1
|
Kitchens SR, Wang C, Price SB. Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review. Microorganisms 2024; 12:2249. [PMID: 39597638 PMCID: PMC11596670 DOI: 10.3390/microorganisms12112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by Illumina, have been instrumental in generating draft genomes that facilitate serotyping and the detection of antimicrobial resistance. Long-read sequencing technologies, including those from Pacific Biosciences and Oxford Nanopore Technologies, offer the potential for more complete genome assemblies and better insights into genetic diversity. In addition to these sequencing approaches, machine learning techniques like decision trees and random forests provide powerful tools for pattern recognition and predictive modeling. Importantly, the study of bacteriophages, which interact with Salmonella, offers additional layers of understanding. Phages can impact Salmonella population dynamics and evolution, and their integration into Salmonella genomics research holds promise for novel insights into pathogen control and epidemiology. This review revisits the history of Salmonella and its pathogenesis and highlights the integration of these modern methodologies in advancing our understanding of Salmonella.
Collapse
Affiliation(s)
| | | | - Stuart B. Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA; (S.R.K.); (C.W.)
| |
Collapse
|
2
|
Sutar AA, Dashpute RS, Shinde YD, Mukherjee S, Chowdhury C. A Systemic Review on Fitness and Survival of Salmonella in Dynamic Environment and Conceivable Ways of Its Mitigation. Indian J Microbiol 2024; 64:267-286. [PMID: 39011015 PMCID: PMC11246371 DOI: 10.1007/s12088-023-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 07/17/2024] Open
Abstract
Gastroenteritis caused by non-typhoidal Salmonella still prevails resulting in several recent outbreaks affecting many people worldwide. The presence of invasive non-typhoidal Salmonella is exemplified by several characteristic symptoms and their severity relies on prominent risk factors. The persistence of this pathogen can be attributed to its broad host range, complex pathogenicity and virulence and adeptness in survival under challenging conditions inside the host. Moreover, a peculiar aid of the ever-changing climatic conditions grants this organism with remarkable potential to survive within the environment. Abusive use of antibiotics for the treatment of gastroenteritis has led to the emergence of multiple drug resistance, making the infections difficult to treat. This review emphasizes the importance of early detection of Salmonella, along with strategies for accomplishing it, as well as exploring alternative treatment approaches. The exceptional characteristics exhibited by Salmonella, like strategies of infection, persistence, and survival parallelly with multiple drug resistance, make this pathogen a prominent concern to human health.
Collapse
Affiliation(s)
- Ajit A Sutar
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rohit S Dashpute
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Yashodhara D Shinde
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Srestha Mukherjee
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Carneiro DG, Pereira Aguilar A, Mantovani HC, Mendes TADO, Vanetti MCD. The quorum sensing molecule C12-HSL promotes biofilm formation and increases adrA expression in Salmonella Enteritidis under anaerobic conditions. BIOFOULING 2024; 40:14-25. [PMID: 38254292 DOI: 10.1080/08927014.2024.2305385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.
Collapse
Affiliation(s)
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Hilário Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Department of Animal and Dairy Sciences, University of WI, Madison, USA
| | | | | |
Collapse
|
4
|
Su Y, Sun T, Gao J, Zhang C, Liu X, Bi C, Wang J, Shan A. Anti-Proteolytic Peptide R7I Protects the Intestinal Barrier and Alleviates Fatty Acid Malabsorption in Salmonella typhimurium-Infected Mice. Int J Mol Sci 2023; 24:16409. [PMID: 38003599 PMCID: PMC10670956 DOI: 10.3390/ijms242216409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With a wide range of hosts, environmental adaptation, and antibiotic resistance, Salmonella typhimurium is one of the most common causes of food poisoning in the world. Infection with Salmonella typhimurium not only results in intestinal inflammation but also damages the intestinal barrier and interferes with the host's ability to absorb nutrients. It is imperative to find alternatives to antibiotics for eradicating bacteria, reducing intestinal damage, and reestablishing nutrient absorption, especially given that antibiotics are currently prohibited. This research aims to understand the protective role of anti-proteolytic peptide R7I on the gut in the setting of Salmonella typhimurium infection and its impact on nutritional absorption, maybe offering an alternative to antibiotics for bacterial killing. The findings demonstrated that R7I reduced the production of inflammatory factors, including IL-6, TNF-α, and L-1β in the jejunum and decreased the expression of genes like TLR4 and NF-κB in the jejunum (p < 0.05). R7I enhanced antioxidant capacity and preserved the antioxidant/pro-oxidant balance in the jejunum (p < 0.05). R7I also normalized intestinal shape and restored tight junction protein expression. Fatty acid binding protein 2 (FABP2) and fatty acid transport protein 4 (FATP4) expression in the jejunum was restored by R7I. In addition, serum-free fatty acids and lipid metabolites were significantly higher in the R7I group than in the control group (p < 0.05). Overall, the anti-enzyme peptide R7I maintained the healthy state of the intestine and alleviated the abnormal fatty acid absorption caused by bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (T.S.); (J.G.); (C.Z.); (X.L.); (C.B.)
