1
|
Dong S, Zuo Y, Wei Y, Yang Q, Shen J, Liu K, Huang C, Dai Q, Ning J, Li L. Exploring the colorimetric sensing mechanism of metal porphyrin on the degree of roasting from the perspective of density functional theory. Food Chem 2025; 477:143330. [PMID: 39999544 DOI: 10.1016/j.foodchem.2025.143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Aroma quality is a key indicator of the degree of roasting of large-leaf yellow tea (LYT). In this study, a colorimetric sensing array (CSA) composed of tetraphenylporphyrin (TPP) was designed for the rapid quantitative detection of key volatile organic compounds (VOCs) in LYT. First, the responses of the CSA system were compared under three environmental conditions. The response intensity of the TPPs to the VOCs was analysed using density functional theory (DFT). Finally, on the basis of the DFT calculations, a streamlined CSA sensor incorporating a least-squares support vector machine model was designed for the quantitative detection of 2-ethyl-3,5-dimethylpyridazine, 2,5-dimethylpyrazine, benzaldehyde, dihydro-2-methyl-3-furanone, linalool, and trans-β-ionone at levels ranging from 0.005 to 5 ppm. The predictive coefficients and relative predictive deviations of the quantitative model ranged from 0.82 to 0.93 and 1.75 to 2.65, respectively. This study provides a theoretical basis for the construction of CSA and a novel perspective on the monitoring of tea processing and quality.
Collapse
Affiliation(s)
- Shuai Dong
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yifan Zuo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yongning Wei
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qianfeng Yang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingfei Shen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Kun Liu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chuxuan Huang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qianying Dai
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Luqing Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Tu Z, Li S, Xu A, Yu Q, Cao Y, Tao M, Wang S, Liu Z. Improvement of Summer Green Tea Quality Through an Integrated Shaking and Piling Process. Foods 2025; 14:1284. [PMID: 40238596 PMCID: PMC11989215 DOI: 10.3390/foods14071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
Summer green tea often suffers from an inferior flavor, attributed to its bitterness and astringency. In this study, an integrated shaking and piling process was performed to improve the flavor of summer green tea. The results demonstrated a significant improvement in the sweet and kokumi flavors, accompanied by a reduction in umami, astringency, and bitterness following the treatment. Additionally, the yellowness and color saturation were also enhanced by the treatment. A total of 146 non-volatile metabolites (NVMs) were identified during the study. The elevated levels of sweet-tasting amino acids (L-proline, L-glutamine, and L-threonine), soluble sugars, and peptides (such as gamma-Glu-Gln and glutathione) contributed to the enhanced sweetness and kokumi. Conversely, the decreased levels of ester-catechins, flavonoid glycosides, and procyanidins resulted in a reduction in umami, astringency, and bitterness. Furthermore, the decreased levels of certain NVMs, particularly ascorbic acid and saponarin, played a crucial role in enhancing the yellowness and color saturation of the summer green tea. Our findings offered a novel theoretical framework and practical guidelines for producing high-quality summer green tea.
Collapse
Affiliation(s)
- Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
- The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| |
Collapse
|
3
|
Jeníček L, Malaťák J, Velebil J, Neškudla M. Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1495. [PMID: 40271723 PMCID: PMC11989423 DOI: 10.3390/ma18071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
This study investigates the potential use of biochar derived from residues-such as spruce wood, spent coffee grounds, tea waste, and nutshells-as a sustainable coal substitute-to enhance the decarbonization of European energetic systems and decrease the dependence on fossil fuels. The biomasses were pyrolyzed at 250-550 °C, analyzed for calorific value and composition, and evaluated for energy retention and mass loss. The results show significant energy density improvements, with optimal temperatures varying by material (e.g., spruce wood reached 31.56 MJ·kg-1 at 550 °C, retaining 21.84% of its mass; spent coffee grounds peaked at 31.26 MJ·kg-1 at 350 °C, retaining 37.53%). Economic analysis confirmed pyrolyzed biomass as a cost-effective alternative to coal, especially considering emission allowance costs. Integrating biomass pyrolysis into regional energy systems supports decarbonization, reduces emissions, and advances us towards a circular economy.
Collapse
Affiliation(s)
- Lukáš Jeníček
- Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (J.M.); (J.V.); (M.N.)
| | | | | | | |
Collapse
|
4
|
Tang M, Liao X, Xu M, Zhang J, Wu X, Wei M, Jin S, Zheng Y, Ye N. Comprehensive investigation on the flavor difference in five types of tea from JMD (Camellia sinensis 'Jinmudan'). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:990-1002. [PMID: 39291387 DOI: 10.1002/jsfa.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Jinmudan (JMD) is a high-aroma variety widely cultivated in China. The current study primarily focuses on the key volatile metabolites in JMD black and oolong teas, and investigates the impact of processing technologies on the aroma quality of JMD tea. However, few studies have explored the suitability of JMD for producing a certain type of tea or the characteristic quality differences among various JMD teas using multivariate statistical analysis methods. RESULTS The principal volatile metabolites contributing to the floral quality of JMD tea are linalool, geraniol, indole and phenethyl alcohol. In JMD black tea (BT), the key volatile metabolites include methyl salicylate, geraniol, (E)-β-ocimene and phenethyl alcohol. In JMD oolong tea (OT), the key volatile metabolites include indole, linalyl valerate and phenethyl alcohol. In JMD yellow tea (YT), the key volatile metabolites include methyl salicylate, geraniol and terpinolene. In JMD white tea (WT), the key volatile metabolites include methyl salicylate, geraniol and terpinolene. In JMD green tea (GT), the key volatile metabolites include (E)-β-ocimene, indole and geraniol. Comparative analysis and KEGG pathway enrichment analysis revealed that flavonoid biosynthesis is the primary metabolic pathway responsible for the taste differences among various tea types. GT exhibited higher levels of phloretin, dihydromyricetin and galangin. The contents of vitexin, tricetin in YT were relatively higher. The contents of aromadendrin and naringenin in BT were higher, while OT contained higher levels of kaempferol. Additionally, WT showed higher contents of 3-O-acetylpinobanksin and 3,5,7-pinobanksin. CONCLUSION This study explained the reasons for the quality differences of different JMD tea and provided a reliable theoretical basis for the adaptability of JMD tea. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengting Tang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou, China
- Wuyi University, Tea Industry International Research Center, Wuyishan, China
| | - Xiansheng Liao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou, China
| | - Mengting Xu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou, China
| | - Jianming Zhang
- Wuyi University, Tea Industry International Research Center, Wuyishan, China
| | - Xianshou Wu
- Fujian Qianqian Yiye Tea Technology Co., Ltd, Shouning, China
| | - Mingxiu Wei
- Shouning County Tea Industry Development Center, Shouning, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou, China
| | - Yucheng Zheng
- Wuyi University, Tea Industry International Research Center, Wuyishan, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou, China
| |
Collapse
|
5
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Qin C, Han Z, Jiang Z, Ke JP, Li W, Zhang L, Li D. Chemical profile and in-vitro bioactivities of three types of yellow teas processed from different tenderness of young shoots of Huoshanjinjizhong ( Camellia sinensis var. sinensis). Food Chem X 2024; 24:101809. [PMID: 39310883 PMCID: PMC11414484 DOI: 10.1016/j.fochx.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In the present study, bud yellow tea (BYT), small-leaf yellow tea (SYT) and large-leaf yellow tea (LYT) were produced from the same local "population" variety Huoshanjinjizhong (Camellia sinensis var. sinensis), and the effects of raw material tenderness on the chemical profile and bioactivities of these teas were investigated. The results showed that 11 crucial compounds were screened by headspace solid-phase microextraction-gas chromatography-mass spectrometry from 64 volatiles in these yellow teas, among which the heterocyclic compounds showed the greatest variations. In addition, 43 key compounds including organic acids, flavan-3-ols, amino acids, saccharides, glycosides and other compounds were screened by liquid chromatography-mass spectrometry from 1781 non-volatile compounds. BYT showed the best α-glucosidase inhibitory activity and antioxidant capacity among the selected yellow teas, which might be contributed by the higher content of galloylated catechins. These findings provided a better understanding of the chemical profile and bioactivities of yellow teas.
