1
|
Panza O, Del Nobile MA, Conte A. The Optimization of the Dehydration Temperature of Peels from Prickly Pears. Foods 2025; 14:811. [PMID: 40077514 PMCID: PMC11899222 DOI: 10.3390/foods14050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The optimization of the prickly pear peel (PPP) dehydration temperature was addressed. Two indicators of efficiency were used to select the optimal dehydration temperature: one related to the process productivity, another to the energy consumption. To calculate them the PPP dehydration kinetics were measured at three different temperatures (i.e., 50, 60, and 70 °C) along with the energy consumption of the process. A mathematical model was used to fit the dehydration kinetics. The influence of the temperature on the kinetics was assessed by analyzing the dependence of the fitting parameters on the dehydration temperature. It was found that both the kinetic parameters and the equilibrium parameter depend on the temperature through an exponential-type equation. The model was also used to calculate both the process productivity and the average energy consumed by the dehydration cabinet per grams of evaporated water when 99% dehydration is reached. The two efficiency indicators suggested that the optimal drying temperature is 70 °C, both being the indicators decreasing function of the temperature.
Collapse
Affiliation(s)
- Olimpia Panza
- Department of Humanistic Studies, Letters, Cultural Heritage and Educational Sciences, University of Foggia, Via Arpi, 176, 71121 Foggia, Italy; (O.P.); (A.C.)
| | - Matteo Alessandro Del Nobile
- Department of Economics, Management and Territory, University of Foggia, Via A. da Zara, 11, 71122 Foggia, Italy
| | - Amalia Conte
- Department of Humanistic Studies, Letters, Cultural Heritage and Educational Sciences, University of Foggia, Via Arpi, 176, 71121 Foggia, Italy; (O.P.); (A.C.)
| |
Collapse
|
2
|
Zheng S, Huang Z, Dong L, Li D, Hu X, Chen F, Ma C. Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients. Foods 2025; 14:331. [PMID: 39856997 PMCID: PMC11765362 DOI: 10.3390/foods14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry. METHODS This paper provides an overview of the sources and sustainable methods of high value-added compounds extracted from FVW. Sustainable techniques, including supercritical fluid extraction and ultrasound-assisted extraction, are compared with traditional methods, for their efficiency in extracting high-value compounds from FVW while minimizing environmental impact. DISCUSSIONS Sustainable extraction of FVW compounds is sustainable and beneficial for novel food ingredients. However, challenges in scalability and cost need to be addressed for wider adoption in the food sector. CONCLUSIONS Sustainable extraction techniques effectively extract phytochemicals from FVW, preserving bioactivity and reducing environmental load. These methods show promise for sustainable food ingredient development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (Z.H.); (L.D.); (D.L.); (X.H.); (F.C.)
| |
Collapse
|
3
|
Franca AS, Basílio EP, Resende LM, Fante CA, Oliveira LS. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods 2024; 13:3935. [PMID: 39683007 DOI: 10.3390/foods13233935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes. The evaluated sensory attributes were color, smell, taste, texture and overall impression, and they were evaluated according to a 9-point hedonic scale. Internal preference maps were obtained based on the results from acceptance and "intention to buy" tests. In general, the cakes with lower coffee silverskin content (2.6% and 3.6%) had a similar level of acceptance and the cake with 4.6% coffee silverskin content was the least accepted. The most important attributes were taste and overall impression, corresponding to "like slightly" and "like moderately" for the cakes that had better acceptance. Nonetheless, even with the lowest amount of added CS (2.6%), the produced cakes could be regarded as antioxidant fiber sources (with fiber content above 3 g/100 g), thus confirming the potential of CS as a functional food additive.
