalore 560066, India.
| | - S W Annie Bligh
- Department of Complementary Medicine, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK.
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Hui Lian
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Hongwei Fan
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Xuelan Gu
- Unilever R&D Shanghai, 66 Lin Xin Road, Linkong Economic Development Zone, Shanghai 200335, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
29
|
Niu Y, Shang P, Chen L, Zhang H, Gong L, Zhang X, Yu W, Xu Y, Wang Q, Yu LL. Characterization of a novel alkali-soluble heteropolysaccharide from tetraploid Gynostemma pentaphyllum Makino and its potential anti-inflammatory and antioxidant properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3783-3790. [PMID: 24712394 DOI: 10.1021/jf500438s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel polysaccharide (GPP-S), with a molecular mass of 1.2 × 10(6) Da, was isolated from the tetraploid Gynostemma pentaphyllum Makino by alkali extraction followed by purifications using DEAE and Sephacryl S-400 column chromatographies. The monosaccharide composition of GPP-S was determined as rhamnose, arabinose, glucose, and galactose with a molar ratio of 1.00:3.72:19.49:7.82. The structural analysis suggested that the backbone of GPP-S is (1→4)-linked-glucose and (1→6)-linked-galactose with a (1→4,6)-linked-glucose branch every six monosaccharide residues. The terminals were 1-)-α-arabinose, glucuronic acid, and other monosaccharides. GPP-S exhibited scavenging capacities against hydroxyl, peroxyl, and DPPH(•) radicals in vitro. GPP-S also had inhibitory activities on IL-1β, IL-6, and COX-2 gene expressions in RAW 264.7 mouse macrophage cells. These results suggested that GPP-S could be developed as a bioactive ingredient for functional foods and dietary supplements.
Collapse
Affiliation(s)
- Yuge Niu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scoparo CT, de Souza LM, Rattmann YD, Dartora N, Paiva SM, Sassaki GL, Gorin PA, Iacomini M. Polysaccharides from green and black teas and their protective effect against murine sepsis. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Lu X, Zhao Y, Sun Y, Yang S, Yang X. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects. Food Chem 2013; 141:3415-23. [PMID: 23993501 DOI: 10.1016/j.foodchem.2013.06.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
This study was to examine the hepatoprotective effects of polysaccharides from green tea of Huangshan Maofeng (HMTP) against CCl4-induced oxidative damage in mice. HMTP is an acidic heteropolysaccharide with galactose (35.0%, mol.%), arabinose (28.9%) and galacturonic acid (11.3%) being the main monosaccharide components. HMTP (400 and 800 mg/kg·bw) administered orally daily for 14 days before CCl4 administration significantly reduced the impact of CCl4 toxicity on the serum markers of liver damage, alanine aminotransferase, aspartate aminotransferase, total-cholesterol and triglycerides. This method of HMTP administration also markedly restrained hepatic lipid peroxidation formation of malondialdehyde and 15-F2t isoprostanes, and elevated the antioxidant levels of hepatic glutathione and superoxide dismutase. These results together with liver histopathology indicated that HMTP exhibited hepatoprotection against CCl4-induced injury, which was found to be comparable to that of biphenyldicarboxylate. The hepatoprotective effects of HMTP may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.
Collapse
Affiliation(s)
- Xinshan Lu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | |
Collapse
|
33
|
Niu Y, Yan W, Lv J, Yao W, Yu LL. Characterization of a novel polysaccharide from tetraploid Gynostemma pentaphyllum makino. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4882-9. [PMID: 23627413 DOI: 10.1021/jf400236x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel heteropolysaccharide (GPP-TL) was isolated from tetraploid Gynostemma pentaphyllum (Makino) leaf by hot water extraction and anion-exchange and gel permeation chromatography approaches. GPP-TL had a molecular weight of 9.3 × 10(3) Da and was primarily composed of glucose, galactose, and arabinose, with a molar ratio of 43:5:1, respectively. The chemical structure of GPP-TL was characterized using chemical and instrumental analyses. The results indicated the presence of (1→4)-α-d-glucopyranosyl, (1→4)-β-d-galactopyranosyl, (1→4,6)-linked-α-d-glucopyranosyl, and terminal 1→)-α-d-glucopyranosyl moieties in a molar ratio of 5.7:1:1.5:1, respectively. The results indicated that GPP-TL had glucose and galactose residues in the main chain with (1→6)-linked branches at glucose residues. In addition, GPP-TL exhibited scavenging capacities against hydroxyl, peroxyl, and DPPH radicals in vitro and had a stronger bile acid-binding ability than psyllium on a same-weight basis.
