1
|
Xie J, Luo M, Chen Q, Zhang Q, Qin L, Wang Y, Zhao Y, He Y. Hypolipidemic effect and gut microbiota regulation of Gypenoside aglycones in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118066. [PMID: 38499259 DOI: 10.1016/j.jep.2024.118066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino has traditional applications in Chinese medicine to treat lipid abnormalities. Gypenosides (GPs), the main bioactive components of Gynostemma pentaphyllum, have been reported to exert hypolipidemic effects through multiple mechanisms. The lipid-lowering effects of GPs may be attributed to the aglycone portion resulting from hydrolysis of GPs by the gut microbiota. However, to date, there have been no reports on whether gypenoside aglycones (Agl), the primary bioactive constituents, can ameliorate hyperlipidemia by modulating the gut microbiota. AIM OF THE STUDY This study explored the potential therapeutic effects of gypenoside aglycone (Agl) in a rat model of high-fat diet (HFD)-induced hyperlipidemia. METHODS A hyperlipidemic rat model was established by feeding rats with a high-fat diet. Agl was administered orally, and serum lipid levels were analyzed. Molecular techniques, including RT-polymerase chain reaction (PCR) and fecal microbiota sequencing, were used to investigate the effects of Agl on lipid metabolism and gut microbiota composition. RESULTS Agl administration significantly reduced serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and mitigated hepatic damage induced by HFD. Molecular investigations have revealed the modulation of key lipid metabolism genes and proteins by Agl. Notably, Agl treatment enriched the gut microbiota with beneficial genera, including Lactobacillus, Akkermansia, and Blautia and promoted specific shifts in Lactobacillus murinus, Firmicutes bacterium CAG:424, and Allobaculum stercoricanis. CONCLUSION This comprehensive study established Agl as a promising candidate for the treatment of hyperlipidemia. It also exhibits remarkable hypolipidemic and hepatoprotective properties. The modulation of lipid metabolism-related genes, along with the restoration of gut microbiota balance, provides mechanistic insights. Thus, Agl has great potential for clinical applications in hyperlipidemia management.
Collapse
Affiliation(s)
- Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China; Department of Medical Genetics, Zunyi Medical University, Zunyi, 563000, China.
| | - Mingxia Luo
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qiuyi Chen
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuhe Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
2
|
Wang L, Yin J, Wan K, Guo H, Jiang G. Effects of Balsa Fish Skin Gelatin, Lentinula edodes Mushrooms, Soy Protein Isolate, and Starch on the Sensory Quality and Characterization of Physicochemical and Antioxidant Properties of New Sausage. Foods 2024; 13:465. [PMID: 38338600 PMCID: PMC10855825 DOI: 10.3390/foods13030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Sausages are loved by people for their unique texture, satisfying chewiness, and pleasant flavor. However, in the production of sausages, red meat and a large amount of fat are mainly used, and long-term consumption will increase the risk of diseases such as obesity, heart disease, hypertension, and cancer. Our previous studies have shown that the intake of red meat and fat can be reduced through the replacement of lean meat and fat in sausages by Lentinula edodes and Pleaurotus eryngii mushrooms, but this will lead to the deterioration of the gel of sausage products and seriously affect the sensory quality of sausages. In this study, the response surface method was used to optimize the amount of balsa fish skin gelatin, soy protein isolate, and starch added to, and the proportion of Lentinula edodes mushrooms replacing lean meat in, the new sausage, with Pleaurotus eryngii mushrooms replacing fat. The results show that Lentinula edodes mushrooms replaced 36.1% of the lean meat, and the addition of 0.96% balsa fish skin gelatin, 10.61% starch, and 9.94% soy protein isolate resulted in the highest sensory score and the sensory quality being the closest to that of traditional sausages. Compared with the control group, this novel sausage exhibits characteristics such as lower fat and saturated fatty acid content, reduced energy levels, and higher levels of amino acids (aspartic acid, glutamic acid, cysteine, methionine, and proline) and polyunsaturated fatty acids. The total phenolic content of the novel sausage is 12.52 times higher than that of the control. In comparison with the control group, the novel sausage demonstrates a 65.58% increase in DPPH radical scavenging activity and a 3.88-fold improvement in ABTS+ radical scavenging activity. These findings highlight the outstanding antioxidant performance of the novel sausage. This study provides new ideas for improving the sensory quality of new sausages, promoting the healthy development of the sausage industry, and promoting the high-value utilization of edible mushrooms.
Collapse
Affiliation(s)
| | | | | | | | - Guochuan Jiang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (L.W.); (J.Y.); (K.W.); (H.G.)
| |
Collapse
|
3
|
Nikolic M, Lazarevic N, Novakovic J, Jeremic N, Jakovljevic V, Zivkovic V, Bradic J, Pecarski D, Tel-Çayan G, Glamocija J, Sokovic M, Gregori A, Petrovic J. Characterization, In Vitro Biological Activity and In Vivo Cardioprotective Properties of Trametes versicolor (L.:Fr.) Quél. Heteropolysaccharides in a Rat Model of Metabolic Syndrome. Pharmaceuticals (Basel) 2023; 16:787. [PMID: 37375735 DOI: 10.3390/ph16060787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to examine the biological activity and cardioprotective potential of Trametes versicolor heteropolysaccharides (TVH) in a rat model of metabolic syndrome (MetS). This study included 40 Wistar rats divided into 5 groups: CTRL-healthy non-treated rats; MetS-non-treated rats; and H-TV, M-TV and L-TV-rats with MetS treated with either 300, 200 or 100 mg/kg TVH per os for 4 weeks. After finishing the treatment, we conducted an oral glucose tolerance test (OGTT), hemodynamic measurements and the animals were sacrificed, hearts isolated and subjected to the Langendorff technique. Blood samples were used for the determination of oxidative stress parameters, lipid status and insulin levels. We showed that α-amylase inhibition was not the mode of TVH antidiabetic action, while TVH showed a moderate inhibition of pathogenic microorganisms' growth (MIC 8.00 mg·mL-1; MBC/MFC 16.00 mg·mL-1). H-TV and M-TV significantly reduced the level of prooxidants (O2-, H2O2, TBARS; p < 0.05), increased antioxidants activity (SOD, CAT, GSH; p < 0.05), reduced blood pressure (p < 0.05), improved glucose homeostasis in the OGTT test (p < 0.05), and ejection fraction (p < 0.05) and cardiac contractility (p < 0.05) compared to MetS (p < 0.05). Moreover, TVH treatment normalized the lipid status and decreased insulin levels compared to MetS rats (p < 0.05). The obtained results demonstrated that the TVH may be considered a useful agent for cardioprotection in MetS conditions.
