1
|
Qian ZM, Wu MQ, Chen J, Huang Q, Fan DY, Li DQ. Rapid discovery of natural antioxidants in Hypericum japonicum: Dual roles of the liquid phase mobile phase as extraction and separation solvent. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124322. [PMID: 39305632 DOI: 10.1016/j.jchromb.2024.124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 11/12/2024]
Abstract
Hypericum japonicum is a traditional folk medicine with various bioactivities such as hepatoprotective, antioxidant, and anti-tumorous. The antioxidant effect of H. japonicum is one of the most prominent effects due to its responsibility for many of its activities. To clarify active natural substance, the antioxidant properties of H. japonicum were preliminarily assessed by ferric reducing-antioxidant power (FRAP), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and Oxygen radical absorbance capacity (ORAC), as well as superoxide dismutase (SOD). Then, a straightforward and effective method named online liquid extraction-high performance liquid chromatography combined with ABTS antioxidant assay and mass spectrometry (OLE-HPLC-ABTS/Q-TOF-MS) was developed to swiftly and directly discover the antioxidants in H. japonicum. Using mobile phase as extraction and separation reagent, coupled with online activity analysis and compounds identification by high-resolution MS, the online system enables rapid screening of natural antioxidant bioactives from complex mixture. By using it, a total of 9 compounds including flavonoids and phenolic acids characterized by retention time, precise mass, and fragmentation ions in MS/MS spectra showed antioxidant action. Finally, the antioxidant and SOD activity of main found active compounds were validated by in vitro experiment assay and molecular docking. In summary, these results suggested that H. japonicum could be considered as a potential source of natural antioxidants, and the online integrated system might become a promising candidate for the natural antioxidants discovery in the future.
Collapse
Affiliation(s)
- Zheng-Ming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou 423000, Hunan Province, PR China; Zhuhai Hengqin HEC Cordyceps Co., Ltd, Zhuhai 519031, Guangdong Province, PR China
| | - Meng-Qi Wu
- Zhuhai Hengqin HEC Cordyceps Co., Ltd, Zhuhai 519031, Guangdong Province, PR China
| | - Jing Chen
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou 423000, Hunan Province, PR China
| | - Qi Huang
- Zhuhai Hengqin HEC Cordyceps Co., Ltd, Zhuhai 519031, Guangdong Province, PR China
| | - Deng-Yun Fan
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, PR China
| | - De-Qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, PR China.
| |
Collapse
|
2
|
Goyal A, Solanki K, Verma A. Luteolin: Nature's promising warrior against Alzheimer's and Parkinson's disease. J Biochem Mol Toxicol 2024; 38:e23619. [PMID: 38091364 DOI: 10.1002/jbt.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Neurodegenerative disorders (NDs) are defined as the slow loss of a group of neurons that are particularly sensitive. Due to the intricate pathophysiological processes underlying neurodegeneration, no cure exists for these conditions despite the extensive research and advances in our knowledge of the onset and course of NDs. Hence, there is a medical need for the creation of a novel therapeutic approach for NDs. By focusing on numerous signaling pathways, some natural substances derived from medicinal herbs and foods have demonstrated potent activity in treating various NDs. In this context, flavonoids have recently attracted increased popularity and research attention because of their alleged beneficial effects on health. By acting as antioxidant substances, nutritional supplements made up of flavonoids have been found to lessen the extent of NDs like Alzheimer's disease (AD) and Parkinson's disease (PD). Luteolin is a flavone that possesses potent antioxidant and anti-inflammatory properties. As a consequence, luteolin has emerged as an option for treatment with therapeutic effects on many brain disorders. More research has focused on luteolin's diverse biological targets as well as diverse signaling pathways, implying its potential medicinal properties in several NDs. This review emphasizes the possible use of luteolin as a drug of choice for the treatment as well as the management of AD and PD. In addition, this review recommends that further research should be carried out on luteolin as a potential treatment for AD and PD alongside a focus on mechanisms and clinical studies.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Zheng Y, Li P, Shen J, Yang K, Wu X, Wang Y, Yuan YH, Xiao P, He C. Comprehensive comparison of different parts of Paeonia ostii, a food-medicine plant, based on untargeted metabolomics, quantitative analysis, and bioactivity analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243724. [PMID: 37711307 PMCID: PMC10497777 DOI: 10.3389/fpls.2023.1243724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Introduction Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Pei Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Kailin Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xinyan Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yu-he Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Xin Z, Yang W, Niu L, Zhang Y. Comprehensive Metabolite Profile Uncovers the Bioactive Components, Antioxidant and Antibacterial Activities in Wild Tree Peony Leaves. Int J Mol Sci 2023; 24:10609. [PMID: 37445786 PMCID: PMC10342129 DOI: 10.3390/ijms241310609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tree peonies (Paeonia Section Moutan)-including nine wild species, which belong to subsections Vaginatae and Delavayanae-are economically important plants with ornamental, nutritional, and medicinal applications. In this study, for the first time, we determined the bioactive components and antioxidant activities and antibacterial activities of the newly grown leaves of nine wild tree peony species (WTPS). A total of 276 bioactive components were identified through non-targeted metabolomics; more than 80% of the 276 metabolites identified are terpenoids and flavonoids. A total of 42 differential metabolites were quantitatively determined. The main differential metabolites were Paeoniflorin, Luteoloside, Hyperin, Apigenin-7-glucoside, Rhoifolin, and Cantharidin. Such a high terpenoid and flavonoid content of the leaf extracts renders them as species with strong antibacterial capacities, and most of the bacteria tested showed greater sensitivity derived from the members of subsection Vaginatae than those of subsection Delavayanae. All WTPS have significant antioxidant activity; this activity is attributed to high levels of the total phenolic content (TPC) and total flavonoid content (TFC), of which, among the nine WTPS, P. lutea has the strongest antioxidant capacity. Our results provided a theoretical basis for the in-deep application of tree peony leaves for food, medical, and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China; (Z.X.); (W.Y.)