Collapse
Affiliation(s)
- Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Sheng C, Lu M, Zhang J, Zhao W, Jiang Y, Li T, Wang Y, Ning J. Metabolomics and electronic-tongue analysis reveal differences in color and taste quality of large-leaf yellow tea under different roasting methods. Food Chem X 2024; 23:101721. [PMID: 39229616 PMCID: PMC11369393 DOI: 10.1016/j.fochx.2024.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Roasting is a key process in the production of large-leaf yellow tea (LYT). In this study, we synthesized metabolomics and electronic-tongue analysis to compare the quality of charcoal-roasted, electric-roasted and drum-roasted LYT. Charcoal-roasted LYT had the highest yellowness and redness, drum-roasted LYT had a more prominent umami and brightness, and electric roasting reduced astringency. A total of 48 metabolites were identified by metabolomics. Among these, leucocyanidin, kaempferol, luteolin-7-lactate, and apigenin-7-O-neohesperidoside might affect the brightness and yellowness. Theanine, aspartic acid, and glutamic acid contents significantly and positively correlated with umami levels, and the high retention of flavonoid glycosides and catechins in drum-roasted LYT contributed to its astringency. These findings elucidate the contribution of the roasting method to the quality of LYT and provide a theoretical basis for LYT production.
Collapse
Affiliation(s)
- Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yanqun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
9
|
Wang W, Feng Z, Min R, Yin J, Jiang H. The Effect of Temperature and Humidity on Yellow Tea Volatile Compounds during Yellowing Process. Foods 2024; 13:3283. [PMID: 39456345 PMCID: PMC11506851 DOI: 10.3390/foods13203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Yellowing is the key processing technology of yellow tea, and environmental conditions have a significant impact on the yellowing process. In this study, volatile compounds of the yellowing process under different environmental conditions were analyzed by GC-MS. Results showed that a total of 75 volatile compounds were identified. A partial least squares discriminant analysis (PLS-DA) determined that 42 of them were differential compounds, including 12 hydrocarbons, 8 ketones, 8 aldehydes, 6 alcohols, and 8 other compounds, and compared the contents of differential compounds under the conditions of 40 °C with 90% humidity, 50 °C with 50% humidity, and 30 °C with 70% humidity, then analyzed the variation patterns of hydrocarbons under different yellowing environmental conditions. A 40 °C with 90% humidity treatment reduced the content of more hydrocarbons and increased the aldehydes. The content of 3-hexen-1-ol was higher when treated at 50 °C with 50% humidity and was consistent with the results of sensory evaluation. This study could provide a theoretical basis for future research on the aroma of yellow tea.
Collapse
Affiliation(s)
| | | | | | | | - Heyuan Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (W.W.); (Z.F.); (R.M.); (J.Y.)
| |
Collapse
|
10
|
Sun Q, Du J, Wang Z, Li X, Fu R, Liu H, Xu N, Zhu G, Wang B. Structural characteristics and biological activity of a water-soluble polysaccharide HDCP-2 from Camellia sinensis. Int J Biol Macromol 2024; 277:134437. [PMID: 39116965 DOI: 10.1016/j.ijbiomac.2024.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Large-leaf Yellow tea (LYT) is a traditional beverage from Camellia Sinensis (L.) O. Kuntze in China and has unusual health-regulating functions. This investigation explored the structural characteristics of a polysaccharide extracted from LYT, which possesses anti-inflammatory activity. The polysaccharide HDCP-2, obtained through ethanol fractional precipitation and then DEAE-52 anion exchange column, followed by DPPH radical scavenging screening, exhibited a yield of 0.19 %. The HPGPC method indicated that the molecular weight of HDCP-2 is approximately 2.9 × 104 Da. Analysis of the monosaccharide composition revealed that HDCP-2 consisted of mannose, glucose, xylose, and galacturonic acid, and their molar ratio is approximately 0.4:0.5:1.2:0.7. The structure motif of HDCP-2 was probed carefully through methylation analysis, FT-IR, and NMR analysis, which identified the presence of β-d-Xylp(1→, →2, 4)-β-d-Xylp(1→, →3)-β-d-Manp(1→, α-d-Glcp(1→ and →2, 4)-α-d-GalAp(1→ linkages. A CCK-8 kit assay was employed to evaluate the anti-inflammatory action of HDCP-2. These results demonstrated that HDCP-2 could inhibit the migration and proliferation of the MH7A cells and reduce NO production in an inflammatory model induced by TNF-α. The abundant presence of xylose accounted for 39 % of the LYT polysaccharide structure, and its distinctive linking mode (→2, 4)-β-d-Xylp(1→) appears to be the primary contributing factor to its anti-inflammatory effect.
Collapse
Affiliation(s)
- Qiaoxu Sun
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Jiao Du
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Ranze Fu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Hui Liu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China; Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei 230038, PR China.
| |
Collapse
|
11
|
Tian B, Pan Y, Zhou X, Jiang Y, Zhang X, Luo X, Yang K. Yellow leaf green tea modulates the AMPK/ACC/SREBP1c signaling pathway and gut microbiota in high-fat diet-induced mice to alleviate obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5882-5895. [PMID: 38407390 DOI: 10.1002/jsfa.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Yellow leaf green tea (YLGT) is a new variety of Camellia sinensis (L.) O. Ktze, which has yellow leaves and the unique qualities of 'three green through three yellow'. The present study aimed to investigate the anti-obesity effect of YLGT in mice fed a high-fat diet (HFD) and to explore the potential mechanisms by regulating the AMPK/ACC/SREBP1c signaling pathways and gut microbiota. RESULTS The results showed that YLGT aqueous extract reduced body weight, hepatic inflammation, fat accumulation and hyperlipidemia in HFD-induced C57BL/6J mice, and also accelerated energy metabolism, reduced fat synthesis and suppressed obesity by activating the AMPK/CPT-1α signaling pathway and inhibiting the FAS/ACC/SREBP-1c signaling pathway. Fecal microbiota transplantation experiment further confirmed that the alteration of gut microbiota (e.g. increasing unclassified_Muribaculaceae and decreasing Colidextribacter) might be an important cause of YLGT water extract inhibiting obesity. CONCLUSION In conclusion, YLGT has a broad application prospect in the treatment of obesity and the development of anti-obesity function beverages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Yizhu Pan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Yuezhi Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xudong Luo
- Sichuan Three MT. TEA-INDUSTRY Co., Ltd, Guangyuan, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
12
|
Ye Y, Gong Y, Huang P, Luo F, Gan R, Fang C. Dynamic changes in the non-volatile and flavour compounds in withered tea leaves of three different colour cultivars based on multi-omics. Food Chem 2024; 449:139281. [PMID: 38608608 DOI: 10.1016/j.foodchem.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.