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (T.S.); (J.G.); (C.Z.); (X.L.); (C.B.)
| |
Collapse
|
5
|
Macías-Rioseco M, Ochoa J, Asín J, Moeller RB, Uzal FA. Salmonellosis in elephants in managed care: report of 2 cases and literature review. J Vet Diagn Invest 2023; 35:295-299. [PMID: 36896676 PMCID: PMC10185995 DOI: 10.1177/10406387231159371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In animals, salmonellosis is seen typically as enteritis and/or septicemia. Subclinical infection also occurs, and outwardly healthy animals can serve as reservoirs of infection. Reports of salmonellosis in elephants are rare, limited to a few serovars, and the gross and microscopic lesions of enteric salmonellosis in this species have not been described in detail. We present here, in 2 elephants in managed care settings, cases of salmonellosis that resulted from infection by Salmonella enterica serovar Muenchen and S. enterica serovar Montevideo, serovars that have not been described previously as the cause of salmonellosis in elephants, to our knowledge. We also review the literature on salmonellosis in elephants. Animal A, an adult Asian elephant that was euthanized because of gastrointestinal hemorrhage, had multifocal, necrotizing, suppurative enterocolitis, and necrotizing gastritis. Animal B, an adult African elephant with chronic, recurrent colic, followed by death, had necrotizing typhlocolitis. The origin of infection was not determined in either case. The animals came from different facilities and did not have a common feed source. Previously reported cases of salmonellosis in elephants were caused by Salmonella Dublin, Salmonella Typhimurium, or Salmonella Enteritidis. The definitive diagnosis of salmonellosis is made based on compatible gross and microscopic lesions, coupled with the detection of Salmonella spp. in the affected tissues. Effective biosecurity should be adopted to minimize the risk of salmonellosis in elephants in managed care.
Collapse
Affiliation(s)
- Melissa Macías-Rioseco
- Tulare Branch Laboratories, California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Jennine Ochoa
- Tulare Branch Laboratories, California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Javier Asín
- San Bernardino Branch Laboratories, California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Robert B. Moeller
- Tulare Branch Laboratories, California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Francisco A. Uzal
- San Bernardino Branch Laboratories, California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| |
Collapse
|
6
|
Casaux ML, Neto WS, Schild CO, Costa RA, Macías-Rioseco M, Caffarena RD, Silveira CS, Aráoz V, Díaz BD, Giannitti F, Fraga M. Epidemiological and clinicopathological findings in 15 fatal outbreaks of salmonellosis in dairy calves and virulence genes in the causative Salmonella enterica Typhimurium and Dublin strains. Braz J Microbiol 2023; 54:475-490. [PMID: 36602750 PMCID: PMC9943839 DOI: 10.1007/s42770-022-00898-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica is a major food-borne pathogen that affects cattle-rearing systems worldwide. Little information is available on the epidemiology and pathology of salmonellosis and the virulence genes (VGs) carried by Salmonella in spontaneous outbreaks in cattle. We describe epidemiological findings in 15 fatal outbreaks of salmonellosis in Uruguayan dairy farms and the age, clinical signs, and pathology in 20 affected calves. We also describe the serotypes and frequencies of 17 VGs in the causative Salmonella strains and explore their associations with epidemiological, clinical, and pathological findings. Salmonella Typhimurium and Dublin were identified in 11/15 and 4/15 outbreaks, respectively. The most frequent reason for consultation was digestive disease (8 outbreaks caused by S. Typhimurium), followed by sudden death (4 outbreaks, 3 caused by S. Dublin). Morbidity, mortality, and lethality ranged 4.8-100%, 3.8-78.9%, and 10-100%, without significant differences between serotypes. Diarrhea, the most common clinical sign (14 cases), was associated with the Typhimurium serotype (OR = 26.95), especially in ≤ 30-day-old calves with fibrinous enteritis as the main autopsy finding. The Dublin serotype affected ≥ 50-day-old calves and was associated with fibrinosuppurative splenitis (p = 0.01) and tubulointerstitial nephritis (OR = 48.95). The chances of the Dublin serotype increased significantly with age. There was low variability of VG across serotypes. The pefA gene was associated with the Typhimurium serotype (OR = 21.95), macroscopic enteritis (p = 0.03), and microscopic fibrinosuppurative splenitis (p = 0.04). Understanding the epidemiology, pathology, and virulence of S. enterica at the farm level is key to delineating prevention and control strategies to mitigate its impact on animal and human health.