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China; (Z.X.); (W.Y.)
| |
Collapse
|
5
|
Zhang MJ, Sun GJ, Li YQ, Zhao XZ, He JX, Hua DL, Chen L, Mo HZ. Changes in quality components and antioxidant activity of peony seed soy sauce during low-salt solid-state fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37038905 DOI: 10.1002/jsfa.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND In this study, the fermentation conditions of peony seed soy sauce (PSSS) koji were optimized by response surface method, and the quality components and antioxidant activity of PSSS were investigated at different low-salt solid-state fermentation stages. RESULTS Results of response surface method showed that the optimal fermentation conditions were 460.6 g kg-1 water content, 48.6 h culture time, 31.5 °C culture temperature and ratio 2.1:1 (w/w) of peony seed meal:wheat bran, with the highest neutral protease activity (2193.78 U g-1 ) of PSSS koji. PSSS had the highest amino acid nitrogen (7.69 g L-1 ), salt-free soluble solids (185.26 g L-1 ), total free amino acids (49.03 g L-1 ), essential free amino acids (19.58 g L-1 ) and umami free amino acids (16.64 g L-1 ) at 20 days of fermentation. The highest total phenolics were 5.414 g gallic acid equivalent L-1 and total flavonoids 0.617 g rutin equivalent L-1 , as well as the highest DPPH radical scavenging activity (86.19%) and reducing power (0.8802, A700 ) of PSSS fermented at 30 days. Sensory evaluation showed that fermentation of 20 days and 25 days could produce a better taste and aroma of PSSS than 15 days and 30 days. CONCLUSION PSSS had the highest quality components in the middle of fermentation (20 days) and the highest antioxidant activity in the late fermentation period (30 days). These results demonstrated that peony seed meal could be used to produce high-quality soy sauce with high antioxidant activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Jun Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiang-Zhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jin-Xing He
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dong-Liang Hua
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Chen
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
6
|
Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia-Antioxidant and Anti-Tyrosinase Properties. Int J Mol Sci 2023; 24:ijms24054935. [PMID: 36902364 PMCID: PMC10003135 DOI: 10.3390/ijms24054935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4'-O-β-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3'-O-β-d-glucoside, luteolin 3',4'-di-O-β-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies' roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard.
Collapse
|
7
|
Zhang X, Liu X, Zhou M, Hu Y, Yuan J. PacBio full-length sequencing integrated with RNA-seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii. FRONTIERS IN PLANT SCIENCE 2022; 13:1030584. [PMID: 36407600 PMCID: PMC9669713 DOI: 10.3389/fpls.2022.1030584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Paeonia ostii, a widely cultivated tree peony species in China, is a resourceful plant with medicinal, ornamental and oil value. However, fleshy roots lead to a low tolerance to waterlogging in P. ostii. In this study, P. ostii roots were sequenced using a hybrid approach combining single-molecule real-time and next-generation sequencing platforms to understand the molecular mechanism underlying the response to this sequentially waterlogging stress, the normal growth, waterlogging treatment (WT), and waterlogging recovery treatment (WRT). Our results indicated that the strategy of P. ostii, in response to WT, was a hypoxic resting syndrome, wherein the glycolysis and fermentation processes were accelerated to maintain energy levels and the tricarboxylic acid cycle was inhibited. P. ostii enhanced waterlogging tolerance by reducing the uptake of nitrate and water from the soil. Moreover, transcription factors, such as AP2/EREBP, WRKY, MYB, and NAC, played essential roles in response to WT and WRT. They were all induced in response to the WT condition, while the decreasing expression levels were observed under the WRT condition. Our results contribute to understanding the defense mechanisms against waterlogging stress in P. ostii.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiang Liu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Minghui Zhou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Junhui Yuan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
8
|
Characterization of constituents by UPLC-MS and the influence of extraction methods of the seeds of Vernonia anthelmintica willd.: extraction, characterization, antioxidant and enzyme modulatory activities. Heliyon 2022; 8:e10332. [PMID: 36060997 PMCID: PMC9433684 DOI: 10.1016/j.heliyon.2022.e10332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Vernonia anthelmintica Willd (VA) is a popular medicinal plant used in local and traditional medicine to manage various disorders. In order to explore the phytochemical profile, antioxidant and enzyme modulatory activities of extracts prepared from the seeds of VA, different extraction methodologies, including modern (accelerated-ASE, ultrasound-UAE, and tissue smashing-TSE extractions) and traditional (maceration and Soxhlet) extractions, were employed and their effects on the activities of the extracts were investigated. The chemical compounds of the extracts were qualitatively analyzed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-Orbitrap-MS) technique. Among them, 11 compounds were undoubtedly identified by comparison with reference substance, while 13 compounds were tentatively identified by comparison with literature data, including 8 phenolic acids, 14 flavonoids and 2 esters were identified in the extracts. Additionally, the quantitative analysis found that ASE showed the highest extraction efficiency. The antioxidant activity was determined in vitro via six standard assays. Two key enzymes related to the diseases of vitiligo (tyrosinase) and type II diabetes (α-glucosidase) were adopted to assess the activity of VA extracts against them. All extracts showed potent antioxidant ability with a predominance for that obtained by ASE, which corroborated with the high phenolic (22.62 ± 0.23 mg gallic acid equivalent (GAE)/g extract) and flavonoid contents (68.85 ± 0.25 mg rutin equivalent (RE)/g extract). The extracts obtained by ASE, UAE and SE could increase the tyrosinase activity and all the extracts displayed remarkable inhibitory activity against α-glucosidase. This study demonstrated that the VA extracts obtained by novel extraction techniques such as ASE, could be considered as a positive candidate to be utilized by the food and medical industries, not only for obtaining bioactive compounds to be used as natural antioxidants, but possibly also for its health benefits for therapeutic bio-product development.
Collapse
|
9
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
10
|
Lu J, Huang Z, Liu Y, Wang H, Qiu M, Qu Y, Yuan W. The Optimization of Extraction Process, Antioxidant, Whitening and Antibacterial Effects of Fengdan Peony Flavonoids. Molecules 2022; 27:molecules27020506. [PMID: 35056821 PMCID: PMC8780704 DOI: 10.3390/molecules27020506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Flavonoids have important biological activities, such as anti-inflammatory, antibacterial, antioxidant and whitening, which is a potential functional food raw material. However, the biological activity of Fengdan peony flavonoid is not particularly clear. Therefore, in this study, the peony flavonoid was extracted from Fengdan peony seed meal, and the antioxidant, antibacterial and whitening activities of the peony flavonoid were explored. The optimal extraction conditions were methanol concentration of 90%, solid-to-liquid ratio of 1:35 g:mL, temperature of 55 °C and time of 80 min; under these conditions, the yield of Fengdan peony flavonoid could reach 1.205 ± 0.019% (the ratio of the dry mass of rutin to the dry mass of peony seed meal). The clearance of Fengdan peony total flavonoids to 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, hydroxyl radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical could reach 75%, 70% and 97%, respectively. Fengdan peony flavonoid could inhibit the growth of the Gram-positive bacteria. The minimal inhibitory concentrations (MICs) of Fengdan peony flavonoid on S. aureus, B. anthracis, B. subtilis and C. perfringens were 0.0293 mg/mL, 0.1172 mg/mL, 0.2344 mg/mL and 7.500 mg/mL, respectively. The inhibition rate of Fengdan peony flavonoid on tyrosinase was 8.53-81.08%. This study intensely illustrated that the antioxidant, whitening and antibacterial activity of Fengdan peony total flavonoids were significant. Fengdan peony total flavonoids have a great possibility of being used as functional food materials.