Collapse
Affiliation(s)
- Yuge Niu
- Institute of Food and Nutraceutical Science, Key Laboratory of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
34
|
Pan D, Wang L, Chen C, Teng B, Wang C, Xu Z, Hu B, Zhou P. Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chem 2012; 135:1097-103. [DOI: 10.1016/j.foodchem.2012.05.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/02/2012] [Accepted: 05/16/2012] [Indexed: 11/29/2022]
|
35
|
Xiao J, Huo J, Jiang H, Wei X, Wang Y. WITHDRAWN: Characterization and antioxidant activities of an acidic polysaccharide from Camellia sinensis. Int J Biol Macromol 2011:S0141-8130(11)00471-5. [PMID: 22210484 DOI: 10.1016/j.ijbiomac.2011.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/25/2011] [Accepted: 12/13/2011] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jianbo Xiao
- College of Life & Environment Science, Shanghai Normal University, 100 Guilin Rd,Shanghai 200234,PR China; Department of Nutrition, Faculty of Health and Welfare, Okayama Prefectural University, Soja,Okayama,Japan
| | | | | | | | | |
Collapse
|
36
|
Luo Q, Zhang J, Yan L, Tang Y, Ding X, Yang Z, Sun Q. Composition and antioxidant activity of water-soluble polysaccharides from Tuber indicum. J Med Food 2011; 14:1609-16. [PMID: 21877953 PMCID: PMC3229187 DOI: 10.1089/jmf.2011.1659] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 07/04/2011] [Indexed: 11/13/2022] Open
Abstract
Crude water-soluble Chinese truffle Tuber indicum polysaccharide (TIP) was extracted from the fruiting bodies with water and then successively purified by DEAE-cellulose 52 and Sephadex G-100 column chromatography, yielding two major polysaccharide fractions: TIP1-1 and TIP2-1. High-performance gel permeation chromatography analysis showed that the average molecular sizes of TIP1-1 and TIP2-1 were approximately 1.75×10(4) Da and 5.73×10(3) Da, respectively. Monosaccharide component analysis by gas chromatography indicated that TIP1-1 was composed of mannose, glucose, galactose, and rhamannose in the respective molar ratio of 3.93:1.24:0.75:1.26 and that TIP2-1 contained mannose, glucose, and arabinose in the respective molar ratio of 5.27:1.44:0.43. The antioxidant activity analyses revealed that TIP1-1 and TIP2-1 possessed considerable antioxidant activity. Compared with TIP1-1, which has a higher molecular weight and contains no uronic acid, TIP2-1 exhibited a protective effect on PC12 cells injured by H(2)O(2) and a higher scavenging activity against free radicals. The relative effects of the lower molecular size, the presence of uronic acid, and the antioxidant activity of TIP2-1 appear to be significant. Accordingly, the Chinese truffle T. indicum might serve as an effective antioxidative healthcare food and source of natural antioxidants.
