1
|
Thomas GA, Paradell Gil T, Müller CT, Rogers HJ, Berger CN. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol 2024; 117:104389. [PMID: 37919001 DOI: 10.1016/j.fm.2023.104389] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ready-to-eat fruit and vegetables are a convenient source of nutrients and fibre for consumers, and are generally safe to eat, but are vulnerable to contamination with human enteric bacterial pathogens. Over the last decade, Salmonella spp., pathogenic Escherichia coli, and Listeria monocytogenes have been linked to most of the bacterial outbreaks of foodborne illness associated with fresh produce. The origins of these outbreaks have been traced to multiple sources of contamination from pre-harvest (soil, seeds, irrigation water, domestic and wild animal faecal matter) or post-harvest operations (storage, preparation and packaging). These pathogens have developed multiple processes for successful attachment, survival and colonization conferring them the ability to adapt to multiple environments. However, these processes differ across bacterial strains from the same species, and across different plant species or cultivars. In a competitive environment, additional risk factors are the plant microbiome phyllosphere and the plant responses; both factors directly modulate the survival of the pathogens on the leaf's surface. Understanding the mechanisms involved in bacterial attachment to, colonization of, and proliferation, on fresh produce and the role of the plant in resisting bacterial contamination is therefore crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Gareth A Thomas
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teresa Paradell Gil
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cedric N Berger
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
2
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
Beauvais W, Englishbey A, Marconi C, Cholula U, Belias A, Wemette M, Usaga J, Churey J, Worobo R, Enciso J, Anciso J, Nightingale K, Ivanek R. The effectiveness of treating irrigation water using ultraviolet radiation or sulphuric acid fertilizer for reducing generic Escherichia coli on fresh produce-a controlled intervention trial. J Appl Microbiol 2021; 131:1360-1377. [PMID: 33482030 PMCID: PMC8451819 DOI: 10.1111/jam.15011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/03/2022]
Abstract
AIMS The aims of this study were to: (i) estimate the effectiveness of ultraviolet radiation (UV) and sulphuric acid-based fertilizer (SA), at reducing levels of generic Escherichia coli in surface irrigation water and on produce and surface soil in open produce fields; and (ii) describe the population dynamics of generic E. coli in produce fields. METHODS AND RESULTS Spinach and cantaloupe plots were randomly assigned to control, UV or SA treatment groups. Irrigation water was inoculated with Rifampicin-resistant E. coli prior to treatment. More than 75% of UV- and SA-treated tank water samples had counts below the detection limit, compared to a mean count of 3·3 Log10 CFU per ml before treatment. Levels of Rifampicin-resistant E. coli in soil and produce both increased and decreased over 10-15 days after irrigation, depending on the plot and time-period. CONCLUSIONS UV and SA treatments effectively reduce the levels of E. coli in surface irrigation water. Their effectiveness at reducing contamination on produce was dependent on environmental conditions. Applying wait-times after irrigation and prior to harvest is not a reliable means of mitigating against contaminated produce. SIGNIFICANCE AND IMPACT OF THE STUDY The results are of timely importance for the agricultural industry as new FSMA guidelines require producers to demonstrate a low microbial load in irrigation water or allow producers to apply a wait-time to mitigate the risk of contaminated produce.