Collapse
|
11
|
Liu JZ, Zhang CC, Fu YJ, Cui Q. Comparative analysis of phytochemical profile, antioxidant and anti-inflammatory activity from Hibiscus manihot L. flower. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Zhang K, Cao W, Baskin JM, Baskin CC, Sun J, Yao L, Tao J. Seed development in Paeonia ostii (Paeoniaceae), with particular reference to embryogeny. BMC PLANT BIOLOGY 2021; 21:603. [PMID: 34922450 PMCID: PMC8684281 DOI: 10.1186/s12870-021-03373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Seeds of Paeonia ostii have been proposed as a source of raw material for the production of edible oil; however, lack of information about the developmental biology of the seeds hampers our ability to use them. Our aim was to investigate development of the seed coat, endosperm and embryo of P. ostii in relation to timing of accumulation of nutrient reserves from pollination to seed maturity. Ovules and developing seeds of P. ostii were collected at various stages of development from zygote to maturity. Seed fresh mass, dry mass, germination, moisture, soluble sugars, starch, protein and oil content were determined. Ontogeny of seeds including embryo, endosperm and seed coat were analyzed histologically. RESULTS The ovule of P. ostii is anatropous, crassinucellate and bitegmic. The zygote begins to divide at about 5 days after pollination (DAP), and the division is not accompanied by cell wall formation. By 25 DAP, the proembryo begins to cellularize. Thereafter, several embryo primordia appear at the surface of the cellularized proembryo, but only one matures. Endosperm development follows the typical nuclear type. The seed coat is derived from the outer integument. During seed development, soluble sugars, starch and crude fat content increased and then decreased, with maximum contents at 60, 80 and 100 DAP, respectively. Protein content was relatively low compared with soluble sugars and crude fat, but it increased throughout seed development. CONCLUSIONS During seed development in P. ostii, the seed coat acts as a temporary storage tissue. Embryo development of P. ostii can be divided into two stages: a coenocytic proembryo from zygote (n + n) that degenerates and a somatic embryo from peripheral cells of the proembryo (2n → 2n). This pattern of embryogeny differs from that of all other angiosperms, but it is similar to that of gymnosperms.
Collapse
Affiliation(s)
- Keliang Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Weizhang Cao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Linjun Yao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Department of Plant Engineering, Jiangsu Union Technical Institute, Huai-An, 223200, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Bai ZZ, Tang JM, Ni J, Zheng TT, Zhou Y, Sun DY, Li GN, Liu P, Niu LX, Zhang YL. Comprehensive metabolite profile of multi-bioactive extract from tree peony (Paeonia ostii and Paeonia rockii) fruits based on MS/MS molecular networking. Food Res Int 2021; 148:110609. [PMID: 34507753 DOI: 10.1016/j.foodres.2021.110609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Tree peony seed, traditionally used for edible oil production, is rich in α-linolenic acid. However, little attention is given to the fruit by-products during seed oil production. The present work aimed to comprehensively investigate the phytochemical constituents and multiple biological activities of different parts of tree peony fruits harvested from Paeonia ostii and Paeonia rockii. 130 metabolites were rapidly identified through UPLC-Triple-TOF-MS on the basis of MS/MS molecular networking. Metabolite quantification was performed through the targeted approach of HPLC-ESI-QQQ-MS. Eight chemical markers were screened via principal component analysis (PCA) for distinguishing species and tissues. Interestingly, two dominant compounds, paeoniflorin and trans-resveratrol, are specially localized in seed kernel and seed coat, respectively. Unexpectedly, the extracts of fruit pod and seed coat showed significantly stronger antioxidant, antibacterial, and anti-neuroinflammatory activities than seed kernel from both P. ostii and P. rockii. Our work demonstrated that tree peony fruit is promising natural source of bioactive components and provided its potential utilization in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhang-Zhen Bai
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Jun-Man Tang
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Jing Ni
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Tian-Tian Zheng
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Yang Zhou
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Dao-Yang Sun
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | | | - Pu Liu
- Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Li-Xin Niu
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Yan-Long Zhang
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Yu Z, Dong W, Teixeira da Silva JA, He C, Si C, Duan J. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. PROTOPLASMA 2021; 258:803-815. [PMID: 33404922 DOI: 10.1007/s00709-020-01599-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Flavonols are important active ingredients that are found in abundance in Dendrobium officinale. Research on flavonol biosynthesis currently focuses on the more ubiquitous kaempferol and quercetin, but little is known on the biosynthesis of myricetin. Notably, flavonol synthase (FLS), which is responsible for the biosynthesis of flavonols, has not yet been identified. In this study, we isolated a flavonol synthase, DoFLS1, from Dendrobium officinale. DoFLS1 harbors conserved 2-oxoglutarate-dependent dioxygenase-specific and FLS-specific motifs. DoFLS1 is a cytoplasmic protein. DoFLS1 was universally expressed in roots, stems, and leaves of juvenile and adult D. officinale plants. DoFLS1 expression was strongly correlated in juvenile and adult D. officinale plants (R2 = 0.86 and 0.98, respectively; p < 0.01) with the average of corresponding flavonol levels. Transgenic Arabidopsis thaliana expressing DoFLS1 exhibited a 1.24-fold increase in flavonol content and a 25.78% decrease in anthocyanin content compare to wild-type plants, possibly resulting from a 78.61% increase in myricetin level. Moreover, the loss of anthocyanin was attributed to decreased expression of dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) genes in transgenic A. thaliana that expressed DoFLS1. DoFLS1 also complemented the deficiency in flavonol of the A. thaliana fls1-3 mutant, which had reduced anthocyanin but increased flavonol content relative to the fls1-3 mutant. In addition, DoFLS1 was significantly upregulated after treatment with cold, drought or salicylic acid. These findings provide genetic evidence for the involvement of DoFLS1 in the biosynthesis of flavonol and in response to abiotic stresses.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wei Dong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Science and Technology, Xi' An Jiao Tong University, Xi' An, 710049, China
| | | | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
15
|
Salem MZM, Mohamed AA, Ali HM, Al Farraj DA. Characterization of Phytoconstituents from Alcoholic Extracts of Four Woody Species and Their Potential Uses for Management of Six Fusarium oxysporum Isolates Identified from Some Plant Hosts. PLANTS 2021; 10:plants10071325. [PMID: 34209682 PMCID: PMC8309064 DOI: 10.3390/plants10071325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022]
Abstract
Background: Trees are good sources of bioactive compounds as antifungal and antioxidant activities. Methods: Management of six molecularly identified Fusarium oxysporum isolates (F. oxy 1, F. oxy 2, F. oxy 3, F. oxy 4, F. oxy 5 and F. oxy 6, under the accession numbers MW854648, MW854649, MW854650, MW854651, and MW854652, respectively) was assayed using four extracts from Conium maculatum leaves, Acacia saligna bark, Schinus terebinthifolius wood and Ficus eriobotryoides leaves. All the extracts were analyzed using HPLC-VWD for phenolic and flavonoid compounds and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene-linoleic acid (BCB) bleaching assays. Results: In mg/kg extract, the highest amounts of polyphenolic compounds p-hydroxy benzoic, benzoic, gallic, and rosmarinic acids, with 444.37, 342.16, 311.32 and 117.87, respectively, were observed in C. maculatum leaf extract; gallic and benzoic acids with 2551.02, 1580.32, respectively, in A. saligna bark extract; quinol, naringenin, rutin, catechol, and benzoic acid with 2530.22, 1224.904, 798.29, 732.28, and 697.73, respectively, in S. terebinthifolius wood extract; and rutin, o-coumaric acid, p-hydroxy benzoic acid, resveratrol, and rosmarinic acid with 9168.03, 2016.93, 1009.20, 1156.99, and 574.907, respectively, in F. eriobotryoides leaf extract. At the extract concentration of 1250 mg/L, the antifungal activity against the growth of F. oxysporum strains showed that A. saligna bark followed by C. maculatum leaf extracts had the highest inhibition percentage of fungal growth (IPFG%) against F. oxy 1 with 80% and 79.5%, F. oxy 2 with 86.44% and 78.9%, F. oxy 3 with 86.4% and 84.2%, F. oxy 4 with 84.2, and 82.1%, F. oxy 5 with 88.4% and 86.9%, and F. oxy 6 with 88.9, and 87.1%, respectively. For the antioxidant activity, ethanolic extract from C. maculatum leaves showed the lowest concentration that inhibited 50% of DPPH free radical (3.4 μg/mL). Additionally, the same extract observed the lowest concentration (4.5 μg/mL) that inhibited BCB bleaching. Conclusions: Extracts from A. saligna bark and C. maculatum leaves are considered potential candidates against the growth of F. oxysporum isolates—a wilt pathogen—and C. maculatum leaf as a potent antioxidant agent.