Collapse
Affiliation(s)
- Adriana S Franca
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Emiliana P Basílio
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Laís M Resende
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Camila A Fante
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S Oliveira
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
4
|
Xing M, Xie F, Wang G, Yuan C, Huang S, Zhou T, Song Z, Ai L. The inhibitory effects of free and bound phenolics from Phyllanthus emblica Linn. on α-amylase: a comparison study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9719-9728. [PMID: 39132987 DOI: 10.1002/jsfa.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Phyllanthus emblica Linn. (PE) is rich in polyphenols, which can be categorized into free and bound phenolics (PEFP and PEBP). This study evaluated the inhibitory effect of PEFB and PEBP on α-amylase for the first time. The mechanism of the inhibition effect of PEFP and PEBP on α-amylase was investigated by enzyme inhibition kinetics, multispectral analysis, thermodynamics, and molecular docking. RESULTS Free and bound phenolics inhibited α-amylase activity effectively in a mixed type of inhibition. Fluorescence quenching and thermodynamic analyses showed that the binding of PEFP and PEBP to α-amylase occurred through a static quenching process (Kq = 6.94 × 10¹² and 5.74 × 10¹² L mol-1 s-1), which was accompanied by a redshift (λem from 343 to 347 nm), leading to a change in the microenvironment. This process was found to be a spontaneous exothermic reaction (ΔG < 0). Circular dichroism (CD) analysis confirms that the secondary structure of α-amylase was altered, in particular a decrease in α-helixes and an increase in random coils. Molecular docking studies showed that PEFP and PEBP interacted with α-amylase through hydrogen bonding and hydrophobic interactions. CONCLUSION The present study provides valuable insights into the mechanism of action of PEFP and PEBP on α-amylase, which will provide a theoretical basis for their possible use as novel natural α-amylase inhibitors. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingxia Xing
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunmei Yuan
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Siyan Huang
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Tingrun Zhou
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Zibo Song
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Arcia P, Curutchet A, Pérez-Pirotto C, Hernando I. Upcycling fruit pomaces (orange, apple, and grape-wine): The impact of particle size on phenolic compounds' bioaccessibility. Heliyon 2024; 10:e38737. [PMID: 39398048 PMCID: PMC11471267 DOI: 10.1016/j.heliyon.2024.e38737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
This work aimed to analyse the effect of particle size on bioactive compounds of different by-products. Orange, apple, and grape-wine by-products obtained from industrial production were dried and ground at two sizes: 1 mm and 0.5 mm. Pomaces were analysed in composition (protein, fat, carbohydrates, moisture, and ash contents) and bioactive compounds (total phenol content by Folin- Ciocalteu method and antioxidant capacity by FRAP assay) and submitted to an in-vitro digestion. FESEM was used to observe the microstructure of samples. All pomaces showed high fibre content (21.7, 31.2, and 58.9 g/100 g, in apple, orange, and grape pomace respectively). Total phenol content in raw material was higher in grape > orange > apple, with no differences (apple) or slight differences (grape and orange) between 1 mm and 0.5 mm particle size. Grape pomace was observed as a porous, more accessible structure, where extracting polyphenols was easier. Orange pomace', was compact and apple pomace structure was even more compact hindering the raw materials polyphenol extraction. After digestion, total phenol content increased in orange and apple pomace for both particle size. In apple, bioaccessibility of phenolic compounds showed a 5 fold increase for 1 mm sample size and a 4 fold increase for 0.5 mm sample size. In orange, for both sizes bioaccessibility increased but to a lesser extent (2.4 fold). In the case of grape pomace, although polyphenol content decreased after digestion (0.7 fold for both sizes), they showed the highest antioxidant capacity. Regarding the effect of particle size on total polyphenol content and antioxidant capacity, no trend was found in this work for the fruit pomaces studied. In the case of grape and apple, grinding at 1 mm should be adequate regarding antioxidant capacity while in the case of orange, it may be better to use a pomace ground at 0.5 mm.