Collapse
Affiliation(s)
- Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Nevena Lazarevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Jovana Novakovic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena Jeremic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacology of the Institute of Biodesign and Complex System Modelling, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Jovana Bradic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Danijela Pecarski
- The College of Health Science, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| | - Gülsen Tel-Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, Muğla 48000, Turkey
| | - Jasmina Glamocija
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Andrej Gregori
- MycoMedica Ltd., Podkoren 72, 4280 Kranjska Gora, Slovenia
| | - Jovana Petrovic
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 230:123241. [PMID: 36641024 DOI: 10.1016/j.ijbiomac.2023.123241] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
Collapse
|
5
|
Gao Y, Abuduaini G, Yang C, Zhang S, Zhang Y, Fan H, Teng X, Bao C, Liu H, Wang D, Liu T. Isolation, purification, and structural elucidation of Stropharia rugosoannulata polysaccharides with hypolipidemic effect. Front Nutr 2022; 9:1092582. [PMID: 36590213 PMCID: PMC9800831 DOI: 10.3389/fnut.2022.1092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Stropharia rugosoannulata is a widely grown edible mushroom with a high nutritional value. S. rugosoannulata polysaccharides is one of the most important bioactive components of S. rugosoannulata and has a wide range of activities. A S. rugosoannulata polysaccharides, named SRF-3, was derived from the S. rugosoannulata extraction by freeze-thaw combine with hot water extraction method, then prepareed with DEAE-cellulose column and Sephacryl S-200 HR gel column, and its hypolipidemic activity was determined. The structural characteristics of SRF-3 were analyzed by infrared spectral scanning (FT-IR), ultra-high performance liquid chromatography (UHPLC), acid hydrolysis, methylation analysis, nuclear magnetic resonance (NMR), and Gas Chromatography-Mass Spectrometer (GC-MS). SRF-3 is composed of mannose, galactose, methyl galactose and fructose with ratios of 16, 12, 58 and 12, respectively. In addition, the average relative molecular mass of SRF-3 is approximately 24 kDa. The main chain of SRF-3 is mainly composed of repeating α-D-1,6-Galp and α-D-1,6-Me-Galp units, with branches in the O-2 position of Gal. The structure is presumed to be a mannogalactan, with a small amount of t-β-D-Manp present as a side chain. Hypolipidemic activity assay showed that SRF-3 had good antioxidant and hypolipidemic effects in vitro, suggesting that SRF-3 have potential application in reducing liver fat accumulation.
Collapse
Affiliation(s)
- Yinlu Gao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Gulijiannaiti Abuduaini
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Chenhe Yang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xu Teng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Chenligen Bao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,*Correspondence: Dawei Wang,
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,Tingting Liu,
| |
Collapse
|
6
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232314807. [PMID: 36499132 PMCID: PMC9737215 DOI: 10.3390/ijms232314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Wild mushrooms have gained great importance for being a source of biologically active compounds. In this work, we evaluate the anticancer and antioxidant activity of a water-soluble crude polysaccharide extract isolated from the fruiting bodies of the Ganoderma aff. australe (GACP). This mushroom was collected in San Mateo (Boyacá, Colombia) and identified based on macroscopic and microscopic characterization. GACP was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, high-performance liquid chromatography-diode array detector, and nuclear magnetic resonance. The antiradical and antioxidant activity were evaluated by different methods and its anticancer activity was verified in the osteosarcoma MG-63 human cell line. Chemical and spectroscopic analysis indicated that GACP consisted of β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and α-D-Glcp-(1→ residues. The results of the biological activity showed that GACP exhibited high antioxidant activity in the different methods and models studied. Moreover, the results showed that GACP impaired cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and cell proliferation (clonogenic assay) in a dose-response manner on MG-63 cells. The findings of this work promote the use of mushroom-derived compounds as anticancer and antioxidant agents for potential use in the pharmaceutical and food industries.
Collapse
|
8
|
Lentinula edodes, a Novel Source of Polysaccharides with Antioxidant Power. Antioxidants (Basel) 2022; 11:antiox11091770. [PMID: 36139844 PMCID: PMC9495869 DOI: 10.3390/antiox11091770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The fruiting bodies of edible mushrooms represent an important source of biologically active polysaccharides. In this study, Lentinula edodes crude polysaccharides (LECP) were extracted in hot water, and their antioxidant and antiradical activities were investigated. The antioxidant activity of LECP was investigated against reactive species such as 1,1’-diphenyl-2-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, hydroxyl and superoxide anion radicals, reducing power with EC50 values of 0.51, 0.52, 2.19, 3.59 and 1.73 mg/mL, respectively. Likewise, LECP inhibited the lipid peroxidation induced in methyl linoleate through the formation of conjugated diene hydroperoxide and malondialdehyde. The main sugar composition of LECP includes mannose, galactose, glucose, fucose and glucuronic acid. Characterization by Fourier transform infrared spectroscopy and nuclear magnetic resonance determined that LECP was made up of α and β glycosidic bonds with a backbone of α-D-Glc, →6)-β-D-Glcp-(1→, →6)-α-D-Galp-(1→ and β-D-Manp-(1→ residues. The results showed that LECP can scavenge all reactive species tested in a concentration-dependent manner and with a protective effect in the initial and final stages of lipid peroxidation. The natural antioxidant activity of the LECP that was investigated strengthens the high medicinal and nutritional value of this mushroom.