Collapse
Affiliation(s)
- Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Abeer A. Mohamed
- Plant Pathology Institute, Agriculture Research Center (ARC), Alexandria 21616, Egypt;
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Dunia A. Al Farraj
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Yan Z, Xie L, Li M, Yuan M, Tian Y, Sun D, Zhang Y, Niu L. Phytochemical components and bioactivities of novel medicinal food - Peony roots. Food Res Int 2021; 140:109902. [PMID: 33648204 DOI: 10.1016/j.foodres.2020.109902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/15/2022]
Abstract
Peony as an important medicinal material is widely cultivated in China, which is one of the natural distribution centers of wild peony species. So far, however, there has not been a systematic study of the roots from China's wild peonies. In this study, the total phenolic (TPC), total flavonoid (TFC), other secondary metabolites, and microelement content, as well as the antioxidant, antibacterial, anticholinesterase, and antitumor activities of peony roots from 15 species and 2 subspecies were measured. Thirteen secondary metabolites were detected, with Paeoniflorin and Paeonol being the highest content bio-activities compounds. Additionally, the peony roots had a significant antioxidant activities and bacteriostatic effect against Gram-positive bacteria, with MIC varying from 0.063 to 1 mg/mL. P. anomala subsp. veitchii and P. lactiflora showed outstanding anticholinesterase capacities and cytotoxic activities. Taken together, the data presented here provide new insights into both the medicinal and edible potential of roots from wild peony species.
Collapse
Affiliation(s)
- Zhenguo Yan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengchen Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China
| | - Meng Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China
| | - Yao Tian
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China.
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China; Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Plants, through the photosynthesis process, produce the substances necessary for all the life cycles of nature, which are called "primary metabolites." Moreover, there are some plants that synthesize, in addition to these, other substances with more specific functions, which are known as "secondary metabolites." It is inside this group that flavonoids are located, whose main function is to protect organisms from damage caused by different oxidizing agents. Luteolin (3,4,5,7-tetrahydroxy-flavone) belongs to the sub-class of flavonoids known as flavones and is one of 10,000 flavonoids currently known, being one of the most bio-active flavonoids. Its various beneficial properties for health, together with the increasing reduction in the use of synthetic antioxidants, make the study of luteolin a very active field. Within this, the quantification of this molecule has become a subject of very special interest given that it is transversal to all fields. In this review article, we aim to give the reader a broad and deep vision of this topic, focusing on the events reported in the last 5 years and covering all possible techniques related to analytical determinations. We will discuss in terms of advantages and disadvantages between techniques, selectivity, sensitivity, costs, time consumption, and reagents as well as in the complexity of operations.
Collapse
Affiliation(s)
- Alvaro Y Tesio
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, Argentina
| | - Sebastian N Robledo
- Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
18
|
UPLC-ESI-MS/MS Analysis and Evaluation of Antioxidant Activity of Total Flavonoid Extract from Paeonia lactiflora Seed Peel and Optimization by Response Surface Methodology (RSM). BIOMED RESEARCH INTERNATIONAL 2021; 2021:7304107. [PMID: 33681378 PMCID: PMC7906810 DOI: 10.1155/2021/7304107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023]
Abstract
In this study, the ultrasound-assisted extraction (UAE) of flavonoid from Paeonia lactiflora seed peel was optimized by response surface methodology (RSM). Single-factor experiments and a three-factor three-level Box-Behnken design (BBD) were performed to explore the effects of the following parameters on flavonoid extraction: ethanol concentration (X1), liquid-solid ratio (X2), and ultrasonic time (X3). The results showed that the optimal flavonoid yield (10.9045 mg RE/g) was as follows: ethanol concentration 62.93%, ultrasonic time 64.56 min, and liquid-solid ratio 24.86 mL/g. The optimized extract of P. lactiflora seed shell was further analyzed by UPLC-ESI-MS/MS, and 20 main flavonoids were identified and quantified, among which protocatechuic acid, vanillic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzaldehyde had the highest content. Furthermore, the results of the antioxidant test showed that the P. lactiflora seed peel extract obtained under optimized UAE conditions exhibited good antioxidant activity. The experimental results showed that ultrasound-assisted extraction was a fast, efficient, and simple method for extracting active ingredients from P. lactiflora seed peel, thereby making this byproduct a promising source of compounds in food and healthcare sectors.
Collapse
|
19
|
Liu Q, Han R, Qu L, Ren B. Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43906-43916. [PMID: 32740849 DOI: 10.1007/s11356-020-10296-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Novel adsorbent, phosphoric acid-modified Paeonia ostii seed coats (PA-PSC) were successfully prepared by low-temperature pyrolysis to effectively remove Cu(II) from aqueous solution. The results revealed that equilibrium adsorption capacity (qe) of PA-PSC for Cu(II) was notably enhanced up to 4-folds compared with the raw PSC. FT-IR and XPS analyses suggested that the adsorption of Cu(II) by PA-PSC was primarily ascribed to electrostatic forces and complexing effects. Besides, equilibrium and kinetic studies demonstrated that Freundlich and pseudo-second-order models were the actually fairly good approximations of Cu(II) adsorption. Thermodynamic analysis revealed that the adsorption of Cu(II) onto PA-PSC was a chemical, endothermic, and spontaneous process. Lastly, reusability study further confirmed the applicability of PA-PSC as a promising adsorbent for removing Cu(II) from aqueous solution.