Collapse
Affiliation(s)
- Yulong Ye
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Yiyun Gong
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Ping Huang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Fan Luo
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Chunyan Fang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| |
Collapse
|
13
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
14
|
Qi S, Zeng T, Wu P, Sun L, Dong Z, Xu L, Xiao P. Widely targeted metabolomic analysis reveals effects of yellowing process time on the flavor of vine tea ( Ampelopsis grossedentata). Food Chem X 2024; 22:101446. [PMID: 38846795 PMCID: PMC11154209 DOI: 10.1016/j.fochx.2024.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024] Open
Abstract
The bitter and astringent taste and miscellaneous smell of vine tea prevent its further development. In this study, we used a processing technology that mimics yellow tea to improve the flavor of vine tea and revealed its internal reasons through metabolomics. Sensory evaluation showed the yellowing process for 6-12 h reduced the bitterness and astringency significantly, and enriched the aroma. The improvement of taste was mainly related to the down-regulation of anthocyanins (54.83-97.38%), the hydrolysis of gallated catechins (34.80-47.81%) and flavonol glycosides (18.56-44.96%), and the subsequent accumulation of d-glucose (33.68-78.04%) and gallic acid (220.96-252.09%). For aroma, increase of total volatile metabolite content (23.88-25.44%) and key compounds like geraniol (239.32-275.21%) induced the changes. These results identified the positive effects of yellowing process on improvements in vine tea flavor and the key compounds that contribute to these changes.
Collapse
Affiliation(s)
- Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Yang X, Bi Z, Yin C, Huang H, Li Y. A novel hybrid sensor array based on the polyphenol oxidase and its nanozymes combined with the machine learning based dual output model to identify tea polyphenols and Chinese teas. Talanta 2024; 272:125842. [PMID: 38428131 DOI: 10.1016/j.talanta.2024.125842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
16
|
Li Y, Li Y, Xiao T, Jia H, Xiao Y, Liu Z, Wang K, Zhu M. Integration of non-targeted/targeted metabolomics and electronic sensor technology reveals the chemical and sensor variation in 12 representative yellow teas. Food Chem X 2024; 21:101093. [PMID: 38268841 PMCID: PMC10805769 DOI: 10.1016/j.fochx.2023.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Yellow tea is a lightly fermented tea with unique sensory qualities and health benefits. However, chemical composition and sensory quality of yellow tea products have rarely been studied. 12 representative yellow teas, which were basically covered the main products of yellow tea, were chosen in this study. Combined analysis of non-targeted/targeted metabolomics and electronic sensor technologies (E-eye, E-nose, E-tongue) revealed the chemical and sensor variation. The results showed that yellow big tea differed greatly from yellow bud teas and yellow little teas, but yellow bud teas could not be effectively distinguished from yellow little teas based on chemical constituents and electronic sensory characteristics. Sensor variation of yellow teas might be attributed to some compounds related to bitterness and aftertaste-bitterness (4'-dehydroxylated gallocatechin-3-O-gallate, dehydrotheasinensin C, myricitin 3-O-galactoside, phloroglucinol), aftertaste-astringency (methyl gallate, 1,5-digalloylglucose, 2,6-digalloylglucose), and sweetness (maltotriose). This study provided a comprehensive understanding of yellow tea on chemical composition and sensory quality.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang 413000, China
| | - Yilong Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Tian Xiao
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Huimin Jia
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
17
|
Revilla I, Hernández Jiménez M, Martínez-Martín I, Valderrama P, Rodríguez-Fernández M, Vivar-Quintana AM. The Potential Use of Near Infrared Spectroscopy (NIRS) to Determine the Heavy Metals and the Percentage of Blends in Tea. Foods 2024; 13:450. [PMID: 38338587 PMCID: PMC10855971 DOI: 10.3390/foods13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The following study analyzed the potential of Near Infrared Spectroscopy (NIRS) to predict the metal composition (Al, Pb, As, Hg and Cu) of tea and for establishing discriminant models for pure teas (green, red, and black) and their different blends. A total of 322 samples of pure black, red, and green teas and binary blends were analyzed. The results showed that pure red teas had the highest content of As and Pb, green teas were the only ones containing Hg, and black teas showed higher levels of Cu. NIRS allowed to predict the content of Al, Pb, As, Hg, and Cu with ratio performance deviation values > 3 for all of them. Additionally, it was possible to discriminate pure samples from their respective blends with an accuracy of 98.3% in calibration and 92.3% in validation. However, when the samples were discriminated according to the percentage of blending (>95%, 95-85%, 85-75%, or 75-50% of pure tea) 100% of the samples of 10 out of 12 groups were correctly classified in calibration, but only the groups with a level of pure tea of >95% showed 100% of the samples as being correctly classified as to validation.
Collapse
Affiliation(s)
- Isabel Revilla
- Food Technology, Universidad de Salamanca, E.P.S. de Zamora, Avenida Requejo 33, 49022 Zamora, Spain; (I.R.); (M.H.J.); (I.M.-M.)
| | - Miriam Hernández Jiménez
- Food Technology, Universidad de Salamanca, E.P.S. de Zamora, Avenida Requejo 33, 49022 Zamora, Spain; (I.R.); (M.H.J.); (I.M.-M.)
| | - Iván Martínez-Martín
- Food Technology, Universidad de Salamanca, E.P.S. de Zamora, Avenida Requejo 33, 49022 Zamora, Spain; (I.R.); (M.H.J.); (I.M.-M.)
| | - Patricia Valderrama
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via Rosalina Maria dos Santos 1233, Campo Mourão 87301-899, Paraná, Brazil
| | - Marta Rodríguez-Fernández
- Food Technology, Universidad de Salamanca, E.P.S. de Zamora, Avenida Requejo 33, 49022 Zamora, Spain; (I.R.); (M.H.J.); (I.M.-M.)
| | - Ana M. Vivar-Quintana
- Food Technology, Universidad de Salamanca, E.P.S. de Zamora, Avenida Requejo 33, 49022 Zamora, Spain; (I.R.); (M.H.J.); (I.M.-M.)
| |
Collapse
|
18
|
Wei Y, Zhang J, Li T, Zhao M, Song Z, Wang Y, Ning J. GC-MS, GC-O, and sensomics analysis reveals the key odorants underlying the improvement of yellow tea aroma after optimized yellowing. Food Chem 2024; 431:137139. [PMID: 37604002 DOI: 10.1016/j.foodchem.2023.137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
An optimized yellowing process for yellow tea (YT) was recently developed. The study found that the optimized yellowing process caused a significant increase in sweet and floral aromas by 31.3% and 24.0%, respectively. A total of 21 aroma-active compounds were identified using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) combined with sensomics analysis. Quantification of the 15 aroma-active compounds and calculation of odor activity values (OAVs) showed that the OAVs of sweet and floral aroma compounds increased significantly by 986.2% and 46.4%, respectively, after the optimized yellowing process. Sensory-directed aroma reconstitution and omission experiments confirmed that dimethyl sulfide, 3-methylbutanal, β-ionone, β-damascenone, geraniol, phenylacetaldehyde, and linalool were the key odorants in YT after the optimized yellowing process. Odorant addition tests further demonstrated that β-damascenone (OAV 590.4) was the main odorant for YT sweet aroma enhancement, while β-ionone (OAV 884.6) was the main odorant for YT floral aroma enhancement.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhenshuo Song
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China.