Collapse
Affiliation(s)
- Patricia Arcia
- Latitud – Fundación LATU, Montevideo, Uruguay
- Departamento de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Ana Curutchet
- Latitud – Fundación LATU, Montevideo, Uruguay
- Departamento de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | | | - Isabel Hernando
- Grupo de Investigación Microestructura y Química de Alimentos, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
6
|
Munir S, Azeem A, Sikandar Zaman M, Zia Ul Haq M. From field to table: Ensuring food safety by reducing pesticide residues in food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171382. [PMID: 38432369 DOI: 10.1016/j.scitotenv.2024.171382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The present review addresses the significance of lowering pesticide residue levels in food items because of their harmful impacts on human health, wildlife populations, and the environment. It draws attention to the possible health risks-acute and chronic poisoning, cancer, unfavorable effects on reproduction, and harm to the brain or immunological systems-that come with pesticide exposure. Numerous traditional and cutting-edge methods, such as washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, cold plasma, ultrasonic cleaning, ozone treatment, and enzymatic treatment, have been proposed to reduce pesticide residues in food products. It highlights the necessity of a paradigm change in crop protection and agri-food production on a global scale. It offers opportunities to guarantee food safety through the mitigation of pesticide residues in food. The review concludes that the first step in reducing worries about the negative effects of pesticides is to implement regulatory measures to regulate their use. In order to lower the exposure to dietary pesticides, the present review also emphasizes the significance of precision agricultural practices and integrated pest management techniques. The advanced approaches covered in this review present viable options along with traditional methods and possess the potential to lower pesticide residues in food items without sacrificing quality. It can be concluded from the present review that a paradigm shift towards sustainable agriculture and food production is essential to minimize pesticide residues in food, safeguarding human health, wildlife populations, and the environment. Furthermore, there is a need to refine the conventional methods of pesticide removal from food items along with the development of modern techniques.
Collapse
Affiliation(s)
- Salman Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Asad Azeem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; College of Agriculture, University of Layyah, Layyah 31200, Pakistan
| | - Muhammad Sikandar Zaman
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Zia Ul Haq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Yang C, Yang W, Wang Y, Du Y, Zhao T, Shao H, Ren D, Yang X. Nonextractable Polyphenols from Fu Brick Tea Alleviates Ulcerative Colitis by Controlling Colon Microbiota-Targeted Release to Inhibit Intestinal Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7397-7410. [PMID: 38528736 DOI: 10.1021/acs.jafc.3c06883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study was designed to elucidate the colon microbiota-targeted release of nonextractable bound polyphenols (NEPs) derived from Fu brick tea and to further identify the possible anti-inflammatory mechanism in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 1.5% DSS drinking water-induced C57BL/6J mice were fed rodent chow supplemented with or without 8% NEPs or dietary fibers (DFs) for 37 days. The bound p-hydroxybenzoic acid and quercetin in NEPs were liberated up to 590.5 ± 70.6 and 470.5 ± 51.6 mg/g by in vitro human gut microbiota-simulated fermentation, and released into the colon of the mice supplemented with NEPs by 4.4- and 1.5-fold higher than that of the mice supplemented without NEPs, respectively (p < 0.05). Supplementation with NEPs also enhanced the colonic microbiota-dependent production of SCFAs in vitro and in vivo (p < 0.05). Interestingly, Ingestion of NEPs in DSS-induced mice altered the gut microbiota composition, reflected by a dramatic increase in the relative abundance of Dubosiella and Enterorhabdus and a decrease in the relative abundance of Alistipes and Romboutsia (p < 0.05). Consumption of NEPs was demonstrated to be more effective in alleviating colonic inflammation and UC symptoms than DFs alone in DSS-treated mice (p < 0.05), in which the protective effects of NEPs against UC were highly correlated with the reconstruction of the gut microbiome, formation of SCFAs, and release of bound polyphenols. These findings suggest that NEPs as macromolecular carriers exhibit targeted delivery of bound polyphenols into the mouse colon to regulate gut microbiota and alleviate inflammation.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Wuqi Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Li J, Ye F, Zhou Y, Lei L, Chen J, Li S, Zhao G. Tailoring the composition, antioxidant activity, and prebiotic potential of apple peel by Aspergillus oryzae fermentation. Food Chem X 2024; 21:101134. [PMID: 38292687 PMCID: PMC10826609 DOI: 10.1016/j.fochx.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Apple peel is a typical lignocellulosic food by-product rich in functional components. In this work, apple peel was solid-state fermented with Aspergillus oryzae with an aim to modulate its composition and bioactivity. The results showed that A. oryzae fermentation substantially tailored the composition, improved the antioxidant activity and prebiotic potential of apple peel. Upon the fermentation, 1) free phenolics increased and antioxidant activity improved; 2) the pectin substances degraded significantly, along with a decrease in soluble dietary fiber while an increase in insoluble dietary fiber; 3) the in vitro fermentability increased as indicated by the increase in total acid production. The gut microbiota was shaped with more health-promoting potentials, such as higher abundances of Lactobacillus, Bifidobacterium, Megamonas and Prevotella-9 as well as lower abundances of Enterobacter and Echerichia-Shigella. This work is conducive to the modification of apple peel as a potential ingredient in food formulations.