Collapse
Affiliation(s)
- Qiang Luo
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Yi WS, Qin LH, Cao JB. Investigation of morphological change of green tea polysaccharides by SEM and AFM. SCANNING 2011; 33:450-454. [PMID: 21796644 DOI: 10.1002/sca.20263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
The objective of this study is to investigate the morphological structure and its change of green tea polysaccharides (GTPS) before and after enzyme reaction by scanning electron microscope (SEM) and atomic force microscope (AFM). Before enzyme reaction, with the novel sample preparation method SEM images of GTPS have obtained many branches and network structures. After enzyme reaction, the morphological structure of GTPS changed, and surface roughness increased. The microstructure of GTPS from SEM with the novel sample preparation method was in accordance with the results from AFM with the tapping mode. The results indicate that the novel sample preparation of GTPS for SEM is a simple, feasible, and reliable method for observing the surface morphology.
Collapse
Affiliation(s)
- Wei Song Yi
- School of Science, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | |
Collapse
|
38
|
Xiao J, Huo J, Jiang H, Yamamoto K. WITHDRAWN: Composition and characterization of an acidic polysaccharide from out-of-date tea leaves. Int J Biol Macromol 2011:S0141-8130(11)00385-0. [PMID: 22019982 DOI: 10.1016/j.ijbiomac.2011.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jianbo Xiao
- College of Life & Environment Science, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, PR China
| | | | | | | |
Collapse
|
39
|
Wei X, Xi X, Wu M, Wang Y. A novel method for quantitative determination of tea polysaccharide by resonance light scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:928-933. [PMID: 21571584 DOI: 10.1016/j.saa.2011.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/17/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
A new method for the determination of tea polysaccharide (TPS) in green tea (Camellia sinensis) leaves has been developed. The method was based on the enhancement of resonance light scattering (RLS) of TPS in the presence of cetylpyridinium chloride (CPC)-NaOH system. Under the optimum conditions, the RLS intensity of CPC was greatly enhanced by adding TPS. The maximum peak of the enhanced RLS spectra was located at 484.02 nm. The enhanced RLS intensity was proportional to the concentration of TPS in the range of 2.0-20 μg/ml. It showed that the new method and phenol-sulfuric acid method give some equivalent results by measuring the standard compounds. The recoveries of the two methods were 96.39-103.7% (novel method) and 100.15-103.65% (phenol-sulfuric acid method), respectively. However, it showed that the two methods were different to some extent. The new method offered a limit of detection (LOD) of 0.047 μg/ml, whereas the phenol-sulfuric acid method gives a LOD of 1.54 μg/ml. Interfered experiment demonstrated that the new method had highly selectivity, and was more suitable for the determination of TPS than phenol-sulfuric method. Stability test showed that new method had good stability. Moreover, the proposed method owns the advantages of easy operation, rapidity and practicability, which suggested that the proposed method could be satisfactorily applied to the determination of TPS in green tea.
Collapse
Affiliation(s)
- Xinlin Wei
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, PR China
| | | | | | | |
Collapse
|
40
|
Yang HY, Song XL, Yuan TQ, Xu F, Sun RC. Fractional Characterization of Hemicellulosic Polymers Isolated from Caragana korshinskii Kom. Ind Eng Chem Res 2011. [DOI: 10.1021/ie1016738] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Run-Cang Sun
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
41
|
Nie SP, Xie MY. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.04.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Yang L, Fu S, Zhu X, Zhang LM, Yang Y, Yang X, Liu H. Hyperbranched acidic polysaccharide from green tea. Biomacromolecules 2010; 11:3395-405. [PMID: 21028801 DOI: 10.1021/bm100902d] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic tea polysaccharide (ALTPS), isolated from green tea ( Camellia sinensis ), was characterized as a hyperbranched glycoprotein containing the acidic heteropolysaccharide chains and the protein residues from the results of UV-vis, FTIR, one- and two-dimensional NMR, GC, GC-MS, and amino acid analyses. Solution properties of ALTPS were investigated by static and dynamic light scattering analyses and viscometry. The results indicated that the viscosity behavior of ALTPS exhibited a typical polyelectrolyte effect in distilled water, which may be avoided by adding salts. The low intrinsic viscosity of ALTPS in the solutions (8-15 mL/g) is attributed to its hyperbranched structure. By application of the polymer solution theory, it was revealed that ALTPS was present in a sphere-like conformation in the solutions as a result of the hyperbranched structure. The TEM image further confirmed that ALTPS existed in a spherical conformation in aqueous NaCl solution. Glucose was absorbed by ALTPS, which may be one of blood glucose lowering mechanisms of tea polysaccharides.