Collapse
Affiliation(s)
- M L Casaux
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - W Santiago Neto
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - C O Schild
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - R A Costa
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - M Macías-Rioseco
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
- California Animal Health and Food Safety (CAHFS) Laboratory, Tulare Branch, University of California at Davis, Tulare, CA, USA
| | - R D Caffarena
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
- Unidad Académica Salud de los Rumiantes, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - C S Silveira
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - V Aráoz
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - B Doncel Díaz
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
- Laboratorio de Patología Veterinaria Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - F Giannitti
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay
| | - M Fraga
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50, Km 11, El Semillero, Uruguay.
| |
Collapse
|
7
|
Ramatla TA, Mphuthi N, Ramaili T, Taioe M, Thekisoe O, Syakalima M. Molecular detection of zoonotic pathogens causing gastroenteritis in humans:
Salmonella
spp.,
Shigella
spp. and
Escherichia coli
isolated from
Rattus
species inhabiting chicken farms in North West Province, South Africa. J S Afr Vet Assoc 2022; 93:63-69. [DOI: 10.36303/jsava.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- TA Ramatla
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - N Mphuthi
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - T Ramaili
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - M Taioe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Epidemiology, Parasites and Vectors, Agriculture Research Council, Onderstepoort Veterinary Research,
South Africa
| | - O Thekisoe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
| | - M Syakalima
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control,
Zambia
| |
Collapse
|
8
|
Ilgaz C, Kadiroglu P. Fourier transform‐infrared assessment of cholesterol effect on antibiotic resistance of
Salmonella Typhimurium. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ceren Ilgaz
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
| | - Pınar Kadiroglu
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
| |
Collapse
|
9
|
Devlin JR, Santus W, Mendez J, Peng W, Yu A, Wang J, Alejandro-Navarreto X, Kiernan K, Singh M, Jiang P, Mechref Y, Behnsen J. Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion. PLoS Pathog 2022; 18:e1010167. [PMID: 35482787 PMCID: PMC9049507 DOI: 10.1371/journal.ppat.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jorge Mendez
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Xiomarie Alejandro-Navarreto
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Manmeet Singh
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Guo D, Bai Y, Fei S, Yang Y, Li J, Yang B, Lü X, Xia X, Shi C. Effects of 405 ± 5-nm LED Illumination on Environmental Stress Tolerance of Salmonella Typhimurium in Sliced Beef. Foods 2022; 11:foods11020136. [PMID: 35053867 PMCID: PMC8774786 DOI: 10.3390/foods11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Salmonella Typhimurium is a widely distributed foodborne pathogen and is tolerant of various environmental conditions. It can cause intestinal fever, gastroenteritis and bacteremia. The aim of this research was to explore the effect of illumination with 405 nm light-emitting diodes (LEDs) on the resistance of S. Typhimurium to environmental stress. Beef slices contaminated with S. Typhimurium were illuminated by 405 nm LEDs (18.9 ± 1.4 mW/cm2) for 8 h at 4 °C; controls were incubated in darkness at 7 °C. Then, the illuminated or non-illuminated (control) cells were exposed to thermal stress (50, 55, 60 or 65 °C); oxidative stress (0.01% H2O2 [v/v]); acid stress (simulated gastric fluid [SGF] at pH 2 or 3); or bile salts (1%, 2%, or 3% [w/v]). S. Typhimurium treated by 405 nm LED irradiation showed decreased resistance to thermal stress, osmotic pressure, oxidation, SGF and bile salts. The transcription of eight environmental tolerance-related genes were downregulated by the illumination. Our findings suggest the potential of applying 405 nm LED-illumination technology in the control of pathogens in food processing, production and storage, and in decreasing infection and disease related to S. Typhimurium.