Collapse
Affiliation(s)
- Jianting Li
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, People’s Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, People’s Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People’s Republic of China
| |
Collapse
|
9
|
García-Aparicio MDP, Castro-Rubio F, Marina ML. Unlocking peach juice byproduct potential in food waste biorefineries: Phenolic compounds profile, antioxidant capacity and fermentable sugars. BIORESOURCE TECHNOLOGY 2024; 396:130441. [PMID: 38360219 DOI: 10.1016/j.biortech.2024.130441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This work assesses an integrated pathway for the revalorization of peach byproduct (PB) within a biorefinery. PB was subjected to an oven-drying (OD) treatment for its evaluation as a storage treatment. It was compared to freeze-drying and untreated material in terms of antioxidant capacity (AOC), phenolic compounds (PC) profile and fermentable sugar production. OD reduced the water content to less than 15 % while preserving the bound hydrolysable polyphenols, which were the more abundant PC (≈64 %) with the highest AOC. Drying treatments hampered polysaccharide accessibility, but some enzyme preparations released 60-70 g/L of fermentable sugars at relatively high solids loading (10 %). This study proposes a novel enzyme-based strategy for the valorisation of fermentable sugars and antioxidant compounds from PB. The sugars can be fermented into several building blocks while the solid residue enriched in recalcitrant phenolic compounds and proteins could be used to develop novel functional products for food/feed sectors.
Collapse
Affiliation(s)
- María Del Prado García-Aparicio
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Campus Universitario, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| | - Florentina Castro-Rubio
- Universidad de Alcalá, Centro de Química Aplicada y Biotecnología (CQAB), Campus Universitario, Ctra. Madrid-Barcelona Km. 33.600, 28771 Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Campus Universitario, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
10
|
Abreu TL, Estévez M, de Carvalho LM, de Medeiros LL, da Silva Ferreira VC, Salu BR, Oliva MLV, Madruga MS, Bezerra TKA. Unveiling the bioactivity and bioaccessibility of phenolic compounds from organic coffee husks using an in vitro digestion model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1833-1842. [PMID: 37884474 DOI: 10.1002/jsfa.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The large quantities of by-products generated in the coffee industry are a problem. Studies related to the biological potential of organic coffee husks are still limited. The aim of this work was to investigate the occurrence of phenolic compounds in organic coffee husks and to evaluate their potential as a source of bioactive dietary components. RESULTS To achieve this objective, three extracts were prepared, namely extractable polyphenols (EPs), hydrolyzable non-extractable polyphenols (H-NEPs), and non-extractable polyphenols (NEPs). These extracts were characterized and evaluated for their bioactive properties after simulated gastrointestinal digestion. The results show that the extraction process affected the occurrence of phenols from coffee peels, especially for caffeic acid, gallic acid, and chlorogenic acid. The free and bound polyphenols found in the extracts and digests not only showed antioxidant properties against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals but were also strongly bioavailable and had good anticoagulant potential. CONCLUSION These results highlight the potential health benefits of phytochemicals from coffee husks and open new perspectives for the use of such compounds in dietary supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Thaianaly Leite Abreu
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, Cáceres, Spain
| | - Leila Moreira de Carvalho