Collapse
Affiliation(s)
- Qiong Liu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, People's Republic of China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Runping Han
- School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lingbo Qu
- School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Baozeng Ren
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
20
|
Abstract
Polyphenols constitute a diverse array of naturally occurring secondary metabolites found in plants which, when consumed, have been shown to promote human health. Greater consumption may therefore aid in the fight against diseases such as obesity, diabetes, heart disease, cancer, etc. Tree bark is polyphenol-rich and has potential to be used in food supplements. However, it is important to gain insight into the polyphenol profile of different barks to select the material with greatest concentration and diversity. Ultra-performance liquid chromatography (UPLC) was coupled with an ion mobility time-of-flight high-definition/high-resolution mass spectrometer (UPLC-HDMSE) to profile ethanol extracts of three common tree barks (Pinus contorta, Pinus sylvestris, Quercus robur) alongside a commercial reference (Pycnogenol® extracted from Pinus pinaster). Through the use of Progenesis QI informatics software, 35 high scoring components with reported significance to health were tentatively identified across the three bark extracts following broadly the profile of Pycnogenol®. Scots Pine had generally higher compound abundances than in the other two extracts. Oak bark extract showed the lowest abundances but exhibited higher amounts of naringenin and 3-O-methylrosmarinic acid. We conclude that forestry bark waste provides a rich source of extractable polyphenols suitable for use in food supplements and so can valorise this forestry waste stream.
Collapse
|
21
|
Bai ZZ, Ni J, Tang JM, Sun DY, Yan ZG, Zhang J, Niu LX, Zhang YL. Bioactive components, antioxidant and antimicrobial activities of Paeonia rockii fruit during development. Food Chem 2020; 343:128444. [PMID: 33131958 DOI: 10.1016/j.foodchem.2020.128444] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022]
Abstract
In last ten years, much attention focused on tree peony fruit (TPF) for edible oil production despite other potential utilization. The present study identified and quantified 29 bioactive components by liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (LC-ESI-QqQ-MS) targeted approach during the development of TPF. Trans-resveratrol, benzoic acid, luteolin, and methyl gallate were selected as predominant chemical markers between seeds and pods through principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). Extremely high levels of paeoniflorin (1893 mg/100 g) and trans-resveratrol (1793 mg/100 g) were observed at stage 2 (S2) and S6 in seeds, respectively. Antioxidant activities determined by ABTS+•, DPPH•, and FRAP assays showed significant correlations with total phenolic content (TPC) and total flavonoid content (TFC). The strongest antibacterial effects of pod and seed against Staphylococcus aureus and Proteus vulgaris occurred at initial stages and maturation stages. TPF could be a potential source of bioactive compounds with functional properties.
Collapse
Affiliation(s)
- Zhang-Zhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Jing Ni
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Jun-Man Tang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Dao-Yang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Zhen-Guo Yan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China.
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China.
| |
Collapse
|
22
|
Liu W, Yin DX, Zhang T, Hou XG, Qiao Q, Song P. Major Fatty Acid Compositions and Antioxidant Activity of Cultivated Paeonia ostii under Different Nitrogen Fertilizer Application. Chem Biodivers 2020; 17:e2000617. [PMID: 33078532 DOI: 10.1002/cbdv.202000617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Paeonia ostii is now being extensively planted for oil extraction in China, which is recognized as a single oil-use tree peony cultivar and commonly called 'Fengdan'. This study investigated the effects of nitrogen fertilizer on oil yield, fatty acid compositions and antioxidant activity of P. ostii. Oil yield (33.46 %), oleic acid (25.12 %), linoleic acid (29.21 %) and α-linolenic acid (43.12 %) reached the maximum at N450 treatment, with significant differences compared with other treatments (P<0.05). Furthermore, strong antioxidant activity with low DPPHIC50 value (19.43±1.91 μg mL-1 ) and large ABTS value (1216.53±30.21 μmol Trolox g-1 ) and FRAP value (473.57±9.11 μmol Trolox g-1 ) was also observed at N450. Palmitic acid (5.57 %) and stearic acid (2.02 %) reached a maximum at N375, but not significant with N450 (P<0.05). Nitrogen fertilizer could promote oil yield, fatty acid accumulation and antioxidant activity, and N450 (450 kg ha-1 ) is recommended as the optimum application for P. ostii.
Collapse
Affiliation(s)
- Wei Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Dong-Xue Yin
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Tong Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Xiao-Gai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Qi Qiao
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Peng Song
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| |
Collapse
|
23
|
Wang S, Xue J, Zhang S, Zheng S, Xue Y, Xu D, Zhang X. Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:1-12. [PMID: 33092723 DOI: 10.1016/j.plaphy.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The colorful petals of tree peony (Paeonia suffruticosa Andrews) are widely used as a source of additives in food, fragrances, and cosmetics. However, the nutritional composition of peony petals is undetermined, thereby limiting utility and product development. In this work, fresh petals of 15 traditional Chinese tree peony cultivars were selected to analyze the composition of soluble sugars, starch, and soluble protein. Extracted fatty acids (FAs) and flavonoids from petals were characterized by GC-MS and UPLC-triple-TOF-MS, respectively. The oxidative stress resistance (generated by paraquat) effects of petal extracts of three cultivars were also investigated in the model organism Caenorhabditis elegans. Our results showed that the petals were highly enriched in soluble sugars. 11 FAs were found in tree peony petals, and their compositions were similar to that of tree peony seeds. A total of 56 flavonoids were detected in tree peony petals, 28 of which were reported for the first time in tree peony petals, indicating that UPLC-triple-TOF-MS can improve the identification efficiency of flavonoids. Further analysis of tree peony petal metabolites indicated that anthocyanidin and flavonol composition might be used as specific chemotaxonomic biomarkers for cultivar classification. Flavonoids, linoleic acid, and α-linolenic acid (ALA) in petals might provide antioxidant activity. 150 mg/L of petal extracts of all three tested cultivars increased the lifespan of C. elegans. It was suggested that the petal extracts possessed anti-aging effects and oxidative stress resistance. These results highlight that tree peony petals can serve as natural antioxidant food resources in the future.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuangfeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shuning Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Donghui Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Liu W, Zhang T, Yin DX, Song P, Hou XG, Qi Q, Qi ZH. Major Fatty Acid Profiles and Bioactivity of Seed Oils from Ten Tree Peony Cultivars as a Potential Raw Material Source for the Cosmetics and Healthy Products. Chem Biodivers 2020; 17:e2000469. [PMID: 32705797 DOI: 10.1002/cbdv.202000469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
As a new woody oleaginous crop, tree peony is now being widely developed and utilized, which attributed to the outstanding oil-use features regarding the fatty acid profiles and bioactivity. The major fatty acid profiles and bioactivity of seed oils in ten tree peony varieties collected from a common garden were investigated in the present study. The results showed that the oil yields, fatty acid profiles, bioactivity of seed oils existed significant variations among ten tree peony varieties (P<0.05). Considered the application value, 'Fengdan' (FD) and 'Ziban' (ZB) was the optimal resources as the high oil yields, rich unsaturated fatty acids especially high α-linolenic acid of 40.46 %, great antioxidant activity with low IC50 values, high ABTS and FRAP values, and strong antimicrobial activity with high DIZ and low MIC/MBC values. The study also confirmed seed oil of tree peony as the potential raw materials sources in functional food, pharmaceuticals and cosmetics for human health.