Collapse
Affiliation(s)
- Du Guo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Yichen Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Shengyi Fei
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: or ; Tel.: +86-29-87092486; Fax: +86-29-87091391
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (D.G.); (Y.B.); (S.F.); (Y.Y.); (J.L.); (B.Y.); (X.L.); (C.S.)
| |
Collapse
|
11
|
Zhao X, Wei S, Tian Q, Peng W, Tao Y, Bo R, Liu M, Li J. Eugenol exposure in vitro inhibits the expressions of T3SS and TIF virulence genes in Salmonella Typhimurium and reduces its pathogenicity to chickens. Microb Pathog 2021; 162:105314. [PMID: 34838999 DOI: 10.1016/j.micpath.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen, which has the ability to infect a wide range of hosts. The increasing emergence of drug-resistant strains urgently requires new alternative therapies. Eugenol has been shown to be very effective against drug-resistant strains of Gram-negative and Gram-positive bacteria. The purpose of this study is to explore the effects of eugenol on the virulence factors and pathogenicity of S. Typhimurium. METHODS The antibacterial activity of eugenol was investigated via the changes of cell morphology, fimbriae related-genes and virulence factors of S. Typhimurium, then the pathogenicity of S. Typhimurium pretreated by eugenol to chickens was evaluated. RESULTS Susceptibility testing showed that eugenol possessed significant antimicrobial activity. Scanning electron microscope analysis showed eugenol treatment deformed the morphology with damaged fimbriae structure of S. Typhimurium. Real time PCR assay confirmed eugenol significantly down-regulated the expressions of virulence factors (hilA, hilD, sipA, sipC, spiC, misL) of Type III secretion system (T3SS) and adherence genes (fimA, fimH, fimD, fimY, fimZ, stm0551) of Type I fimbriae (TIF). Animal experiment proved that the pathogenicity of S. Typhimurium exposed by eugenol was reduced, which was evidenced by the higher survival rate, weight gains and organs indexes, the lower bacterial loads in organs. Meanwhile, the duodenal histopathological changes were mitigated, with a significantly decline in the expressions of TNF-α, IL-6 and IL-18. CONCLUSION In summary, eugenol pretreatment may alleviate the pathogenicity of the S. Typhimurium to chickens via wrecking the fimbriae and inhibiting the mRNA expressions of virulence factors and adhesion molecules. These data dedicated the potential mechanisms of eugenol against S. Typhimurium in vitro.
Collapse
Affiliation(s)
- Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - SiMin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - QiMing Tian
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - WeiLong Peng
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Ya Tao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
12
|
Pelyuntha W, Chaiyasut C, Kantachote D, Sirilun S. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ 2019; 7:e7555. [PMID: 31523511 PMCID: PMC6715067 DOI: 10.7717/peerj.7555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Salmonella Typhi and Salmonella Typhimurium are the causative pathogens of salmonellosis, and they are mostly found in animal source foods (ASF). The inappropriate use of antibiotics enhances the possibility for the emergence of antibiotic resistance in pathogens and antibiotic residue in ASF. One promising alternative to antibiotics in animal farming is the use of lactic acid bacteria (LAB). Methods The present study was carried out the cells and/or the cell-free culture supernatants (CFCS) from beneficial LAB against S. Typhi and S. Typhimurium. The antibacterial mechanisms of LAB-CFCS as biocontrol agents against both Salmonella serovars were investigated through the analysis of anti-salmonella growth activity, biofilm inhibition and quorum quenching activity. Results Among 146 LAB strains isolated from 110 fermented food samples, the 2 strong inhibitory effect strains (WM33 and WM36) from fermented grapes against both Salmonella serovars were selected. Out of the selected strains, WM36 was the most effective inhibitor, which indicated S. Typhi by showing 95.68% biofilm inhibition at 20% biofilm inhibition concentration (BIC) and reduced 99.84% of AI-2 signaling interference. The WM33 was the best to control S. Typhimurium by producing 66.46% biofilm inhibition at only 15% BIC and 99.99% AI-2 signaling a reduction. The 16S rDNA was amplified by a polymerase chain reaction (PCR). The selected isolates were identified as Weissella viridescens WM33 and Weissella confusa WM36 based on nucleotide homology and phylogenetic analysis. Conclusion The metabolic extracts from Weissella spp. inhibit Salmonella serovars with the potential to be used as biocontrol agents to improve microbiological safety in the production of ASF.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Regulatory Effect of SlyA on rcsB Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00673-18. [PMID: 30510144 DOI: 10.1128/jb.00673-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.