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Lorena Lucena de Medeiros
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Valquíria Cardoso da Silva Ferreira
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Bruno Ramos Salu
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marta Suely Madruga
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Taliana Kênia Alencar Bezerra
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
11
|
Aruwa CE, Sabiu S. Adipose tissue inflammation linked to obesity: A review of current understanding, therapies and relevance of phyto-therapeutics. Heliyon 2024; 10:e23114. [PMID: 38163110 PMCID: PMC10755291 DOI: 10.1016/j.heliyon.2023.e23114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Obesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others. As such, it is necessary to appraise the efficacies and mechanisms of action of safer, natural alternatives like plant-sourced compounds, extracts [extractable phenol (EP) and macromolecular antioxidant (MA) extracts], and anti-inflammatory peptides, among others, with a view to providing a unique approach to obesity care. These natural alternatives may constitute potent therapies for ATI linked to obesity. The potential of MA compounds (analysed for the first time in this review) and extracts in ATI and obesity management is elucidated upon, while also highlighting research gaps and future prospects. Furthermore, immune cells, signalling pathways, genes, and adipocyte cytokines play key roles in ATI responses and are targeted in certain therapies. As a result, this review gives an in-depth appraisal of ATI linked to obesity, its causes, mechanisms, and effects of past, present, and future therapies for reversal and alleviation of ATI. Achieving a significant decrease in morbidity and mortality rates attributed to ATI linked to obesity and related comorbidities is possible as research improves our understanding over time.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
12
|
Pires CA, de Oliveira Cavalcante LSP, de Carvalho AAM, de Siqueira PA, Dos Santos GV, de Paiva Anciens Ramos GL, Matoso Souto RN, de Barros Pinto Moreira RV, Teodoro AJ, Conte Junior CA, Cadena R, Domingues JR. Watermelon (Citrullus lanatus) rind flour: Development and characterization of a novel watermelon byproduct. J Food Sci 2023; 88:4495-4508. [PMID: 37830877 DOI: 10.1111/1750-3841.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/03/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Watermelon (Citrullus lanatus) is a fruit widely consumed by the Brazilian population; however, its rind is usually discarded, despite its nutritional value. This work aimed to develop a watermelon rind flour (WRF) and a fiber-rich bread. The WRF was submitted to microbiological analysis, proximate composition, antioxidant activity, and a profile of phenolic compounds. Six types of bread were developed: three using WRF (20%, 30%, and 40% of wheat flour replacement) and three control samples (only wheat flour), which were submitted to the same analysis, in addition to colorimetric properties, instrumental texture profile, and sensory evaluation (check-all-that-apply, purchase intent, and acceptance test). A high fiber content was observed in WRF (27.15%). The total concentration of phenolic compounds was 2.38 ± 0.20 mg of gallic acid equivalent per g and benzoic acid was the main compound found (73.50 mg/100 g WRF). The results of the antioxidant capacity through the DPPH method indicated a 30% reduction. The WRF 40% bread had 3.06 g of insoluble fiber, characterizing itself as a source of fiber. In the instrumental texture analysis, it was observed that bread hardness increased significantly as the WRF content increased. The formulation of the bread containing WRF is an alternative for the use of waste, favoring the development of a fiber-source product, with a functional food claim.