Collapse
|
9
|
Lesa KN, Khandaker MU, Mohammad Rashed Iqbal F, Sharma R, Islam F, Mitra S, Emran TB. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J FOOD QUALITY 2022; 2022:1-9. [DOI: 10.1155/2022/2454180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Pleurotus ostreatus is the second cultivated and most popular edible mushroom after Agaricus bisporus worldwide. As dietary supplements, nutraceuticals like Pleurotus ostreatus that go beyond the usual health benefits of mushrooms are becoming more popular. The objective of this study is to put together a summary of the nutrition information and link it to the possible health benefits and health-improving effects of eating oyster mushrooms. This review is based on secondary data from 102 published articles about P. ostreatus. All papers were examined following predetermined criteria for inclusion and exclusion, and this study contained 83 publications. The high nutritional content and beneficial health effects make P. ostreatus a high-quality food. It makes up for the lack of protein by switching between a diet based on wheat, rice, and maize. Nowadays, P. ostreatus is famous precious functional food ingredients due to the fact they may be cholesterol-free and low in calories, carbohydrates, fat, and sodium. Side by side, they offer crucial nutrients including riboflavin, selenium, potassium, niacin, proteins, and fiber.
Collapse
Affiliation(s)
- Kaisun Nesa Lesa
- Faculty of Institute of Climate Change, Universiti Kebangsaan Malaysia (The National University of Malaysia), Bangi, Malaysia
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
- Department of Food and Nutrition, Khulna City Corporation Women’s College Affiliated by Khulna University, Khulna, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Selangor 47500, Subang Jaya, Malaysia
| | - Faruque Mohammad Rashed Iqbal
- Faculty of Institute of Climate Change, Universiti Kebangsaan Malaysia (The National University of Malaysia), Bangi, Malaysia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
10
|
Abstract
Since the beginning of the 21st century, interest in vegan diets has been rapidly increasing in most countries. Misconceptions about vegan diets are widespread among the general population and health professionals. Vegan diets can be health-promoting and may offer certain important advantages compared to typical Western (and other mainstream) eating patterns. However, adequate dietary sources/supplements of nutrients of focus specific to vegan diets should be identified and communicated. Without supplements/fortified foods, severe vitamin B12 deficiency may occur. Other potential nutrients of focus are calcium, vitamin D, iodine, omega-3 fatty acids, iron, zinc, selenium, vitamin A, and protein. Ensuring adequate nutrient status is particularly important during pregnancy, lactation, infancy, and childhood. Health professionals are often expected to be able to provide advice on the topic of vegan nutrition, but a precise and practical vegan nutrition guide for health professionals is lacking. Consequently, it is important and urgent to provide such a set of dietary recommendations. It is the aim of this article to provide vegan nutrition guidelines, based on current evidence, which can easily be communicated to vegan patients/clients, with the goal of ensuring adequate nutrient status in vegans.
Collapse
Affiliation(s)
- Christian Koeder
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, Hanover, Germany
- Department of Nutrition, University of Applied Sciences Münster, Münster, Germany
| | | |
Collapse
|
11
|
Jiang X, Hao J, Zhu Y, Liu Z, Li L, Zhou Y, Li Y, Teng L, Wang D. The anti-obesity effects of a water-soluble glucan from Grifola frondosa via the modulation of chronic inflammation. Front Immunol 2022; 13:962341. [PMID: 35967316 PMCID: PMC9367694 DOI: 10.3389/fimmu.2022.962341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides from Grifola frondosa (G. frondosa) have anti-obesity and anti-inflammatory activities. In this study, the major type, molecular weight, homogeneity and structure of a polysaccharide purified from G. frondosa (denoted GFPA) were determined. In high-fat diet (HFD)-treated mice, 8 weeks of GFPA administration efficiently decreased body weight and blood glucose concentration and counteracted hyperlipidemia. GFPA efficiently decreased adipocyte size and ameliorated inflammatory infiltration in the three types of white adipose tissue and alleviated steatosis, fat accumulation and inflammatory infiltration in the livers of HFD-fed mice. GFPA also decreased the concentrations of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory factors in the sera and livers of HFD-treated mice. Furthermore, GFPA was found to regulate lipid metabolism via the inhibition of ceramide levels in HFD-treated mice. GFPA exhibited strong anti-obesity effects via the modulation of chronic inflammation through Toll-like receptor 4/nuclear factor kappa-B signaling, which supports the use of GFPA for the treatment of obesity.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun, China
| | - Zijian Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Di Wang, ; ; Lirong Teng,
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Wang, ; ; Lirong Teng,
| |
Collapse
|
12
|
Angelova G, Brazkova M, Mihaylova D, Slavov A, Petkova N, Blazheva D, Deseva I, Gotova I, Dimitrov Z, Krastanov A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. J Fungi (Basel) 2022; 8:738. [PMID: 35887493 PMCID: PMC9319109 DOI: 10.3390/jof8070738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to characterize the bioactivity of mycelial biomass and crude exopolysaccharides (EPS) produced by Trametes versicolor NBIMCC 8939 and to reveal its nutraceutical potential. The EPS (1.58 g/L) were isolated from a culture broth. The macrofungal biomass was rich in protein, insoluble dietary fibers and glucans. The amino acid composition of the biomass was analyzed and 18 amino acids were detected. Three mycelial biomass extracts were prepared and the highest total polyphenol content (16.11 ± 0.14 mg GAE/g DW) and the total flavonoid content (5.15 ± 0.03 mg QE/g DW) were found in the water extract. The results indicated that the obtained EPS were heteropolysaccharides with glucose as the main building monosaccharide and minor amounts of mannose, xylose, galactose, fucose and glucuronic acid. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the complex structure of the crude EPS. Five probiotic lactic acid bacteria strains were used for the determination of the prebiotic effect of the crude EPS. The anti-inflammatory potential was tested in vitro using cell line HT-29. The significant decrease of IL-1 and IL-8 and increase of TGF-beta expression revealed anti-inflammatory potential of the crude exopolysaccharides from T. versicolor.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Irina Gotova