Collapse
Affiliation(s)
- Wei Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Tong Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Dong-Xue Yin
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Peng Song
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Xiao-Gai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Qiao Qi
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Zhong-Hua Qi
- Institute of Agricultural Sciences of Suixian County, Henan Province, Suixian County, 476900, P. R. China
| |
Collapse
|
25
|
Yan Z, Li M, Xie L, Luo X, Yang W, Yuan Y, Zhang Y, Niu L. A systematic comparison of 17 cultivated herbaceous peony seed based on phytochemicals and antioxidant activity. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03544-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil. Foods 2020; 9:foods9060770. [PMID: 32545196 PMCID: PMC7353516 DOI: 10.3390/foods9060770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Tree peonies (Paeonia ostii and Paeonia rockii) are popular ornamental plants. Moreover, these plants have become oil crops in recent years. However, there are limited compositional studies focused on fatty acids. Therefore, this work aims to reveal compositional characteristics, regarding fatty acids, sterols, γ-tocopherol and phenolic compounds, of tree peony seed oils from all major cultivation areas in China, and to compare with herbaceous peony seed oil. For that, an integrative analysis was performed by GC-FID, GC-MS and UHPLC-Q-TOF-MS technologies. The main fatty acid was α-linolenic acid (39.0–48.3%), while β-sitosterol (1802.5–2793.7 mg/kg) and fucosterol (682.2–1225.1 mg/kg) were the dominant phytosterols. Importantly, 34 phenolic compounds, including paeonol and “Paeonia glycosides” (36.62–103.17 μg/g), were characterized in vegetable oils for the first time. Conclusively, this work gives new insights into the phytochemical composition of peony seed oil and reveals the presence of bioactive compounds, including “Paeonia glycosides”.
Collapse
|
27
|
Yan Z, Xie L, Tian Y, Li M, Ni J, Zhang Y, Niu L. Insights into the Phytochemical Composition and Bioactivities of Seeds from Wild Peony Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E729. [PMID: 32526984 PMCID: PMC7356631 DOI: 10.3390/plants9060729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
Peony is an important medicinal and ornamental plant widely cultivated in the world. Its seeds as a functional food source have attracted much more attention in recent years, and they are rich in monoterpene glycosides and phenolic compounds. To assess the application value of wild peony seeds, the main chemical composition and content, such as total phenolic content (TPC), total flavonoid content (TFC), total flavanol content (TAC), and α and γ tocopherol content, of the seeds from 12 species and 2 subspecies were systematically explored in the present study. Four different antioxidant assays (DPPH, ABTS, FRAP, and HRSA), antibacterial, and antifungal assays were also performed using various in vitro biochemical methods. The results showed that the seeds of P. delavayi, P. obovata. subsp. obovata, and P. rockii. subsp. rockii had a high content of TPC, TFC, and TAC, respectively. Twenty-five individual chemical compounds were qualitatively and quantitatively measured by HPLC-MS, with paeoniflorin being the most abundant compound in all samples. P. mairei was grouped individually into a group via hierarchical cluster analysis according to its relatively highest monoterpene glycosides and TPC content. This work has provided a basis for the development and utilization of seeds for the selection of wild peony species of dietary interest.
Collapse
Affiliation(s)
- Zhenguo Yan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| | - Lihang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| | - Yao Tian
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| | - Mengchen Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| | - Jing Ni
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.Y.); (L.X.); (Y.T.); (M.L.); (J.N.)
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, Shaanxi, China
| |
Collapse
|
28
|
New insights into Paeoniaceae used as medicinal plants in China. Sci Rep 2019; 9:18469. [PMID: 31804561 PMCID: PMC6895042 DOI: 10.1038/s41598-019-54863-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Paeoniaceae is an abundant germplasm resource with significant medicinal values in China, the principal medicinal components of which include paeoniflorin and paeonol. These compounds are typically obtained from air-dried root samples, which the use of freeze-drying as an alternative method has not been tested. Additionally, the presence of these two compounds in various wild Paeoniaceae species has not been previously explored, nor have the differences between various plant organs been fully evaluated. Here, freeze-drying and air-drying methods were compared to assess the changes in paeoniflorin and paeonol in root samples using ultra-performance liquid chromatography-mass spectrometer. The contents of these compounds in the roots, leaves, stems, and petals were then tested in freeze-dried materials. We also quantitatively detected the paeoniflorin and paeonol contents in the roots of 14 species collected from 20 natural habitats. Results indicated that the paeoniflorin content decreased under air-drying in comparison to freeze-drying, while the opposite trend was observed for paeonol. Our findings also demonstrated that the root xylem of species in Section Moutan, particularly Paeonia ostii, contains considerable paeonol and paeoniflorin and should thus be fully utilized as a medicinal resource. Furthermore, paeonol was mainly detected in the roots, while paeoniflorin was widely distributed in different organs; the highest content was in the leaf at the budding stage, suggesting that the leaves should be developed as a new paeoniflorin resource. Paeoniflorin contents were also found to be higher at earlier development stages. Based on the standards of the Chinese Pharmacopoeia, five species of Section Moutan and six species of Section Paeonia could be used as potential traditional Chinese medicinal resources. These findings of this study enhance our understanding of these two medicinal compounds and provide a foundation for the further development and utilization of Paeoniaceae as medicinal plant resources.