Collapse
Affiliation(s)
- Caroline Abreu Pires
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | | | - Paula Azevedo de Siqueira
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Guilherme Vargas Dos Santos
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Renata Nascimento Matoso Souto
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Cadena
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane Roberto Domingues
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
14
|
Yang W, Yang C, Du Y, Wang Q. Colon-Targeted Release of Turmeric Nonextractable Polyphenols and Their Anticolitis Potential via Gut Microbiota-Dependent Alleviation on Intestinal Barrier Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11627-11641. [PMID: 37470294 DOI: 10.1021/acs.jafc.3c00871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Solid evidence has emerged supporting the role of nonextractable polyphenols (NEPs) and dietary fibers (DFs) as gut microbiota modulators. This study aims to elucidate gut microbiota-dependent release of turmeric NEPs and examine the possible anti-inflammatory mechanism in the dextran sulfate sodium-induced ulcerative colitis (UC) model. 1.5% DSS drinking water-induced C57BL/6J mice were fed a standard rodent chow supplemented with or without 8% extractable polyphenols (EPs), NEPs, or DFs for 37 days. The bound curcumin, demethoxycurcumin, and bisdemethoxycurcumin in NEPs were released up to 181.5 ± 10.6, 65.2 ± 6.0, and 69.5 ± 7.6 μg/mL by in vitro gut microbiota-simulated fermentation and released into the colon of NEP-supplemented mice by 5.7-, 11.0-, and 7.8-fold higher than pseudo germ-free mice, respectively (p < 0.05). NEPs also enhanced the colonic microbiota-dependent production of short-chain fatty acids in vitro and in vivo (p < 0.05). Interestingly, NEP feeding significantly improved the DSS-caused gut microbiota disorder, epithelial barrier damage, and inflammation of UC mice better than EPs or DFs (p < 0.05). Meanwhile, the pseudo germ-free mice supplemented with NEPs failed to ameliorate UC symptoms. These findings manifest that turmeric NEPs as macromolecular carriers exert the target delivery of polyphenols into the colon for regulating gut microbiota to restore the impaired gut barrier function for alleviation of inflammation.
Collapse
Affiliation(s)
- Weirong Yang
- Medical School, Xi'an Peihua University, Xi'an 710199, China
- The Faculty of Science, The University of Sydney, Sydney 2006, Australia
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yao Du
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qiaofeng Wang
- Medical School, Xi'an Peihua University, Xi'an 710199, China
| |
Collapse
|
15
|
Núñez-Gómez V, González-Barrio R, Periago MJ. Interaction between Dietary Fibre and Bioactive Compounds in Plant By-Products: Impact on Bioaccessibility and Bioavailability. Antioxidants (Basel) 2023; 12:antiox12040976. [PMID: 37107351 PMCID: PMC10135553 DOI: 10.3390/antiox12040976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, around 31 million tonnes of food by-products are generated during primary production and trade. The management of these by-products may cause a negative impact, both at the economic and environmental levels, for both industry and society. In this regard, taking into consideration that these by-products retain the dietary fibre compositions and the bioactive compounds of the starting materials, plant food agro-industries have an interest in taking advantage of them, from a nutritional point of view. Therefore, this review evaluates the role of dietary fibre and bioactive compounds in these by-products as well as the potential interactions of both components and their implications for health, since the bioactive compounds associated with fibre may reach the colon, where they can be metabolised into postbiotic compounds, providing important health benefits (prebiotic, antioxidant, anti-inflammatory, etc.). Consequently, this aspect, on which there are few studies, is very relevant and must be considered in the revaluation of by-products to obtain new ingredients for food processing with improved nutritional and technological properties.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| | - María Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
16
|
Del Burgo-Gutiérrez C, Cid C, Ludwig IA, De Peña MP. LC-MS/MS Analysis Elucidates the Different Effects of Industrial and Culinary Processing on Total and Individual (Poly)phenolic Compounds of Piquillo Pepper ( Capsicum annuum cv. Piquillo). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6050-6060. [PMID: 37014295 PMCID: PMC10119983 DOI: 10.1021/acs.jafc.2c07829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Pepper constitutes an important source of (poly)phenols, mainly flavonoids. Nevertheless, heat treatments applied prior to consumption may have an impact on these antioxidants, and thus may also affect their potential bioactivity. In this study, the effect of industrial and culinary treatments on the total and individual (poly)phenolic content of Piquillo pepper (Capsicum annuum cv. Piquillo) was thoroughly evaluated by high-performance liquid chromatography coupled to tandem mass spectrometry. A total of 40 (poly)phenols were identified and quantified in raw pepper. Flavonoids (10 flavonols, 15 flavones, and 2 flavanones) were the major compounds identified (62.6%). Among the 13 phenolic acids identified in raw samples, cinnamic acids were the most representative. High temperatures applied and subsequent peeling during industrial grilling drastically decreased the total (poly)phenolic content from 2736.34 to 1099.38 μg/g dm (59.8% reduction). In particular, flavonoids showed a higher reduction of 87.2% after grilling compared to nonflavonoids which only decreased by 14%. Moreover, 9 nonflavonoids were generated during grilling, modifying the (poly)phenolic profile. After culinary treatments, specifically frying, (poly)phenols appear to be better released from the food matrix, enhancing their extractability. Overall, industrial and culinary treatments differently affect both the total and individual (poly)phenolic compounds of pepper and, despite the reduction, they might also positively influence their bioaccessibility.