Collapse
|
14
|
Cross-talk between the RcsCDB and RstAB systems to control STM1485 gene expression in Salmonella Typhimurium during acid-resistance response. Biochimie 2019; 160:46-54. [PMID: 30763640 DOI: 10.1016/j.biochi.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023]
Abstract
Bacterial survive and respond to adverse changes in the environment by regulating gene transcription through two-component regulatory systems. In Salmonella Typhimurium the STM1485 gene expression is induced under low pH (4.5) during replication inside the epithelial host cell, but it is not involved in sensing or resisting to this condition. Since the RcsCDB system is activated under acidic conditions, we investigated whether this system is able to modulate STM1485 expression. We demonstrated that acid-induced activation of the RcsB represses STM1485 transcription by directly binding to the promoter. Under the same condition, the RstA regulator activates the expression of this gene. Physiologically, we observed that RcsB-dependent repression is required for the survival of bacteria when they are exposed to pancreatic fluids. We hypothesized that STM1485 plays an important role in Salmonella adaptation to pH changes, during transition in the gastrointestinal tract. We suggest that bacteria surviving the gastrointestinal environment invade the epithelial cells, where they can remain in vacuoles. In this new environment, acidity and magnesium starvation activate the expression of the RstA regulator in a PhoPQ-dependent manner, which in turn induces STM1485 expression. These levels of STM1485 allow increased bacterial replication within vacuoles to continue the course of infection.
Collapse
|
15
|
dos Santos AMP, Ferrari RG, Conte-Junior CA. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. Curr Microbiol 2018; 76:762-773. [DOI: 10.1007/s00284-018-1510-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
16
|
Mokracka J, Krzymińska S, Ałtunin D, Wasyl D, Koczura R, Dudek K, Dudek M, Chyleńska ZA, Ekner-Grzyb A. In vitro virulence characteristics of rare serovars of Salmonella enterica isolated from sand lizards (Lacerta agilis L.). Antonie van Leeuwenhoek 2018; 111:1863-1870. [PMID: 29779148 PMCID: PMC6153992 DOI: 10.1007/s10482-018-1079-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/31/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study was to estimate virulence potential of Salmonella enterica strains colonizing the gut of free-living sand lizards (Lacerta agilis L.). The strains belonged to three Salmonella serovars: Abony, Schleissheim, and Telhashomer. Adhesion and invasion abilities of the strains were determined in quantitative assays using the gentamicin protection method. Induction of apoptosis was assessed using HeLa cell monolayers. PCR assays were used for detection of 26 virulence genes localised within mobile elements: pathogenicity islands, virulence plasmids, and prophage sequences. In vitro studies revealed that all strains had adhesion and invasion abilities to human epithelial cells. The isolates were cytotoxic and induced apoptosis of the cells. The serovars differed in the number of virulence-associated genes: up to 18 genes were present in Salmonella Schleissheim, 17 in Salmonella Abony, whereas as few as six genes were found in Salmonella Telhashomer. Generally, Salmonella Abony and Salmonella Schleissheim did not differ much in gene content connected with the presence SPI-1 to -5. All of the strains lacked genes localised within bacteriophages and plasmids. The presence of virulence-associated genes and in vitro pathogenicity assays suggest that Salmonella sp. strains originating from autochthonous, free-living lizards can potentially infect and cause disease in humans.
Collapse
Affiliation(s)
- Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland.