| |
Collapse
|
19
|
Wang H, Yang Y, Chen L, Xu A, Wang Y, Xu P, Liu Z. Identifying the structures and taste characteristics of two novel Maillard reaction products in tea. Food Chem 2024; 431:137125. [PMID: 37586230 DOI: 10.1016/j.foodchem.2023.137125] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Maillard reaction products (MRPs) produced during thermal processing of tea are intimately related to its flavor. Our recent work revealed that both levels of l-theanine and d-galacturonic acid in tea leaves decreased dramatically during drying, whereas the specific MRPs from l-theanine and d-galacturonic acid remain elusive. Here, the MRPs formed from l-theanine and d-galacturonic acid were investigated and their taste characteristics and the involved mechanisms were explored. Two novel MRPs from l-theanine and d-galacturonic acid were identified as 1-(1-carboxy-4-(ethylamino)-4-oxobutyl)-3-hydroxypyridin-1-ium (MRP 1) and 2-(2-formyl-1H-pyrrole-1-yl) theanine (MRP 2). MRP 1 and MRP 2 accumulated in dark tea and black tea and were associated with sour (threshold, 0.25 mg/mL) and astringent tastes and an umami taste (threshold, 0.18 mg/mL), respectively. Molecular docking revealed that the taste characteristics of MRPs may be due to strong binding to umami taste receptor proteins (CASR, T1R1/T1R3) and the sour taste protein OTOP1 via hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yijun Yang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhonghua Liu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
20
|
Long X, Ranjitkar S, Waldstein A, Wu H, Li Q, Geng Y. Preliminary exploration of herbal tea products based on traditional knowledge and hypotheses concerning herbal tea selection: a case study in Southwest Guizhou, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:1. [PMID: 38169414 PMCID: PMC10763305 DOI: 10.1186/s13002-023-00645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Herbal tea usually refers to "beverage plants that do not belong to the genus Camellia", and it holds a significant historical legacy as a traditional beverage among specific regions and ethnic groups. In light of this, our research aims to investigate and analyze the traditional knowledge pertaining to herbal tea plants used by local people in the Qianxinan Buyi and Miao Autonomous Prefecture, Guizhou Province. We also initiated preliminary efforts to create tea products from herbal tea leaves using various processing techniques. Additionally, we attempted to test hypotheses to elucidate how local people select herbal tea plants. METHODS Data related to the use of herbal tea plants in this study were collected through semi-structured interviews and participatory observations in four villages in Qianxinan. Quantitative indicators, including the relative frequency of citation (RFC) and the relative importance (RI) value, were calculated, and the availability of plants was also evaluated. General linear model was performed to examine the relationship between the frequency of citation and resource availability, as well as the correlation between the relative frequency of citation and the relative importance, to test both the resource availability hypothesis and the versatility hypothesis. Centella asiatica tea was processed using techniques from green tea, black tea and white tea, with a preliminary sensory evaluation conducted. RESULTS A total of 114 plant species were documented as being used for herbal teas by local residents, representing 60 families and 104 genera. Of these, 61% of herbal tea plants were found growing in the wild, and 11 species were exotic plants. The family with the highest number of species was Asteraceae (20 species). The study identified 33 major medicinal functions of herbal tea, with clearing heat-toxin and diuresis being the most common functions. General linear model revealed a strong correlation (correlation coefficient of 0.72, p < 0.001) between the frequency of citation and plant availability, as well as a significant correlation (correlation coefficient of 0.63, p < 0.001) between RFC and RI. Under different processing conditions, the characteristics of Centella asiatica tea exhibited variations and were found to be suitable for consumption. CONCLUSION The consumption of herbal tea serves as a preventive measure against common ailments for local residents. The resource availability hypothesis, diversification hypothesis and the versatility hypothesis were shown to provide some insight into "how and why local communities select plants for use." Exotic herbal tea plants in the study area also possess valuable therapeutic properties. The processing and production of Centella asiatica herbal tea products hold promising prospects.
Collapse
Affiliation(s)
- Xiaofeng Long
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Sailesh Ranjitkar
- N.Gene Solution of Natural Innovation, Kathmandu, Nepal
- School of Developmental Studies and Applied Sciences, Lumbini Buddhist University, Lumbini, Nepal
- Resources Himalaya Foundation, Lalitpur, Nepal
| | - Anna Waldstein
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Huan Wu
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Qingqing Li
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yanfei Geng
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
21
|
Wei Y, Yin X, Zhao M, Zhang J, Li T, Zhang Y, Wang Y, Ning J. Metabolomics analysis reveals the mechanism underlying the improvement in the color and taste of yellow tea after optimized yellowing. Food Chem 2023; 428:136785. [PMID: 37467693 DOI: 10.1016/j.foodchem.2023.136785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
In this study, an optimized yellowing process for yellow tea (YT) was developed by response surface methodology. The results showed that increasing the yellowing temperature from 20 °C to 34 °C, increasing the relative humidity from 55% to 67%, and reducing the yellowing time from 48 h to 16 h, caused a 40.5% and 43.2% increase in the yellowness and sweetness of YT, respectively, and improved the consumer acceptability by 36.8%. Moreover, metabolomics was used to explore the involved mechanisms that resulted in the improved YT quality. The optimized yellowing promoted the hydrolysis of 5 gallated catechins, 6 flavonoid glycosides, theogallin and digalloylglucose, resulting in the accumulation of 5 soluble sugars and gallic acid. Meanwhile, it promoted the oxidative polymerization of catechins (e.g., theaflagallin, δ-type dehydrodicatechin and theasinensin A), but decelerated the degradation of chlorophylls. Overall, this optimized yellowing process could serve as a guide to a shorter yellowing cycle.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yiyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
22
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
23
|
He G, Chen T, Huang L, Zhang Y, Feng Y, Liu Q, Yin X, Qu S, Yang C, Wan J, Liang L, Yan J, Liu W. Tibetan tea reduces obesity brought on by a high-fat diet and modulates gut flora in mice. Food Sci Nutr 2023; 11:6582-6595. [PMID: 37823111 PMCID: PMC10563754 DOI: 10.1002/fsn3.3607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
It has been shown that Tibetan tea (TT) inhibits obesity and controls lipid metabolism. The fundamental processes by which TT prevents obesity are yet entirely unknown. Consequently, this research aimed to ascertain if TT may prevent obesity by modifying the gut flora. Our research demonstrated that TT prevented mice from gaining weight and accumulating fat due to the high-fat diet (HFD), decreased levels of blood total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), and raised levels of high-density lipoprotein cholesterol (HDL-C). Adipogenesis-related genes such as acetyl-Coenzyme A carboxylase 1 (ACC1, LOC107476), fatty acid synthase (Fas, LOC14104), sterol regulatory element-binding protein-1c (SREBP-1c, LOC20787), CCAAT/enhancer-binding protein α (C/EBPα, LOC12606), stearoyl-CoA desaturase 1 (SCD1, LOC20249), and peroxisome proliferator-activated receptor γ (PPARγ, LOC19016) had their expression downregulated by lowering the Firmicutes/Bacteroidetes (F/B) ratio and controlling the number of certain gut bacteria. TT also alleviated HFD-induced abnormalities of the gut microbiota. The Muribaculaceae, Lachnospiraceae NK4A136_group, Alistipes, and Odoribacter families were identified as the major beneficial gut microorganisms using Spearman's correlation analysis. Fecal microbiota transplantation (FMT) demonstrated that TT's anti-obesity and gut microbiota-modulating benefits might be transmitted to mice on an HFD, demonstrating that one of TT's targets for preventing obesity is the gut microbiota. TT also increased the amount of short-chain fatty acids (SCFAs) in the feces, including acetic, propionic, and butyric acids. These results indicate the possible development of TT as a prebiotic to combat obesity and associated disorders. These results suggest that TT may act as a prebiotic against obesity and its associated diseases.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Tangcong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yiyuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yanjiao Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Qijun Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Xiaojing Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Shaokui Qu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jianghong Wan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
- Sichuan Jiang's Tibetan Tea Co., LTDYa'anChina
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| |
Collapse
|
24
|
Sun Y, Yuan X, Luo Z, Cao Y, Liu S, Liu Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res Int 2023; 172:113115. [PMID: 37689883 DOI: 10.1016/j.foodres.2023.113115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Liquid-state fermentation (LSF) of tea leaves is a promising way to obtain tea-based nutraceutical products rich in various bioactive compounds. In the study, the changes of bioactive compounds, tea pigments and complex metabolites from LSF of primary dark tea, green tea and white tea infusions with Aspergillus cristatus were determined. Chemical analyses revealed that soluble sugars, monosaccharide composition, total polyphenols, total flavonoids, free amino acids, soluble proteins and tea pigments were changed in different ways. An untargeted metabolomic analysis and ribonucleic acid sequencing (RNA-seq) based transcriptomic analysis were performed to investigate the metabolic differentiation and clarify the key differentially expressed genes (DEGs, fold change >2 and p < 0.05), showing that amino acid metabolism, carbohydrate metabolism and lipid metabolism were the most enriched pathways during A. cristatus fermentation of primary dark tea, green tea and white tea infusions. In addition, glycerophospholipid metabolism, linoleic acid metabolism and phenylalanine metabolism were greatly accumulated in the fermentation of primary dark tea and white tea infusions; Pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and valine and leucine, isoleucine degradation were greatly accumulated in the fermentation of primary dark tea and green tea infusions; Starch and sucrose metabolism was greatly accumulated in the fermentation of green tea and white tea infusions; Galactose metabolism was significantly enhanced in the fermentation of primary dark tea infusion; Amino sugar and nucleotide sugar metabolism, sphingolipid metabolism and alanine, aspartate and glutamate metabolism were significantly enhanced in the fermentation of green tea infusion. Besides, some other pathways involving aminobenzoate degradation, biosynthesis of cofactors, pyrimidine metabolism, benzoxazinoid biosynthesis and phenazine biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis and flavone and flavonol biosynthesis also differed from each other. These findings support that A. cristatus plays a vital role in the biochemical and genetic regulation of metabolite profile, and could be considered a potential prospect for better use of A. cristatus on different kinds of tea materials.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Xushuang Yuan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhaojun Luo
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China.