Collapse
|
29
|
Analysis of taste, cordycepin, phenolic compounds, and water distribution of radio frequency heated
Cordyceps militaris
combined with electronic tongue and NMR. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Xiang J, Yang C, Beta T, Liu S, Yang R. Phenolic Profile and Antioxidant Activity of the Edible Tree Peony Flower and Underlying Mechanisms of Preventive Effect on H 2O 2-Induced Oxidative Damage in Caco-2 Cells. Foods 2019; 8:E471. [PMID: 31658783 PMCID: PMC6835411 DOI: 10.3390/foods8100471] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
The entire phenolic profiles and antioxidant activities of different organs of the edible tree peony flowers (Fengdan Bai (FDB)) were analyzed. HPLC-quadrupole time-of-flight mass spectrometer (Q-TOF-MS/MS) analyses of individual phenolic compounds revealed that the petal and stamen contained higher levels of flavonoid glycosides than other organs (p < 0.05). Kaempferol-3,7-di-O-glucoside was the dominant flavonoid in these two organs, however, the calyx and ovary contained higher contents of gallic acid derivatives than other organs (p < 0.05). Hexa-O-galloyl-glucose was the dominant species in the calyx and ovary. At the same concentration of total phenolic extract (TPE), the stamen had the highest protection effect on Caco-2 cell oxidative damage induced by H2O2. The antioxidant effect was attributed to potent antioxidant capability; restored redox state due to the increased expression of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD); and improved barrier function of Caco-2 cell owing to increased zonula occludens-1 (ZO-1), CLDN3 (Claudin 3), and occludin mRNA expression. As a new resource food, the edible tree peony flower is a potential functional food material and natural antioxidants resource.
Collapse
Affiliation(s)
- Jinle Xiang
- College of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China.
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Runqiang Yang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Liu Q, Qu L, Ren B. Effective removal of copper ions from aqueous solution by iminodiacetic acid-functionalized Paeonia ostii seed coats. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1614457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qiong Liu
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , P. R. China
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P. R. China
| | - Lingbo Qu
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , P. R. China
| | - Baozeng Ren
- School of Chemical Engineering and Energy, Zhengzhou University , Zhengzhou , P. R. China
| |
Collapse
|
32
|
Liu H, Su B, Zhang H, Gong J, Zhang B, Liu Y, Du L. Identification and Functional Analysis of a Flavonol Synthase Gene from Grape Hyacinth. Molecules 2019; 24:E1579. [PMID: 31013599 PMCID: PMC6514955 DOI: 10.3390/molecules24081579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022] Open
Abstract
Flavonols are important copigments that affect flower petal coloration. Flavonol synthase (FLS) catalyzes the conversion of dihydroflavonols to flavonols. In this study, we identified a FLS gene, MaFLS, expressed in petals of the ornamental monocot Muscari aucheri (grape hyacinth) and analyzed its spatial and temporal expression patterns. qRT-PCR analysis showed that MaFLS was predominantly expressed in the early stages of flower development. We next analyzed the in planta functions of MaFLS. Heterologous expression of MaFLS in Nicotiana tabacum (tobacco) resulted in a reduction in pigmentation in the petals, substantially inhibiting the expression of endogenous tobacco genes involved in anthocyanin biosynthesis (i.e., NtDFR, NtANS, and NtAN2) and upregulating the expression of NtFLS. The total anthocyanin content in the petals of the transformed tobacco plants was dramatically reduced, whereas the total flavonol content was increased. Our study suggests that MaFLS plays a key role in flavonol biosynthesis and flower coloration in grape hyacinth. Moreover, MaFLS may represent a new potential gene for molecular breeding of flower color modification and provide a basis for analyzing the effects of copigmentation on flower coloration in grape hyacinth.
Collapse
Affiliation(s)
- Hongli Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Beibei Su
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Han Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Jiaxin Gong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Boxiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yali Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
33
|
Jin F, Xu J, Liu XR, Regenstein JM, Wang FJ. Roasted tree peony (Paeonia ostii) seed oil: Benzoic acid levels and physicochemical characteristics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1588902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Feng Jin
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, P. R. China
| | - Jie Xu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, P. R. China
| | - Xin-Ran Liu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, P. R. China
| | | | - Feng-Jun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
34
|
Wang X, Liang H, Guo D, Guo L, Duan X, Jia Q, Hou X. Integrated analysis of transcriptomic and proteomic data from tree peony ( P. ostii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. HORTICULTURE RESEARCH 2019; 6:111. [PMID: 31645965 PMCID: PMC6804530 DOI: 10.1038/s41438-019-0194-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/10/2019] [Accepted: 08/15/2019] [Indexed: 05/04/2023]
Abstract
Tree peony (Paeonia section Moutan DC.) seeds are an excellent source of beneficial natural compounds that promote health, and they contain high levels of alpha-linolenic acid (ALA). In recent years, tree peony has been emerging as an oil crop. Therefore, combined analysis of the transcriptome and proteome of tree peony (P. ostii) seeds at 25, 32, 39, 53, 67, 81, 88, 95, and 109 days after pollination (DAP) was conducted to better understand the transcriptional and translational regulation of seed development and oil biosynthesis. A total of 38,482 unigenes and 2841 proteins were identified. A total of 26,912 differentially expressed genes (DEGs) and 592 differentially expressed proteins (DEPs) were clustered into three groups corresponding to the rapid growth, seed inclusion enrichment and conversion, and late dehydration and mature stages of seed development. Fifteen lipid metabolism pathways were identified at both the transcriptome and proteome levels. Pathway enrichment analysis revealed that a period of rapid fatty acid biosynthesis occurred at 53-88 DAP. Furthermore, 211 genes and 35 proteins associated with the fatty acid metabolism pathway, 63 genes and 11 proteins associated with the biosynthesis of unsaturated fatty acids (UFAs), and 115 genes and 24 proteins associated with ALA metabolism were identified. Phylogenetic analysis revealed that 16 putative fatty acid desaturase (FAD)-encoding genes clustered into four FAD groups, eight of which exhibited the highest expression at 53 DAP, suggesting that they play an important role in ALA accumulation. RT-qPCR analysis indicated that the temporal expression patterns of oil biosynthesis genes were largely similar to the RNA-seq results. The expression patterns of fatty acid metabolism- and seed development-related proteins determined by MRM were also highly consistent with the results obtained in the proteomic analysis. Correlation analysis indicated significant differences in the number and abundance of DEGs and DEPs but a high level of consistency in expression patterns and metabolic pathways. The results of the present study represent the first combined transcriptomic and proteomic analysis of tree peony seeds and provide insight into tree peony seed development and oil accumulation.
Collapse
Affiliation(s)
- Xiaojing Wang
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634-0318 USA
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 China
| | - Lili Guo
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xiangguang Duan
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Qishi Jia
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xiaogai Hou
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| |
Collapse
|
35
|
Optimization and Evaluation of Alkali-Pretreated Paeonia Ostii Seed Coats as Adsorbent for the Removal of Mb From Aqueous Solution. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2018. [DOI: 10.2478/pjct-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
A novel effi cient adsorbent, alkali-pretreated Paeonia ostii seed coats (AP-PSC), was investigated for the removal of methylene blue (MB) dye from solution. Orthogonal array design was applied to optimize the process parameters viz. alkali concentration, liquid-solid ratio (LSR) and pretreatment time. The results revealed that the optimal pretreatment conditions were at 0.8% (w/w) NaOH with LSR of 0.35 L g-1 treating for 50 min. Equilibrium and kinetic studies indicated that Langmuir isotherm and Pseudo-second-order models described the experimental data well. The maximum adsorption capability was of 368.2 mg g-1 for MB at 25oC. Thermodynamic parameters suggested that the AP-PSC adsorption process was physical, endothermic and spontaneous. Furthermore, the adsorption process was infl uenced by several interactive mechanisms, including ion-exchange, as well as Van der Waals forces and hydrogen bonds that occur concomitantly. It was concluded that AP-PSC may be potential as an effi cient adsorbent to remove MB from solution.