| | - Sylwia Krzymińska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Danił Ałtunin
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Partyzantów 57, 24-100, Puławy, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Krzysztof Dudek
- Department of Zoology, Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625, Poznan, Poland
- HiProMine S.A., ul. Poznańska 8, 62-023, Robakowo, Poland
| | - Monika Dudek
- Laboratory of Neurobiology, Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625, Poznan, Poland
| | - Zofia Anna Chyleńska
- Department of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Anna Ekner-Grzyb
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| |
Collapse
|
17
|
Farka Z, Juřík T, Pastucha M, Skládal P. Enzymatic Precipitation Enhanced Surface Plasmon Resonance Immunosensor for the Detection of Salmonella in Powdered Milk. Anal Chem 2016; 88:11830-11836. [DOI: 10.1021/acs.analchem.6b03511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zdeněk Farka
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Matěj Pastucha
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Kallapura G, Kogut MH, Morgan MJ, Pumford NR, Bielke LR, Wolfenden AD, Faulkner OB, Latorre JD, Menconi A, Hernandez-Velasco X, Kuttappan VA, Hargis BM, Tellez G. Fate of Salmonella Senftenberg in broiler chickens evaluated by challenge experiments. Avian Pathol 2014; 43:305-9. [PMID: 24820534 DOI: 10.1080/03079457.2014.923554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Experimental and epidemiological evidence has indicated the respiratory route to be a potential portal of entry for salmonellas in poultry. The purpose of this study was to evaluate and compare the infectivity of Salmonella enterica serovar Senftenberg following oral gavage, intratracheal or intravenous challenge in chickens. Seven-day-old chicks were challenged with either 10(4) or 10(6) colony-forming units of S. Senftenberg per chick by oral gavage, intratracheal or intravenous challenge, respectively, in two independent trials. Chickens were humanely killed 24 h post challenge and S. Senftenberg was cultured and enumerated from caecal contents, caecal tissue-caecal tonsils and liver and spleen. In both trials, intratracheal delivery of S. Senftenberg was the only route that allowed colonization of the caeca of chickens when compared with oral gavage or intravenous challenge in a dose response fashion (P < 0.05). Liver and spleen samples yielded no S. Seftenberg after the lower dose challenge by the oral or intratracheal route and only low levels following the high-dose administration by these routes, whereas intravenous challenge resulted in recovery of the organisms after both doses. The results of the present study suggest that S. Senftenberg entering the blood is likely to be cleared and will not be able to colonize caeca to the same extent as compared with intratracheal challenge. Clarification of the potential importance of the respiratory tract for transmission of salmonellas under field conditions may be of critical importance to develop intervention strategies to reduce the transmission in poultry.
Collapse
Affiliation(s)
- G Kallapura
- a Department of Poultry Science , University of Arkansas , Fayetteville , AR 72701 , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kallapura G, Morgan MJ, Pumford NR, Bielke LR, Wolfenden AD, Faulkner OB, Latorre JD, Menconi A, Hernandez-Velasco X, Kuttappan VA, Hargis BM, Tellez G. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium. Poult Sci 2014; 93:340-6. [PMID: 24570455 PMCID: PMC4990883 DOI: 10.3382/ps.2013-03602] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Experimental and epidemiological evidence suggests that primary infection of Salmonella is by the oral-fecal route for poultry. However, the airborne transmission of Salmonella and similar enteric zoonotic pathogens has been historically neglected. Increasing evidence of Salmonella bioaerosol generation in production facilities and studies suggesting the vulnerabilities of the avian respiratory architecture together have indicated the possibility of the respiratory system being a potential portal of entry for Salmonella in poultry. Presently, we evaluated this hypothesis through intratracheal (IT) administration of Salmonella Enteritidis and Salmonella Typhimurium, as separate challenges, in a total of 4 independent trials, followed by enumeration of cfu recovery in ceca-cecal tonsils and recovery incidence in liver and spleen. In all trials, both Salmonella Enteritidis and Salmonella Typhimurium, challenged IT colonized cecae to a similar or greater extent than oral administration at identical challenge levels. In most trials, chickens cultured for cfu enumeration from IT-challenged chicks at same dose as orally challenged, resulted in an increase of 1.5 log higher Salmonella Enteritidis from ceca-cecal tonsils and a much lower dose IT of Salmonella Enteritidis could colonize ceca to the same extent than a higher oral challenge. This trend of increased cecal colonization due to IT challenge was observed with all trails involving week-old birds (experiment 2 and 3), which are widely considered to be more difficult to infect via the oral route. Liver-spleen incidence data showed 33% of liver and spleen samples to be positive for Salmonella Enteritidis administered IT (106 cfu/chick), compared with 0% when administered orally (experiment 2, trial 1). Collectively, these data suggest that the respiratory tract may be a largely overlooked portal of entry for Salmonella infections in chickens.
Collapse
Affiliation(s)
- G Kallapura
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yeung M. ADSA Foundation Scholar Award: Trends in culture-independent methods for assessing dairy food quality and safety: Emerging metagenomic tools. J Dairy Sci 2012; 95:6831-42. [DOI: 10.3168/jds.2012-5677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/19/2012] [Indexed: 01/13/2023]
|
21
|
de Souza Sant'Ana A. Introduction to the Special Issue: Salmonella in foods: Evolution, strategies and challenges. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|