| |
Collapse
|
25
|
Cai M, Huang L, Dong S, Diao N, Ye W, Peng Z, Fang X. Enhancing the Flavor Profile of Summer Green Tea via Fermentation with Aspergillus niger RAF106. Foods 2023; 12:3420. [PMID: 37761129 PMCID: PMC10529516 DOI: 10.3390/foods12183420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Summer green tea (SGT) has a low cost and high annual yield, but its utilization rate is limited due to suboptimal quality. The aim of this study is to enhance the flavor of SGT using fermentation with A. niger RAF106 while examining changes in its metabolites during this process. The results revealed an elevation in the content of alcohol, alkanes, and nitroxides in tea leaves following the process of fermentation. The predominant volatile compounds identified in tea leaves after undergoing a 6-day fermentation period were linalool, (Z)-α, α, 5-trimethyl-5-vinyltetrahydrofuran-2-methanol, (E)-linalool oxide (furan type), linalool oxide (pyran type), and theapyrrole. These compounds exhibited significant increases of 31.48%, 230.43%, 225.12%, 70.71%, and 521.62%, respectively, compared to the non-fermented control group (CK). The content of non-ester catechins, soluble sugars, and total flavonoids reached their peak on the 4th day of fermentation, exhibiting significant increases of 114.8%, 95.59%, and 54.70%, respectively. The content of gallic acid and free amino acids reached their peak on the 6th day of fermentation, exhibiting significant increases of 3775% and 18.18%, respectively. However, the content of ester catechin decreased by 81.23%, while caffeine decreased by 7.46%. The content of lactic acid, acetic acid, and citric acid in tea after fermentation was 421.03%, 203.13%, and 544.39% higher than before fermentation, respectively. The present study offers a fresh approach for the advancement of SGT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.C.); (L.H.); (S.D.); (N.D.); (W.Y.); (Z.P.)
| |
Collapse
|
26
|
Assad M, Ashaolu TJ, Khalifa I, Baky MH, Farag MA. Dissecting the role of microorganisms in tea production of different fermentation levels: a multifaceted review of their action mechanisms, quality attributes and future perspectives. World J Microbiol Biotechnol 2023; 39:265. [PMID: 37515645 PMCID: PMC10386955 DOI: 10.1007/s11274-023-03701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Tea is one of the most popular beverages worldwide, with several health benefits attributed for its rich chemical composition and further associated with fermentation process to improve its quality attributes. Most tea types originate from the leaves of Camellia sinensis with differences in fermentation levels yielding black tea, green tea, pouchong tea, oolong tea. Teas like pu-erh or kombucha to encompass both green and red types are further post-fermented. Tea fermentation is a traditional process involving physical, biochemical, and microbial changes which are associated with improved organoleptic characters, nutritive value, and health outcomes. The production of fermented tea relies on naturally occurring enzymes and microbial metabolic activities. This review focuses on presenting a holistic overview on the effect of different microorganisms including bacteria, yeast, and fungi on the biochemical changes and sensory attributes of fermented tea products reported in research articles along the last 15 years. Moreover, production conditions and major biochemical changes are dissected to present the best factors influencing fermented tea quality. This review presents an evidence-based reference for specialists in tea industry to optimize tea fermentation process for targeted attributes.
Collapse
Affiliation(s)
- Matta Assad
- Chemistry Department, School of Sciences and Engineering, The American University, New Cairo, Cairo, Egypt
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of pharmacy, Egyptian Russian University, Badr city, 11829, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
27
|
Su M, Sang S, Liang T, Li H. PPARG: A Novel Target for Yellow Tea in Kidney Stone Prevention. Int J Mol Sci 2023; 24:11955. [PMID: 37569334 PMCID: PMC10418378 DOI: 10.3390/ijms241511955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Kidney stones are a common urological disorder with increasing prevalence worldwide. The treatment of kidney stones mainly relies on surgical procedures or extracorporeal shock wave lithotripsy, which can effectively remove the stones but also result in some complications and recurrence. Therefore, finding a drug or natural compound that can prevent and treat kidney stones is an important research topic. In this study, we aimed to investigate the effects of yellow tea on kidney stone formation and its mechanisms of action. We induced kidney stones in rats by feeding them an ethylene glycol diet and found that yellow tea infusion reduced crystal deposits, inflammation, oxidative stress, and fibrosis in a dose-dependent manner. Through network pharmacology and quantitative structure-activity relationship modeling, we analyzed the interaction network between the compounds in yellow tea and kidney stone-related targets and verified it through in vitro and in vivo experiments. Our results showed that flavonoids in yellow tea could bind directly or indirectly to peroxisome proliferator-activated receptor gamma (PPARG) protein and affect kidney stone formation by regulating PPARG transcription factor activity. In conclusion, yellow tea may act as a potential PPARG agonist for the prevention and treatment of renal oxidative damage and fibrosis caused by kidney stones.