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Zhechko Dimitrov
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| |
Collapse
|
13
|
Gong M, Huang T, Li Y, Li J, Tang L, Su E, Zou G, Bao D. Multi-Omics Analysis of Low-Temperature Fruiting Highlights the Promising Cultivation Application of the Nutrients Accumulation in Hypsizygus marmoreus. J Fungi (Basel) 2022; 8:jof8070695. [PMID: 35887452 PMCID: PMC9315786 DOI: 10.3390/jof8070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Hypsizygus marmoreus is a representative edible mushroom with low-temperature fruiting after a long postripening (LFLP). Clarifying the mechanism of LFLP and applying a rigorous low-temperature-limited process will optimize the mushroom cultivation process. This study performed an integrative multi-omics analysis of the molecular mechanism of LFLP in combination with genetic, physiological, and cultivation confirmation. The results showed that the amino acid content was increased during LFLP, mainly arginine. pH analysis showed acidification in the postripening stage and alkalization in the substrates of the reproductive growth stage. An enzyme activity test confirmed the increased enzyme activity of arginase and citrate synthase in the postripening stage. Weighted gene coexpression network analysis of the transcriptome and metabolomics indicated that pH variation is correlated mainly with changes in citrate and arginine. Multi-omics reveals a straightforward way of providing enriched materials for amino acid biosynthesis, namely, synergistically elevating citric acid and arginine through enhanced activity of the arginine synthesis branch pathway in the citrate cycle. Our study confirmed that GCN2 mediated metabolic adaptation by enhancing protein translation, highlighting its regulatory role during LFLP. Exogenously added citric acid and arginine shortened the postripening period by 10 days and increased the fruiting body yield by 10.2~15.5%. This research sheds light on the molecular mechanism of LFLP in H. marmoreus and highlights the promising application of nutrient accumulation in high-efficiency cultivation.
Collapse
Affiliation(s)
- Ming Gong
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Tianyu Huang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
| | - Jinxin Li
- Research and Development Center, Shanghai Finc Bio-Tech Inc., Shanghai 201401, China;
| | - Lihua Tang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
- Correspondence: (G.Z.); (D.B.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.G.); (Y.L.); (L.T.)
- Correspondence: (G.Z.); (D.B.)
| |
Collapse
|
14
|
Tsoupras A, Kouvelis VN, Pappas KM, Demopoulos CA, Typas MA. Anti-inflammatory and anti-thrombotic properties of lipid bioactives from the entomopathogenic fungus Beauveria bassiana. Prostaglandins Other Lipid Mediat 2021; 158:106606. [PMID: 34923152 DOI: 10.1016/j.prostaglandins.2021.106606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
In the present work the entomopathogenic fungus B. bassiana lipids were studied against the potent pro-inflammatory and thrombotic mediators implicated in several disorders, platelet-activating factor (PAF) and thrombin. Bioactivities of lipid extracts from B. bassiana cells and culture supernatants and of their lipid fractions separated by a one-step HPLC-analysis ere assessed against the PAF/Thrombin-induced aggregation of washed rabbit platelets. Lipid extracts from both cell-biomass and supernatant inhibited strongly PAF/Thrombin-activities and platelet-aggregation, exhibiting higher specificity against PAF. Similarly, HPLC-derived lipid-fractions of phenolics/glycolipids, Sphingomyelins and Phosphatidylcholines (PC) showed strong anti-PAF potency. PC PAF-like molecules exhibited the strongest antagonistic anti-PAF effects, while in higher amounts they agonistically inhibited PAF-activities. Some bioactive lipids with strong anti-PAF effects are exo-cellularly secreted in the culture media during fungal growth, while others are not. The presence of such lipid bioactives in B. bassiana with strong anti-inflammatory and anti-thrombotic properties, provide new perspectives and putative future applications for this entomopathogenic fungus.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland; Bernal Institute, University of Limerick, Ireland. https://www.twitter.com/bioflips
| | - Vassili N Kouvelis
- Section of Biotechnology and Genetics, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Katherine M Pappas
- Section of Biotechnology and Genetics, Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | - Milton A Typas
- Section of Biotechnology and Genetics, Department of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
15
|
Yu WQ, Yin F, Shen N, Lin P, Xia B, Li YJ, Guo SD. Polysaccharide CM1 from Cordyceps militaris hinders adipocyte differentiation and alleviates hyperlipidemia in LDLR (+/-) hamsters. Lipids Health Dis 2021; 20:178. [PMID: 34895241 PMCID: PMC8667404 DOI: 10.1186/s12944-021-01606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cordyceps militaris is cultured widely as an edible mushroom and accumulating evidence in mice have demonstrated that the polysaccharides of Cordyceps species have lipid-lowering effects. However, lipid metabolism in mice is significantly different from that in humans, making a full understanding of the mechanisms at play critical. Methods After 5 months, the hamsters were weighed and sampled under anesthesia after overnight fasting. The lipid-lowering effect and mechanisms of the polysaccharide CM1 was investigated by cellular and molecular technologies. Furthermore, the effect of the polysaccharide CM1 (100 μg/mL) on inhibiting adipocyte differentiation was investigated in vitro. Results CM1, a polysaccharide from C. militaris, significantly decreased plasma total cholesterol, triglyceride and epididymal fat index in LDLR(+/−) hamsters, which have a human-like lipid profile. After 5 months’ administration, CM1 decreased the plasma level of apolipoprotein B48, modulated the expression of key genes and proteins in liver, small intestine, and epididymal fat. CM1 also inhibited preadipocyte differentiation in 3T3-L1 cells by downregulating the key genes involved in lipid droplet formation. Conclusions The polysaccharide CM1 lowers lipid and adipocyte differentiation by several pathways, and it has potential applications for hyperlipidemia prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01606-6.