Collapse
Affiliation(s)
- Liqun Yang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, DSAPM Lab and PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Yu L, Zhang J, Xiao J, Wei X. Study on the purification and characterization of a polysaccharide conjugate from tea flowers. Int J Biol Macromol 2010; 47:266-270. [PMID: 20430052 DOI: 10.1016/j.ijbiomac.2010.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 02/08/2023]
Abstract
In this paper, the crude polysaccharides from the flowers of tea plant (Camellia sinensis) (TFPS) extracted with hot water were fractionated on a DEAE Sepharose FF chromatography to get TFPS1 with a yield of 18%. The properties and chemical compositions of TFPS1 were analyzed with GC, HPGPC, IC, IR methods and its morphology was observed with atomic force microscopy (AFM). The results showed that TFPS1 was a neutral glycoprotein conjugate with a molecular weight 500kDa. The alanine, threonine, glycine, valine, serine, histidine, glutamic acid, histidine and tyrosine were found in TFPS1 and the total content was 2.03%. TFPS1 was consisted of rhamnose, arabinose, mannose, glucose and galactose, with a mole ratio of 1.0:2.9:0.5:1.3:3.3. Sugar backbone of TFPS1 may consist of glucose and galactose, but branched chain may consist of arabinose, galactose and rhamnose. The IR spectrum of TFPS1 revealed the typical characteristics of polysaccharides and protein. TFPS1 was spherical particle structure with a diameter of 50-70nm.
Collapse
Affiliation(s)
- Yuanfeng Wang
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, PR China
| | | | | | | | | |
Collapse
|
44
|
Xi X, Wei X, Wang Y, Chu Q, Xiao J. Determination of tea polysaccharides in Camellia sinensis by a modified phenol-sulfuric acid method. ARCH BIOL SCI 2010; 62:669-676. [DOI: 10.2298/abs1003669x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A direct procedure for the determination of total polysaccharides (TPS) in Camellia sinensis was set up based on the modified phenol-sulfuric acid method. The monosaccharide composition of TPS was analyzed by GC. Based on the results of GC, model monosaccharide mixtures were made which provided an adequate standard for this procedure. Through single-factor and orthogonal (L934) experiments, the experimental conditions such as the volume of phenol, the volume of concentrated sulfuric acid, the reaction time, and the incubation temperature, were optimized. The highest sensitivity of absorbance was obtained when the volume of concentrated sulfuric acid, the volume of phenol (6%), and the incubation temperature were 2.5 ml, 0.2 ml, and 50?C, respectively. Under optimum conditions, the prepared samples were determined satisfactorily, with the recovery from 100.2% to 103.7%, and a relative standard deviation (RSD) of 2.1%. Overall, the modified method is easily operated, rapid, sensitive and accurate. A similar procedure can be applied to the determination of other plant polysaccharides as well. .
Collapse
Affiliation(s)
- Xionggang Xi
- Shanghai Normal University, College of Life & Environment Science, Institute of Food Engineering, Shanghai, PR China
| | - Xinlin Wei
- Shanghai Normal University, College of Life & Environment Science, Institute of Food Engineering, Shanghai, PR China
| | - Yuanfeng Wang
- Shanghai Normal University, College of Life & Environment Science, Institute of Food Engineering, Shanghai, PR China
| | - Qinjie Chu
- Shanghai Normal University, College of Life & Environment Science, Institute of Food Engineering, Shanghai, PR China
| | - Jianbo Xiao
- Shanghai Normal University, College of Life & Environment Science, Institute of Food Engineering, Shanghai, PR China
| |
Collapse
|