Collapse
Affiliation(s)
- Mingjie Su
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Siyao Sang
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Taotao Liang
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hui Li
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
- Fudan-Datong Institute of Chinese Origin, Shanxi Academy of Advanced Research and Innovation, Datong 037006, China
| |
Collapse
|
28
|
Li Y, Zhang J, Jia H, Pan Y, Xu YQ, Wang Y, Deng WW. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea. Food Chem 2023; 427:136711. [PMID: 37390734 DOI: 10.1016/j.foodchem.2023.136711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Roasting is essential for processing large-leaf yellow tea (LYT). However, the effect of the roasting on the metabolic and sensory profiles of LYT remains unknown. Herein, the metabolomics and sensory quality of LYT at five roasting degrees were evaluated by liquid/gas chromatography mass spectrometry and quantitative descriptive analysis. A higher degree of roasting resulted in a significantly stronger crispy rice, fried rice, and smoky-burnt aroma (p < 0.05), which is closely associated with heterocyclic compound accumulation (concentrations: 6.47 ± 0.27 - 1065.00 ± 5.58 µg/g). Amino acids, catechins, flavonoid glycosides and N-ethyl-2-pyrrolidone-substituted flavan-3-ol varied with roasting degree. The enhancement of crispy-rice and burnt flavor coupled with the reduction of bitterness and astringency. Correlations analysis revealed the essential compounds responsible for roasting degree, including 2,3-diethyl-5-methylpyrazine, hexanal, isoleucine, N-ethyl-2-pyrrolidone-substituted flavan-3-ol (EPSF), and others. These findings provide a theoretical basis for improving the specific flavors of LYT.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yue Pan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| |
Collapse
|
29
|
Gui A, Gao S, Zheng P, Feng Z, Liu P, Ye F, Wang S, Xue J, Xiang J, Ni D, Yin J. Dynamic Changes in Non-Volatile Components during Steamed Green Tea Manufacturing Based on Widely Targeted Metabolomic Analysis. Foods 2023; 12:foods12071551. [PMID: 37048372 PMCID: PMC10094149 DOI: 10.3390/foods12071551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Steamed green tea has unique characteristics that differ from other green teas. However, the alteration patterns of non-volatile metabolites during steamed green tea processing are not fully understood. In this study, a widely targeted metabolomic method was employed to explore the changes in non-volatile metabolites during steamed green tea processing. A total of 735 non-volatile compounds were identified, covering 14 subclasses. Of these, 256 compounds showed significant changes in at least one processing step. Most amino acids, main catechins, caffeine, and main sugars were excluded from the analysis. The most significant alterations were observed during steaming, followed by shaping and drying. Steaming resulted in significant increases in the levels of most amino acids and their peptides, most phenolic acids, most organic acids, and most nucleotides and their derivates, as well as some flavonoids. Steaming also resulted in significant decreases in the levels of most lipids and some flavonoids. Shaping and drying caused significant increases in the levels of some flavonoids, phenolic acids, and lipids, and significant decreases in the levels of some amino acids and their peptides, some flavonoids, and some other compounds. Our study provides a comprehensive characterization of the dynamic alterations in non-volatile metabolites during steamed green tea manufacturing.
Collapse
Affiliation(s)
- Anhui Gui
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shiwei Gao
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengcheng Zheng
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhihui Feng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Panpan Liu
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fei Ye
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shengpeng Wang
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jinjin Xue
- Key Laboratory of Tea Resources Comprehensive Utilization (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Xiang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445002, China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
30
|
Feng X, Yang S, Pan Y, Zhou S, Ma S, Ou C, Fan F, Gong S, Chen P, Chu Q. Yellow tea: more than turning green leaves to yellow. Crit Rev Food Sci Nutr 2023; 64:7836-7853. [PMID: 37009836 DOI: 10.1080/10408398.2023.2193271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Yellow tea (YT), a slightly-fermented tea originated from Ming Dynasty with distinctive "Three yellows," mild-sweet smell, and mellow taste attributed to the unique yellowing process. Based on current literature and our previous work, we aim to comprehensively illustrate the key processing procedures, characteristic chemical compounds, health benefits and applications, as well as the interlocking relationships among them. Yellowing is the most vital procedure anchored on the organoleptic quality, characteristic chemical components, and bioactivities of YT, which is influenced by temperature, moisture content, duration, and ventilation conditions. Pheophorbides, carotenoids, thearubigins and theabrownins are the major pigments contributing to the "three yellows" appearance. Alcohols, such as terpinol and nerol, are attributed to the refreshing and sweet aroma of bud and small-leaf YT, while heterocyclics and aromatics forming during roasting result in the crispy rice-like large-leaf YT. Hygrothermal effects and enzymatic reactions during yellowing result in the decline of astringent substances. Meanwhile, multiple bioactive compounds such as catechins, ellagitannins, and vitexin, endow YT with antioxidant, anti-metabolic syndrome, anti-cancer, gut microbiota regulation, and organ injury protection effects. Future studies focusing on the standard yellowing process technology, quality evaluation system, and functional factors and mechanisms, possible orientations, and perspectives are guaranteed.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shiyan Yang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
31
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
32
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
33
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
34
|
Wang N, Lan C, Lu H, Li L, Liao D, Xu K, Sun H, Tang Y, Wang Y, Mei J, Wei M, Wu T, Zhu H. Preventive effect and mechanism of Tibetan tea extract on thrombosis in arachidonic acid-induced zebrafish determined via RNA-seq transcriptome profiles. PLoS One 2023; 18:e0285216. [PMID: 37205684 DOI: 10.1371/journal.pone.0285216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Thrombosis is a key pathological event in cardiovascular diseases and is also the most important targeting process for their clinical management. In this study, arachidonic acid (AA) was used to induce thrombus formation in zebrafish larvae. Blood flow, red blood cell (RBCs) aggregation and cellular oxidative stress were measured to evaluate the antithrombotic effect of Tibetan tea (TT). Meanwhile, the potential molecular mechanism was further explored by transcriptome sequencing (RNA-seq). The results indicated that TT could significantly restore heart RBCs intensity of thrombotic zebrafish, whilst decreasing RBCs accumulation in the caudal vein. The transcriptome analysis revealed that the preventive effect of TT on thrombosis could be mostly attributed to changes in lipid metabolism related signaling pathways, such as fatty acid metabolism, glycerollipid metabolism, ECM-receptor interaction and steroid biosynthesis signaling pathway. This study demonstrated that Tibetan tea could alleviate thrombosis by reducing oxidative stress levels and regulating lipid metabolism.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Luzhou Laojiao Co. Ltd, Luzhou, PR China
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Dalong Liao
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Haiyan Sun
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Yongqing Tang
- Chengdu Chongqing Shuangcheng Economic Circle (Luzhou) Advanced Technology Research Institute, Luzhou, China
| | - Yumeng Wang
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - Jie Mei
- Sichuan Jixiang Tea Co., Ltd., Ya'an, China
| | - Mengting Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
35
|
Characterization of the Key Aroma Compounds in Different Aroma Types of Chinese Yellow Tea. Foods 2022; 12:foods12010027. [PMID: 36613243 PMCID: PMC9818532 DOI: 10.3390/foods12010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Yellow tea is one of the six major tea categories in China. The floral fragrance type, high-fired fragrance type, fresh fragrance type, and corn-like fragrance type were the main aroma types of yellow tea screened by QDA. A total of 103 volatiles were identified in yellow teas by HS-SPME/GC-MS analysis. Using multivariate analysis and OAVs, forty-seven aroma compounds were identified as key aroma compounds for the formation of different aroma types of yellow teas. Among them, 8, 14, 7, and 18 key aroma compounds played an important role in the formation of aroma characteristics of floral fragrance, high-fired fragrance, fresh fragrance, and corn-like fragrance types of yellow teas, respectively. Furthermore, PLS analysis revealed that 12 aroma compounds were the key contributors to the 'floral and fruity' and 'sweet' attributes, five aroma compounds contributed to the 'roasted' attribute, and four aroma compounds related to the 'fresh' and 'grassy' attributes. This study provides new insights into the aroma characteristics formation of different aroma types of yellow teas and will provide a valuable theoretical basis for improving the flavor quality of yellow tea during the manufacturing process.
Collapse
|
36
|
Jiang L, Zheng K. A rapid classification method of tea products utilizing X-ray photoelectron spectroscopy: Relationship derived from correlation analysis, modeling, and quantum chemical calculation. Food Res Int 2022; 160:111689. [DOI: 10.1016/j.foodres.2022.111689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/29/2022]
|
37
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
38
|
Han Z, Jiang Z, Zhang H, Qin C, Rong X, Lai G, Wen M, Zhang L, Wan X, Ho CT. Amadori Reaction Products of Theanine and Glucose: Formation, Structure, and Analysis in Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11727-11737. [PMID: 36084346 DOI: 10.1021/acs.jafc.2c04560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amadori rearrangement products (ARPs) derived from the Maillard reaction between theanine and glucose (ARP 1), as well as pyroglutamic acid and glucose (ARP 2), were identified by liquid chromatograph tandem mass spectroscopy methods. The effects of initial reactant ratio, temperature, pH, and heating time on ARP generation were analyzed. The formation of both ARPs was most favored under 100 °C, while an alkaline environment slightly promoted the generation of ARP 1 and acidic conditions contributed more to ARP 2 formation. The decomposition of ARP 1 was suggested to be the predominant formation mechanism of ARP 2. Preparation, purification, and structure identification of ARP 1 were conducted, with its structure confirmed as 1-deoxy-1-l-theanino-d-fructose. The contents of ARP 1 in green, black, dark, white, yellow, and Oolong teas were quantitatively determined, of which black teas contained the highest levels of ARP 1, possibly due to the high glucose content and processing techniques.