Collapse
Affiliation(s)
- Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Fan Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Nuo Shen
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| |
Collapse
|
16
|
Incorporation of untreated or white-rot fungi treated cowpea stover on performance, digestibility, health and meat quality of growing rabbits. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Moisture and caking resistant Tremella fuciformis polysaccharides microcapsules with hypoglycemic activity. Food Res Int 2021; 146:110420. [PMID: 34119239 DOI: 10.1016/j.foodres.2021.110420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Tremella fuciformis polysaccharides (TPs) have attracted extensive attention as functional food constituents due to their bioactivity. However, β-D-glucan obtained from TPs is readily degraded by oxidation and easy to absorb water and agglomerate. The purpose of this study was to reduce moisture adsorption and caking strength through spray drying by using maltodextrin as wall materials and explore the hypoglycemic effect and molecular mechanism of TPs microcapsules. It was observed that dextrose equivalent (DE) value and concentration of maltodextrin (MD) affect the morphology, encapsulation efficiency, loading capacity, water adsorption and caking strength of TPs microcapsules powder. The administration of TPs microcapsules powder prevented body weight and serum insulin loss, and significantly decreased the blood glucose level, serum triglycerides, as well as total cholesterol levels, which seemed to be related to increasing the glycogen synthesis and facilitating the glucose transportation by regulating the PI3K/Akt pathway.
Collapse
|
18
|
Wang D, Yin Z, Ma L, Han L, Chen Y, Pan W, Gong K, Gao Y, Yang X, Chen Y, Han J, Duan Y. Polysaccharide MCP extracted from Morchella esculenta reduces atherosclerosis in LDLR-deficient mice. Food Funct 2021; 12:4842-4854. [PMID: 33950051 DOI: 10.1039/d0fo03475d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pharmaceutical application of fungal polysaccharides has been extensively studied based on their multiple biological activities. However, the effect of Morchella esculenta polysaccharides on the development of atherosclerosis remains unknown. This study aims to investigate the anti-atherosclerotic effect of a novel polysaccharide (MCP) extracted from Morchella esculenta. The average molecular weight of MCP is 1.69 × 105 Da, and it is composed of glucose, mannose and galactose in the molar ratio of 1 : 1.9 : 0.51. LDLR-deficient (LDLR-/-) mice were fed high-fat diet (HFD) and administered intragastrically (i.g.) with saline or MCP dissolved in saline for 15 weeks. We found that MCP inhibited en face and sinus lesions. Moreover, serum levels of total and low-density lipoprotein cholesterol and triglyceride were decreased by MCP. The HFD-induced hepatic lipid accumulation was also attenuated by MCP. The underlying molecular mechanisms of anti-atherogenic and lipogenic effects of MCP might be attributed to reduced cholesterol synthesis by activating AMPKα signaling pathway and inhibiting SREBP2 expression. In addition, MCP-decreased serum triglyceride level is related to inhibiting LXRα expression. Taken together, these results indicate that MCP markedly alleviates atherosclerosis and M. esculenta can be used as a functional food additive to benefit patients with atherosclerosis.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kała K, Krakowska A, Zięba P, Opoka W, Muszyńska B. Effect of conservation methods on the bioaccessibility of bioelements from in vitro-digested edible mushrooms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3481-3488. [PMID: 33280126 DOI: 10.1002/jsfa.10979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The release of bioelements from edible mushrooms (Agaricus bisporus, Cantharellus cibarius, and Imleria badia) was examined using in vitro simulated gastrointestinal digestion to assess their health-promoting potential. The following samples were tested: fresh, frozen, dried in a food dryer, dried in the sun, and lyophilized. The samples were incubated in gastric juice (pepsin, NaCl, HCl) and in intestinal juice (NaHCO3 , pancreatin, bile salts) with the aim of verifying the bioaccessibility of the bioelements and the digestibility of mushrooms. Four bioelements that are essential for the human body were studied: Mg, Zn, Cu, and Fe. RESULTS It was found that Mg was extracted in the highest amounts from the sun-dried A. bisporus (1.620 g kg-1 d.w.). In the case of microelements, the lyophilized fruiting bodies of I. badia released Zn in the highest quantities (0.180 g kg-1 d.w.). Lyophilization and sun-drying methods were more advantageous than other methods. Fresh material was a more valuable source of bioelements than frozen material. CONCLUSION Our results showed that edible mushrooms have a high content of bioelements that are easily bioaccessible, which indicates their health-promoting properties. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Zięba
- Department of Vegetable and Medicinal Plants, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
20
|
Yang X, Lin P, Wang J, Liu N, Yin F, Shen N, Guo S. Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. Int J Biol Macromol 2021; 181:890-904. [PMID: 33878353 DOI: 10.1016/j.ijbiomac.2021.04.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia is one major cause of atherosclerosis, which is a basic pathological change of cardiovascular diseases. Polysaccharide is a water-soluble component with lipid-lowering effects. In this study, alkaline-extracted polysaccharides were obtained from the fruiting body of C. militaris. Polysaccharides were purified via anion exchange and size exclusion chromatography. Their structural characteristics were investigated via chemical and spectroscopic methods. CM3I was mainly composed of →4)α-D-Glcp(1 → glycosyls and differed from starch due to the presence of →4,6)β-D-Glcp(1 → glycosyls. CM3II was characterized by its backbone, which was composed of →4)-β-D-Manp(1 → 6)-α-D-Manp(1 → 6)-β-D-Manp(1 → linked glycosyls, and especially the presence of O-methyl. Moreover, CM3II exhibited powerful anti-atherosclerotic effects via lowering plasma lipid levels in apolipoprotein E-deficient mice. The underlying mechanisms were attributed to its promoting effect on LXRα and inhibitory effect on SREBP-2. Collectively, CM3I and CM3II are different from the previously reported polysaccharides from C. militaris, and CM3II has a potential application in hypolipidemia and anti-atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ping Lin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jin Wang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Na Liu