Collapse
Affiliation(s)
- W. Beauvais
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary MedicineCornell UniversityIthacaNYUSA
- Comparative Pathobiology DepartmentCollege of Veterinary Medicine, Purdue UniversityWest LafayetteINUSA
| | - A.K. Englishbey
- Animal and Food SciencesTexas Tech UniversityLubbockTXUSA
- Hygiena LLCNew CastleDEUSA
| | - C.M. Marconi
- Texas A&M AgriLife‐WeslacoWeslacoTXUSA
- College of Agriculture and Life Sciences ‐ IR‐4 ProjectNorth Carolina State UniversityRaleighNCUSA
| | - U. Cholula
- Biological and Agricultural EngineeringCollege of Agriculture and Life SciencesTexas A&M UniversityCollege StationTXUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNVUSA
| | - A.M. Belias
- Department of Food ScienceCollege of Agriculture and Life SciencesCornell UniversityIthacaNYUSA
| | - M. Wemette
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary MedicineCornell UniversityIthacaNYUSA
| | - J. Usaga
- Department of Food ScienceCollege of Agriculture and Life SciencesCornell UniversityIthacaNYUSA
- National Center for Food Science and TechnologyUniversity of Costa RicaCiudad Universitaria Rodrigo FacioSan JoseCosta Rica
| | - J.J. Churey
- Department of Food ScienceCollege of Agriculture and Life SciencesCornell UniversityIthacaNYUSA
| | - R.W. Worobo
- Department of Food ScienceCollege of Agriculture and Life SciencesCornell UniversityIthacaNYUSA
| | - J. Enciso
- Biological and Agricultural EngineeringCollege of Agriculture and Life SciencesTexas A&M UniversityCollege StationTXUSA
| | - J.R. Anciso
- Horticultural SciencesTexas A&M AgriLife Extension ServiceWeslacoTXUSA
| | - K. Nightingale
- Animal and Food SciencesTexas Tech UniversityLubbockTXUSA
| | - R. Ivanek
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary MedicineCornell UniversityIthacaNYUSA
| |
Collapse
|
4
|
Gu L, Wu JY, Hua ZL, Chu KJ. The response of nitrogen cycling and bacterial communities to E. coli invasion in aquatic environments with submerged vegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110204. [PMID: 32148275 DOI: 10.1016/j.jenvman.2020.110204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The effects of exogenous Escherichia coli on nitrogen cycling (N-cycling) in freshwater remains unclear. Thus, seven ecosystems, six with submerged plants-Potamogeton crispus (PC) and Myriophyllum aquaticum (MA)-and one with no plants were set up. Habitats were assessed before and after E. coli addition (107 colony-forming units/mL). E. coli colonization of freshwater ecosystems had significant effects on bacterial community structure in plant surface biofilms and surface sediments (ANOVA, P < 0.05). It reduced the relative abundance of nitrosification bacteria (-70.94 ± 26.17%) and nitrifiers (-47.86 ± 23.68%) in biofilms which lead to significant reduction of ammoxidation in water (P < 0.05). The N-cycling intensity from PC systems was affected more strongly by E. coli than were MA systems. Furthermore, the coupling coefficient of exogenous E. coli to indigenous N-cycling bacteria in sediments (6.061, average connectivity degree) was significantly weaker than that in biofilms (9.852). Additionally, at the genus level, E. coli were most-closely associated with N-cycling bacteria such as Prosthecobacter, Hydrogenophaga, and Bacillus in sediments and biofilms according to co-occurrence bacterial network (Spearman). E. coli directly changed their abundance, so that the variability of species composition of N-cycling bacterial taxa was triggered, as well. Overall, exogenous E. coli repressed ammoxidation, but promoted ammonification and denitrification. Our results provided new insights into how pathogens influence the nitrogen cycle in freshwater ecosystems.
Collapse
Affiliation(s)
- Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Ke-Jian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Abstract
Microbial pollution is a serious food safety issue because it can lead to a wide range of foodborne diseases. A great number of foodborne diseases and outbreaks are reported in which contamination of fresh produce and animal products occurs from polluted sources with pathogenic bacteria, viruses and protozoa and such outbreaks are reviewed and the sources are revealed. Investigations of foodborne outbreaks involved meat production and fresh produce, namely, that occurred at the early stages of the food chain have shown certain sources of contamination. Domesticated food animals, as well as wild animals, flies and rodents can serve as a source of contamination of nearby produce-growing fields and can lead to human infection through direct contact at farms and, mostly, mail order hatcheries. The most of the fresh produce associated outbreaks have followed wildlife intrusion into growing fields or fecal contamination from nearly animal production facilities that likely led to produce contamination, polluted water used for irrigation and improper manure. Preventive measures, as part of implemented good agricultural practice systems are described. Controlling and minimizing pre-harvest contamination may be one of the key aspects of food safety.
Collapse
Affiliation(s)
- Thomas Bintsis
- Department of Agricultural Technology, TEI of West Macedonia, Florina, Greece
| |
Collapse
|