Collapse
|
36
|
Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties. Food Res Int 2018; 116:810-818. [PMID: 30717012 DOI: 10.1016/j.foodres.2018.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
Dietary chrysanthemum flower and wolfberry alone or together are widely consumed as a health beverage on a daily basis for centuries. The study aims to evaluate combinative effects of flower heads of Chrysanthemum morifolium cv. Hangju (C) and Lycium barbarum fruit (wolfberry, W) served as tea on chemical compounds, antioxidant and anti-inflammatory activities in RAW 264.7 macrophages. Eight phenolics were mainly detected in chrysanthemum flowers, whereas polysaccharides were dominant in wolfberry. The infusion of five combinations showed significantly antioxidant activities positively associated with the chrysanthemum flower content in chemical methods (ORAC and FRAP). However, the cellular-based CAA assay exhibited the highest antioxidant activities of the infusion at C:W = 1:1, indicating a synergistic interaction (CI = 0.11, P < .01). Additionally, the anti-inflammatory effect of infusion, specifically at a combination of C:W = 1:1, was observed by reducing the LPS-induced nitric oxide production, and inhibiting the expression of iNOS, TNF-α, IL-1β, and IL-6 mRNA (P < .05). The infusion prepared at a C:W = 1:1 was found to inactivate MAPKs (ERK and JNK) and NF-κB. The antioxidant and anti-inflammatory mechanisms might be attributed to acacetin-7-O-rutinoside, luteolin-7-O-glucoside and chlorogenic acid from chrysanthemum flower, and wolfberry polysaccharide via multiple inflammatory pathways.
Collapse
|
37
|
Liang ZX, Zhang JZ, Sun MY, Zhang YL, Zhang XH, Li H, Shi L. Variation of Phenolic Compounds and Antioxidant Capacities in Different Organs of Lilium pumilum. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Lilium pumilum DC has been used as an important medicinal and edible plant species in China. To provide sufficient experimental evidence for further utilization of wild L. pumilum, 12 organs were evaluated for phenolic compounds and antioxidant capacities. The results showed that (-)-epicatechin was the most abundant phenolic compound, and salicylic acid as the most abundant phenolic acid. The leaf, flower bud, petal and upper stem had higher phenolic compound contents and stronger antioxidant capacities.
Collapse
Affiliation(s)
- Zhen-Xu Liang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, PR China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Jin-Zheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Mei-Yu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xu-Hong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, PR China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Lei Shi
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, PR China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
38
|
Zhang XX, Zhang G, Jin M, Niu LX, Zhang YL. Variation in Phenolic Content, Profile, and Antioxidant Activity of Seeds among Different Paeonia ostii Cultivated Populations in China. Chem Biodivers 2018; 15:e1800093. [PMID: 29603905 DOI: 10.1002/cbdv.201800093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to analyze the phenolic profiles of seeds from fifteen Paeonia ostii cultivated populations in China and identify their relationship with antioxidant activities and associated environmental factors. Thirteen individual phenolic compounds were quantitatively determined by HPLC, and (+)-catechin was the most abundant phenolic compound in the seeds. Correlation analysis showed that phenolics were the most effective antioxidant compound class by evaluating DPPH, ABTS, and hydroxyl radical scavenging activities as well as ferric reducing antioxidant power. Latitude and annual rainfall had significant effects on the contents of many phenolic compounds, and elevation was only significantly correlated with gallic acid content. Within fifteen P. ostii cultivated populations, the seeds of Tongling population exhibited the highest phenolic contents and strongest antioxidant activities. These results suggest that Tongling population has a relatively high utilization value and a potential for sources of natural antioxidants.
Collapse
Affiliation(s)
- Xiao-Xiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Gang Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Min Jin
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
39
|
In Vitro and In Vivo Antioxidant Activities of the Flowers and Leaves from Paeonia rockii and Identification of Their Antioxidant Constituents by UHPLC-ESI-HRMS n via Pre-Column DPPH Reaction. Molecules 2018; 23:molecules23020392. [PMID: 29439520 PMCID: PMC6017382 DOI: 10.3390/molecules23020392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 01/18/2023] Open
Abstract
The genus Paeonia, also known as the “King of Flowers” in China, is an important source of traditional Chinese medicine (TCM). Plants of this genus have been used to treat a range of cardiovascular and gynecological diseases. However, the potential pharmacological activity of one particular species, Paeonia rockii, has not been fully investigated. In the first part of the present study, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), reducing power assays, and metal ion chelating assays were used to investigate the in vitro antioxidant activities of Paeonia rockii. In the second portion of the study, a mouse model of d-galactose-induced aging was used to validate the antioxidant effects of the flowers from Paeonia rockii in vivo. Lastly, potential antioxidant constituents were screened and identified by ultra-high pressure liquid chromatography and electrospray ionization coupled with high-resolution mass spectrometry (UHPLC-ESI-HRMSn) combined with the DPPH assay. Results indicated that the flowers and leaves exhibited stronger antioxidant activity than ascorbic acid in vitro. The therapeutic effect of Paeoniarockii was determined in relation to the levels of biochemical indicators, such as 8-iso-prostaglandin F2α (8-iso PGF2α) in the serum, superoxide dismutase (SOD), protein carbonyl, malondialdehyde (MDA), and glutathione (GSH) in the liver and brain, after daily intra-gastric administration of different concentrations of extracts (100, 200 and 400 mg/kg) for three weeks. The levels of 8-iso PGF2α (p < 0.01) and protein carbonyl groups (p < 0.01) were significantly reduced, whereas those of SOD (p < 0.05) had significantly increased, indicating that components of the flowers of Paeonia rockii had favorable antioxidant activities in vivo. Furthermore, UHPLC-ESI-HRMSn, combined with pre-column DPPH reaction, detected 25 potential antioxidant compounds. Of these, 18 compounds were tentatively identified, including 11 flavonoids, four phenolic acids, two tannins, and one monoterpene glycoside. This study concluded that the leaves and flowers from Paeonia rockii possess excellent antioxidant properties, highlighting their candidacy as “new” antioxidants, which can be utilized therapeutically to protect the body from diseases caused by oxidative stress.
Collapse
|
40
|
YABALAK E. Antioxidant Activity and Chemical Composition of Methanolic Extract from Arum Dioscoridis Sm. var. Dioscoridis and Determination of Mineral and Trace Elements. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.350370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|