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Nuo Shen
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
21
|
Development of a Sensory Flavor Lexicon for Mushrooms and Subsequent Characterization of Fresh and Dried Mushrooms. Foods 2020; 9:foods9080980. [PMID: 32718026 PMCID: PMC7466268 DOI: 10.3390/foods9080980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mushrooms are a nutritious versatile ingredient in many food products. They are low in calories and have various potential medicinal properties as well. Surprisingly, little research on their descriptive sensory properties has been conducted. The objectives of this study were to a) establish a descriptive sensory flavor lexicon for the evaluation of fresh, dried, and powdered mushrooms and 2) use that lexicon to compare a selection of different mushrooms of various species and in fresh dried and powdered forms. A lexicon for describing mushroom was developed using a consensus profile method. A highly trained, descriptive sensory panel identified, defined, and referenced 27 flavor attributes for commercially available mushroom samples prepared as “meat” and broth. Attributes could be grouped in categories such as musty (dusty/papery, earthy/humus, earthy/damp, earthy/potato, fermented, leather (new), leather (old), mold/cheesy, moldy/damp, mushroomy), and other attributes such as fishy, shell fish, woody, nutty, brown, green, cardboard, burnt/ashy, potato, umami, protein (vegetable), yeasty, bitter, salty, sweet aromatics, sour, and astringent. Samples were then tested in three replications and mean values were compared statistically. In addition, principal component analysis was used to understand the characteristics of mushrooms evaluated. Dried mushrooms showed bitter, burnt, musty/dusty, astringent, old leather, and fresh mushroom characteristics and fresh mushroom showed umami, sweet, earthy/potato, earthy/damp, yeasty, and fermented. Mushrooms were grouped and differentiated in similar ways regardless of whether they were tested as broth or “meat”. Mushroom growers, product developers, chefs and other culinary professionals, sensory scientists, researchers, the food industry, and ultimately consumers will benefit from this lexicon describing a wide variety of mushroom flavor properties.
Collapse
|
22
|
Taofiq O, Barreiro MF, Ferreira ICFR. The Role of Bioactive Compounds and other Metabolites from Mushrooms against Skin Disorders- A Systematic Review Assessing their Cosmeceutical and Nutricosmetic Outcomes. Curr Med Chem 2020; 27:6926-6965. [PMID: 32238131 DOI: 10.2174/0929867327666200402100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Bioactive compounds derived from mushrooms have been shown to present promising potential as cosmeceutical or nutricosmetic ingredients. Scientific data reviewed herein showed that extracts prepared from medicinal and edible mushrooms and their individual metabolites presented antiinflammatory, antioxidant, photoprotective, antimicrobial, anti-tyrosinase, anti-elastase, and anticollagenase activities. These metabolites can be utilised as ingredients to suppress the severity of Inflammatory Skin Diseases, offer photoprotection to the skin, and correct Hyperpigmentation. However, studies regarding the molecular mechanism behind the mentioned bioactivities are still lacking. Challenges associated with the use of mushroom extracts and their associated metabolites as cosmeceutical and nutricosmetic ingredients include several steps from the fruiting bodies to the final product: extraction optimization, estimation of the efficacy and safety claims, the use of micro and nanocarriers to allow for controlled release and the pros and cons associated with the use of extracts vs individual compounds. This systematic review highlights that mushrooms contain diverse biomolecules that can be sustainably used in the development of nutricosmetic and cosmeceutical formulations. Reports regarding stability, compatibility, and safety assessment, but also toxicological studies are still needed to be considered. Furthermore, some of the constraints and limitations hindering the development of this type of ingredients still require long-term studies to achieve major breakthroughs.
Collapse
Affiliation(s)
- Oludemi Taofiq
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Maria Filomena Barreiro
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| |
Collapse
|
23
|
Abstract
AbstractAgaricus bisporus, Cantharellus cibarius, Imleria badia, and Lentinula edodes are among the most popular species of edible mushrooms in Poland. These edible mushrooms are an important source of biologically active substances exhibiting beneficial (e.g., antioxidant, antitumor, antimicrobial, anti-inflammatory) effects on the human body. The fruiting bodies of edible mushrooms are also a valuable source of lovastatin, which belongs to a group of compounds, called statins, commonly used as cholesterol-lowering drugs. Due to the presence of lovastatin, edible mushrooms can be useful in the prevention of hypercholesterolemia. Therefore, the aim of this study was to determine the content of lovastatin in the selected species of edible mushrooms and to evaluate its release into artificial digestive juices. This study was the first to determine the release of lovastatin into digestive juices after the extraction of materials obtained from edible mushrooms. The largest amount of lovastatin was found in the fruiting bodies of C. cibarius (67.89 mg/100 g d.w.), and the smallest in those of L. edodes (0.95 mg/100 g d.w.). The amount of lovastatin released from the extracts of the examined species into digestive juices was found to be relatively low. The highest content after incubation in artificial gastric juice was detected for the fruiting bodies of L. edodes (0.02 mg/100 g d.w.) and after incubation in the intestinal juice for the mycelium from the in vitro cultures of L. edodes (0.51 mg/100 g d.w.). Thus, the results of the present study showed that due to its ability to accumulate lovastatin from culture medium, L. edodes mycelium can be used to obtain a product with increased hypolipidemic activity.