Collapse
Affiliation(s)
- Zisheng Han
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoqing Rong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
39
|
Sang S, Wang L, Liang T, Su M, Li H. Potential role of tea drinking in preventing hyperuricaemia in rats: biochemical and molecular evidence. Chin Med 2022; 17:108. [PMID: 36109783 PMCID: PMC9479443 DOI: 10.1186/s13020-022-00664-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lifestyle and diet play a significant role in hyperuricaemia. Accumulating evidence indicates that tea consumption is associated with hyperuricaemia and gout. However, diverse compounds in different types of tea make it quite difficult to determine the relevant molecular mechanism. Here, we compared the effects of six types of tea on hyperuricaemia induced by potassium oxonate (PO) and hypoxanthine in rats and investigated the possible underlying mechanisms. METHODS Rats were randomly assigned to ten groups: the control, hyperuricaemia model, benzbromarone positive control, traditional Chinese medicine Simiao San positive control, green tea, yellow tea, black tea, white tea, red tea, and cyan tea treatment groups. After 21 days, uric acid (UA), xanthine oxidase (XOD), alanine aminotransferase (ALT),blood urea nitrogen (BUN), and creatinine (CRE) were assessed. Serum levels of interleukin-1β (IL-1β) were measured with an enzyme-linked immunosorbent assay. Haematoxylin-eosin staining and immunohistochemistry were used to assess liver and kidney injury. RESULTS The levels of UA, CRE, and BUN in the treatment group were decreased to varying degrees. There was a significant reduction in UA, CRE, and BUN levels for yellow tea compared to the positive control drugs. Yellow tea suppressed XOD activity and alleviated hepatic and kidney injury. Network pharmacology and untargeted metabolomics indicated that ten yellow tea bioactive ingredients and 35 targets were responsible for preventing hyperuricaemia, which was mediated by 94 signalling pathways, including IL-1β and TNF. CONCLUSION These findings indicate that green tea cannot reduce the serum uric acid level of hyperuricaemic rats. Yellow tea can significantly improve hyperuricaemia by regulating the inflammatory response, autophagy, and apoptosis. This study provides a potential candidate for the treatment of hyperuricaemia and a basis for selecting therapeutic tea for patients with hyperuricaemia.
Collapse
Affiliation(s)
- Siyao Sang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lufei Wang
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, 200438, Shanghai, China
| | - Taotao Liang
- Department of Haematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Tumour Hospital, Zhengzhou, 450008, China
| | - Mingjie Su
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, 200438, Shanghai, China
- Human Phenome Institute, Fudan University, 200438, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, 200438, Shanghai, China.
- Human Phenome Institute, Fudan University, 200438, Shanghai, China.
- Fudan-Datong Institute of Chinese Origin, Shanxi Academy of Advanced Research and Innovation, 037006, Datong, China.
| |
Collapse
|
40
|
ULA F, PRAWİRA-ATMAJA MI, MAULANA H, HARİANTO S, SHABRİ S, ARİEF DZ. Effect of fixation methods and various clones of Camellia sinensis var. sinensis (L) properties and antioxidant activity of Indonesian green tea. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1014894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fixation is essential in green tea processing to inactivate the polyphenol oxidase enzyme. In Indonesia, green tea is made from the Assam variety and produced using the panning method. Few studies are reported on green tea made from Indonesian clones of the Sinensis variety. This study aims to identify chemical characteristics, antioxidant activity, and sensory evaluation of green tea from local clones of the Sinensis variety (GMBS 2, GMBS 4, and GMBS 5) with different fixation methods (panning and steaming). The results show that the caffeine content of green tea products ranged from 2.51-2.59% and 2.67-2.74% for panning and steaming methods. The panning method produced green tea with higher total polyphenol and flavonoid content than the steaming method. Green tea with the panning method has an IC50 value of 14.45; 14.41; and 17.41 mg/L for GMBS 2, GMBS 4, and GMBS 5, respectively. The panning method resulted in a smaller IC50 value than the steaming method for GMBS 2 and GMBS 4 clones. The steaming method produced green tea with a higher taste, aroma, and total score than those the panning method. However, different fixation methods did not significantly affect the appearance, liquor color, and leaf infusion. In conclusion, different fixation methods on GMBS 2, GMB 4, and GMB 5 produced green tea products that met the Indonesian National Standard 3945:2016. Further research is needed to determine the role of the plucking period/season and the characteristics of volatile compounds of green tea from GMBS clones with different fixation methods.
Collapse
Affiliation(s)
- Fadhilatul ULA
- Dept. Food Technology, Faculty of Engineering, Universitas Pasundan
| | | | | | | | - S SHABRİ
- Indonesia Research Institute for Tea and Cinchona
| | | |
Collapse
|
41
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
42
|
Zeng Z, Jiang Y, Ma C, Chen J, Zhang X, Lin J, Liu Y, Guo J. Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves. Foods 2022; 11:foods11152178. [PMID: 35892763 PMCID: PMC9330920 DOI: 10.3390/foods11152178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Plastic baskets are commonly used as containers for fresh tea leaves during storage and transport after harvest. Nevertheless, there are significant challenges in controlling the core temperature of the basket since fresh tea leaves still maintain a certain degree of respiration after being harvested, with extremely high temperatures being the major factor for the color change of fresh tea leaves. A numerical model was developed to improve the temperature control of the plastic basket, by which the influence of different structural parameters on the core temperature in the plastic baskets with fresh tea leaves was analyzed. The accuracy of the model in predicting airflow and temperature distributions was validated against experimental data. The maximum RMSE was 1.158 °C and the maximum MRE was 5.410% between the simulated and test temperature value. The maximum deviation between the simulated velocity and test velocity was 0.11 m/s, the maximum RE was 29.05% and the maximum SD was 0.024. The results show that a plastic basket with a ventilation duct efficiently decreased the temperature of the fresh tea leaves and significantly affected the heat transfer between the fresh tea leaves and the ambient air compared to the plastic basket without a ventilation duct. Furthermore, the effect on the heat transfer was further expanded by the use of a plastic basket with a ventilation duct when the plastic baskets were stacked. The maximum temperature differences were 0.52 and 0.40 according to the stacked and single-layer products, respectively. The ambient temperature and the bulk density of the fresh tea leaves have a significant influence on the core temperature.