Collapse
|
24
|
Sande D, Oliveira GPD, Moura MAFE, Martins BDA, Lima MTNS, Takahashi JA. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res Int 2019; 125:108524. [DOI: 10.1016/j.foodres.2019.108524] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
|
25
|
Piskov S, Timchenko L, Rzhepakovsky I, Avanesyan S, Bondareva N, Sizonenko M, Areshidze D. Effect of pre-treatment conditions on the antiatherogenic potential of freeze-dried oyster mushrooms. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-375-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oyster mushroom (Pleurotus ostreatus L.) is a valuable food product. It possesses an antiatherogenic potential, which has to be preserved during processing. The paper features the production of oyster mushroom sublimates. It focuses on such pre-treatment conditions as grinding, disinfection, and cryostabilisation, and their effect on the antiatherogenic potential of oyster mushrooms. A set of in vitro experiments was performed to measure the levels of lovastatin and antioxidant, catalase, anti-inflammatory, and thrombolytic properties. Various pre-treatment conditions proved to produce different effects on the biological activity of the freeze-dried oyster mushroom product. The best results were obtained after the mushrooms were reduced to pieces of 0.5 cm, underwent UV disinfection, blanched, treated with hot air, and cryostabilised with a 1.5% apple pectin solution. The best conditions for the antioxidant properties included ozonation, UV disinfection, and cryoprotection with pectin. The critical conditions for the antioxidant properties included homogenisation, blanching, and cryostabilisation with 10% solutions of sucrose and lactose. The catalase properties did not depend on the degree of grinding and were most pronounced after ozonation. The optimal conditions for the anti-inflammatory properties included UV disinfection and cryostabilisation with lactose. Ozonation proved to be critical for anti-inflammatory properties. The optimal conditions for thrombolytic properties included ozonation and cryoprotection with a 5% sorbitol solution, while hot air disinfection proved critical. Therefore, the research provided an experimental substantiation for individual pre-treatment conditions or their combinations that turn sublimated oyster mushrooms into a valuable functional product with antiatherogenic properties.
Collapse
|
26
|
Lee D, Lee WY, Jung K, Kwon YS, Kim D, Hwang GS, Kim CE, Lee S, Kang KS. The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and its Mechanism: An Investigation Using Network Pharmacology-Based Analysis. Biomolecules 2019; 9:E414. [PMID: 31454995 PMCID: PMC6770402 DOI: 10.3390/biom9090414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris is a well-known medicinal mushroom. It is non-toxic and has clinical health benefits including cancer inhibition. However, the anticancer effects of C. militaris cultured in brown rice on breast cancer have not yet been reported. In this study, we simultaneously investigated the anticancer effects of cordycepin and an extract of C. militaris cultured in brown rice on MCF-7 human breast cancer cells using a cell viability assay, cell staining with Hoechst 33342, and an image-based cytometric assay. The C. militaris concentrate exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 73.48 µg/mL. Cordycepin also exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 9.58 µM. We applied network pharmacological analysis to predict potential targets and pathways of cordycepin. The gene set enrichment analysis showed that the targets of cordycepin are mainly associated with the hedgehog signaling, apoptosis, p53 signaling, and estrogen signaling pathways. We further verified the predicted targets related to the apoptosis pathway using western blot analysis. The C. militaris concentrate and cordycepin exhibited the ability to induce apoptotic cell death by increasing the cleavage of caspase-7 -8, and -9, increasing the Bcl-2-associated X protein/ B-cell lymphoma 2 (Bax/Bcl-2) protein expression ratio, and decreasing the protein expression of X-linked inhibitor of apoptosis protein (XIAP) in MCF-7 cells. Consequently, the C. militaris concentrate and cordycepin exhibited significant anticancer effects through their ability to induce apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Won-Yung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea
| | - Yong Sam Kwon
- Dong-A Pharmaceutical Co., LTD., Yongin 17073, Korea
| | - Daeyoung Kim
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
27
|
Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage. Meat Sci 2019; 156:44-51. [PMID: 31125946 DOI: 10.1016/j.meatsci.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
The effects of substituting pork lean meat with Lentinula edodes (LE) on the physicochemical properties, amino acid content, cooking loss, texture, total phenolic content, antioxidant activity, microstructure, microbiological analysis, and sensory characteristics of sausages were evaluated. Five formulations were used in the production of sausages: the control (the pork lean meat formulation) and the four different samples in which LE substituted 25%, 50%, 75%, and 100% of pork lean meat. The results showed that LE improved the moisture, total dietary fiber, methionine, glutamic, cysteine, and total phenolic content; cooking loss; and antioxidant activity of the sausage. By contrast, LE reduced the levels of protein, ash, pH, as well as the energy level and texture of the sausage. No difference was observed between the treatments for fat content, water activity and microorganisms of sausages. In addition, LE led to slight darkening of the sausages. From the sensory point of view, all modified sausages were considered acceptable, and the pork lean meat with 25% substitution by LE exhibited best sensory characteristics. In a word, LE is a promising ingredient to partially replace the lean meat in sausages.
Collapse
|
28
|
An Inulin-Specific Lectin with Anti-HIV-1 Reverse Transcriptase, Antiproliferative, and Mitogenic Activities from the Edible Mushroom Agaricus bitorquis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1341370. [PMID: 31016184 PMCID: PMC6444243 DOI: 10.1155/2019/1341370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 12/03/2022]
Abstract
A novel lectin (ABL) was purified from the dried fruiting bodies of Agaricus bitorquis. An efficient 3-step purification protocol involved two consecutive steps of ion exchange chromatography on Q-Sepharose and SP-Sepharose and gel filtration by FPLC on Superdex 75. ABL is a monomeric protein with the molecular mass of 27.6 kDa, which is different from other lectins from genus Agaricus. Its N-terminal amino acid sequence is EYTISIRVYQTNPKGFNRPV which is unique and sharing considerably high similarity of other mushroom lectins. The hemagglutinating activity of the lectin was inhibited by inulin. Based on hemagglutination tests, ABL prefers rabbit, human type A, and AB erythrocytes to human type B and O erythrocytes. The lectin inhibits the activity of HIV-1 reverse transcriptase and the proliferation of leukemia cell (L1210) with an IC50 value of 4.69 and 4.97 μM, respectively. Furthermore, ABL demonstrates the highest mitogenic activity with a response of 24177.7 ± 940.6 [3H-methyl] thymidine counts per minute (CPM) at a concentration of 0.91 μM.
Collapse
|
29
|
Solano-Aguilar GI, Jang S, Lakshman S, Gupta R, Beshah E, Sikaroodi M, Vinyard B, Molokin A, Gillevet PM, Urban JF. The Effect of Dietary Mushroom Agaricus bisporus on Intestinal Microbiota Composition and Host Immunological Function. Nutrients 2018; 10:nu10111721. [PMID: 30424006 PMCID: PMC6266512 DOI: 10.3390/nu10111721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
A study was designed to determine the potential prebiotic effect of dietary mushrooms on the host immune response, and intestinal microbiota composition and function. Thirty-one six-week-old pigs were fed a pig grower diet alone or supplemented with either three or six servings of freeze-dried white button (WB)-mushrooms for six weeks. Host immune response was evaluated in peripheral blood mononuclear cells (PBMC), and alveolar macrophages (AM) after stimulation with Salmonella typhymurium-Lipopolysaccharide (LPS). Isolated DNA from fecal and proximal colon contents were used for 16S rDNA taxonomic analysis and linear discriminant analysis effect size (LEfSe) to determine bacterial abundance and metabolic function. Pigs gained weight with no difference in body composition or intestinal permeability. Feeding mushrooms reduced LPS-induced IL-1β gene expression in AM (P < 0.05) with no change in LPS-stimulated PBMC or the intestinal mucosa transcriptome. LEfSe indicated increases in Lachnospiraceae, Ruminococcaceae within the order Clostridiales with a shift in bacterial carbohydrate metabolism and biosynthesis of secondary metabolites in the mushroom-fed pigs. These results suggested that feeding WB mushrooms significantly reduced the LPS-induced inflammatory response in AM and positively modulated the host microbiota metabolism by increasing the abundance of Clostridiales taxa that are associated with improved intestinal health.
Collapse
Affiliation(s)
- Gloria I Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Saebyeol Jang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA.
| | - Ethiopia Beshah
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA.
| | - Bryan Vinyard
- Statistics Group, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA.
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA.
| |
Collapse
|
30
|
Zhao X, Zou X, Li Q, Cai X, Li L, Wang J, Wang Y, Fang C, Xu F, Huang Y, Chen B, Tang J, Wang H. Total flavones of fermentation broth by co-culture of Coprinus comatus and Morchella esculenta induces an anti-inflammatory effect on LPS-stimulated RAW264.7 macrophages cells via the MAPK signaling pathway. Microb Pathog 2018; 125:431-437. [PMID: 30316005 DOI: 10.1016/j.micpath.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 01/18/2023]
Abstract
The inflammatory cellular model of RAW264.7 cells induced by lipopolysaccharide (LPS) has always been used to investigate the effect of anti-inflammatory agents in vitro. In the present study, the anti-inflammatory activity of total flavones extracted from the fermentation broth of the co-culture of Coprinus comatus and Morchella esculenta (MCF-F), and its potential molecular mechanism in LPS-challenged RAW264.7 macrophage cells were investigated. The data revealed that MCF-F exhibited anti-inflammatory activity in LPS-stimulated RAW264.7 cells. At the same time, MCF-F was less cytotoxic under a concentration of 16 μg/ml in RAW264.7 cells. The anti-inflammatory activity of MCF-F was detected using the Griess method and ELISA assay, and the results well-corroborated with the observed decrease in expression in pro-inflammatory mediators, including nitric oxide, tumor necrosis factor-α and inteleukin-1β (IL-1β). In addition, the expression of inducible NO synthase (iNOS) and cyclooxygenase2 (COX-2) were confirmed by RT-PCR and western blot, and it was found that both mRNA and protein levels were downregulated after MCF-F treatment. The data also revealed that MCF-F downregulated the phosphorylation of JNK, ERK and P38 MAPK. Collectively, these results lead to the conclusion that MCF-F exerts an anti-inflammatory effect against LPS-challenged RAW264.7 cells via the MAPK pathway.
Collapse
Affiliation(s)
- Xiaohong Zhao
- College of Life Science and Technology, Dalian University, Liaoning, 116622, China
| | - Xianwei Zou
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Qian Li
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Xu Cai
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Liya Li
- Division of Medical Oncology, Department of Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jinren Wang
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Wang
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Chen Fang
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Fa Xu
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Yun Huang
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Benke Chen
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China
| | - Jintian Tang
- Department of Engineering Physics, Institute of Medical Physics, Tsinghua University, Beijing, 100084, China.
| | - Huiguo Wang
- College of Life Science and Technology, Dalian University, Liaoning, 116622, China.
| |
Collapse
|