Collapse
Affiliation(s)
- Zhixiong Zeng
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
| | - Yihong Jiang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Jin Chen
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Xiaodan Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Jicheng Lin
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
| | - Yanhua Liu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
| | - Jiaming Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (Y.J.); (J.C.); (X.Z.); (J.L.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
- Correspondence: ; Tel./Fax: +86-020-8528-2860
| |
Collapse
|
43
|
Ye F, Qiao X, Gui A, Liu P, Wang S, Wang X, Teng J, Zheng L, Feng L, Han H, Zhang B, Chen X, Gao Z, Gao S, Zheng P. Characterization of Roasting Time on Sensory Quality, Color, Taste, and Nonvolatile Compounds of Yuan An Yellow Tea. Molecules 2022; 27:molecules27134119. [PMID: 35807365 PMCID: PMC9268202 DOI: 10.3390/molecules27134119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Roasting is crucial for producing Yuan An yellow tea (YAYT) as it substantially affects sensory quality. However, the effect of roasting time on YAYT flavor quality is not clear. To investigate the effect of roasting time on the sensory qualities, chemical components, odor profiles, and metabolic profile of YAYTs produced with 13 min roasting, 16 min roasting, 19 min roasting, 22 min roasting, and 25 min roasting were determined. The YAYTs roasted for 22 min got higher sensory scores and better chemical qualities, such as the content of gallocatechin (GC), gallocatechin gallate (GCG), free amino acids, solutable sugar, meanwhile the lightness decreased, the hue of tea brew color (b) increased, which meant the tea brew got darker and yellower. YAYTs roasted for 22 min also increased the contents of key odorants, such as benzaldehyde, nonanal, β-cyclocitral, linalool, nerol, α-cedrol, β-ionone, limonene, 2-methylfuran, indole, and longiborneol. Moreover, non-targeted metabolomics identified up to 14 differentially expressed metabolites through pair-wise comparisons, such as flavonoids, phenolic acids, sucrose, and critical metabolites, which were the main components corresponding to YAYT roasted for 22 min. In summary, the current results provide scientific guidance for the production of high quality YAYT.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China;
| | - Xiaoyan Qiao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China;
| | - Anhui Gui
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Panpan Liu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Shengpeng Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Xueping Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Jin Teng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Lin Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Lin Feng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Hanshan Han
- MuLanTia Xiang Co., Ltd., Huangpi District, Wuhan 432200, China;
| | - Binghua Zhang
- Danding Tea Company Limited, Danjiangkou Conty, Shiyan 442717, China;
| | - Xun Chen
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
| | - Zhiming Gao
- Yuan’an Lei Zu Tea Company Limited, Yuan’an Conty, Yichang 444205, China;
| | - Shiwei Gao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
- Correspondence: (S.G.); (P.Z.)
| | - Pengcheng Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430068, China; (F.Y.); (A.G.); (P.L.); (S.W.); (X.W.); (J.T.); (L.Z.); (L.F.); (X.C.)
- Correspondence: (S.G.); (P.Z.)
| |
Collapse
|
44
|
Zhao L, Zhao H, Zhao Y, Sui M, Liu J, Li P, Liu N, Zhang K. Role of Ginseng, Quercetin, and Tea in Enhancing Chemotherapeutic Efficacy of Colorectal Cancer. Front Med (Lausanne) 2022; 9:939424. [PMID: 35795631 PMCID: PMC9252166 DOI: 10.3389/fmed.2022.939424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
As the most common gastrointestinal malignancy, colorectal cancer (CRC) remains a leading cause of cancer death worldwide. Although multimodal chemotherapy has effectively improved the prognosis of patients with CRC in recent years, severe chemotherapy-associated side effects and chemoresistance still greatly impair efficacy and limit its clinical application. In response to these challenges, an increasing number of traditional Chinese medicines have been used as synergistic agents for CRC administration. In particular, ginseng, quercetin, and tea, three common dietary supplements, have been shown to possess the potent capacity of enhancing the sensitivity of various chemotherapy drugs and reducing their side effects. Ginseng, also named “the king of herbs”, contains a great variety of anti-cancer compounds, among which ginsenosides are the most abundant and major research objects of various anti-tumor studies. Quercetin is a flavonoid and has been detected in multiple common foods, which possesses a wide range of pharmacological properties, especially with stronger anti-cancer and anti-inflammatory effects. As one of the most consumed beverages, tea has become particularly prevalent in both West and East in recent years. Tea and its major extracts, such as catechins and various constituents, were capable of significantly improving life quality and exerting anti-cancer effects both in vivo and in vitro. In this review, we mainly focused on the adjunctive effects of the three herbs and their constituents on the chemotherapy process of CRC.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, China
| | - Yongqing Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mingxiu Sui
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinping Liu
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Pingya Li
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ning Liu
- Department of Central Laboratory, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ning Liu
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
- Kai Zhang
| |
Collapse
|
45
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
46
|
Wei Y, Yin X, Wu H, Zhao M, Huang J, Zhang J, Li T, Ning J. Improving the flavor of summer green tea (Camellia sinensis L.) using the yellowing process. Food Chem 2022; 388:132982. [PMID: 35447593 DOI: 10.1016/j.foodchem.2022.132982] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Summer green tea (SGT) has poor flavor due to its high levels of bitterness and astringency. The present study aimed to improve the flavor of SGT using the yellowing process. The results showed that after the yellowing process, the sweetness and overall acceptability increased, and the content of gallated catechins and flavonol glycosides decreased by 30.2% and 27.4%, respectively, as did the bitterness and astringency of SGT. Yellowing caused a decrease in the concentration of some aroma compounds, such as (z)-3-hexen-1-ol, 1-hexanol, pentanal, heptanal and 1-octanol, which caused grassy, floral and fruity aromas. In contrast, the concentrations of 1-octen-3-ol, benzene acetaldehyde and β-ionone increased, which have mushroom and sweet aromas. Meanwhile, the sweetness and umami of SGT were enhanced by the addition of selected aroma compounds (1-octen-3-ol, benzene acetaldehyde and β-ionone), demonstrating that the yellowing process improves the flavor of SGT through odor-taste interactions.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huiting Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
47
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
48
|
Fan FY, Zhou SJ, Qian H, Zong BZ, Huang CS, Zhu RL, Guo HW, Gong SY. Effect of Yellowing Duration on the Chemical Profile of Yellow Tea and the Associations with Sensory Traits. Molecules 2022; 27:molecules27030940. [PMID: 35164205 PMCID: PMC8839223 DOI: 10.3390/molecules27030940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The yellowing process is the crucial step to form the characteristic sensory and chemical properties of yellow tea. To investigate the chemical changes and the associations with sensory traits during yellowing, yellow teas with different yellowing times (0–13 h) were prepared for sensory evaluation and chemical analysis. The intensities of umami and green-tea aroma were reduced whereas sweet taste, mellow taste and sweet aroma were increased under long-term yellowing treatment. A total of 230 chemical constituents were determined, among which 25 non-volatiles and 42 volatiles were the key chemical contributors to sensory traits based on orthogonal partial least squares discrimination analysis (OPLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. The decrease in catechins, flavonol glycosides and caffeine and the increase in certain amino acids contributed to the elevated sweet taste and mellow taste. The sweet, woody and herbal odorants and the fermented and fatty odorants were the key contributors to the characteristic sensory feature of yellow tea with sweet aroma and over-oxidation aroma, including 7 ketones, 5 alcohols, 1 aldehyde, 5 acids, 4 esters, 5 hydrocarbons, 1 phenolic compound and 1 sulfocompound. This study reveals the sensory trait-related chemical changes in the yellowing process of tea, which provides a theoretical basis for the optimization of the yellowing process and quality control of yellow tea.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Sen-Jie Zhou
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hong Qian
- Deqing Agricultural Technology Extension Center, 883 Zhongxingbei Road, Huzhou 313200, China;
| | - Bang-Zheng Zong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Chuang-Sheng Huang
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Ruo-Lan Zhu
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hao-Wei Guo
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Shu-Ying Gong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
- Correspondence: ; Tel.: +86-(571)-88982519
| |
Collapse
|
49
|
Chen G, Peng Y, Xie M, Xu W, Chen C, Zeng X, Liu Z. A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk. Crit Rev Food Sci Nutr 2021; 63:5447-5464. [PMID: 34964426 DOI: 10.1080/10408398.2021.2020718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
50
|
MalligArjuna Rao S, Kotteeswaran S, Visagamani AM. Green synthesis of zinc oxide nanoparticles from camellia sinensis: Organic dye degradation and antibacterial activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|