Collapse
Affiliation(s)
- Cristina Del Burgo-Gutiérrez
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Concepción Cid
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Iziar A. Ludwig
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María-Paz De Peña
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
17
|
Martínez-Meza Y, Escobar-Ortiz A, Buergo-Martínez F, Pérez-Ramírez IF, Pérez-Jiménez J, Salgado LM, Reynoso-Camacho R. Three Varieties of Grape Pomace, with Distinctive Extractable:Non-Extractable Polyphenol Ratios, Differentially Reduce Obesity and Its Complications in Rats Fed a High-Fat High-Fructose Diet. Foods 2023; 12:foods12071370. [PMID: 37048194 PMCID: PMC10093191 DOI: 10.3390/foods12071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Grape pomace is a commonly discarded by-product characterized by high extractable (EPP) and non-extractable (NEPP) polyphenol contents which exhibits anti-obesogenic effects. However, the relevance of each fraction needs to be elucidated. In this work, we examined the effects of three pomaces with different concentrations of EPPs and NEPPs on metabolic alterations associated with obesity. The NEPP:EPP ratio of the grape pomaces was 1.48 for Malbec, 1.10 for Garnacha, and 5.76 for Syrah grape varieties. Rats fed a high-fat high-fructose diet supplemented with Malbec grape pomace (HFFD + MAL) Syrah grape pomace (HFFD + SYR) or Garnacha grape pomace (HFFD + GAR) showed significantly less weight gain: 20%, 15%, and 12% less, respectively, compared to HFFD controls. The adiposity index was also significantly decreased by 20% in the HFFD + MAL and HFFD + SYR groups, and by 13% in the HFFD + GAR group. Serum triglycerides were significantly decreased by 46% in the HFFD + MAL group and by 31% in the HFFD + GAR group, compared to the HFFD group, but not in the HFFD + SYR group. All pomace supplementations regulated postprandial glucose in an oral glucose tolerance test. Therefore, grape pomaces containing both EPPs and NEPPs exert beneficial effects on body weight and glucose homeostasis, while EPPs seem to control triglyceride levels more effectively.
Collapse
Affiliation(s)
- Yuridia Martínez-Meza
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Qro., Mexico
| | | | | | | | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis M Salgado
- CICATA-Querétaro, Instituto Politécnico Nacional, Querétaro 76010, Qro., Mexico
| | | |
Collapse
|
18
|
Yang F, Wei D, Li J, Xie C. Chestnut shell represents a rich source of polyphenols: preparation methods, antioxidant activity and composition analysis of extractable and non-extractable polyphenols. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
19
|
Fernandes A, Mateus N, de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023; 12:1052. [PMID: 36900569 PMCID: PMC10000549 DOI: 10.3390/foods12051052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.
Collapse
Affiliation(s)
- Ana Fernandes
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
20
|
Zeng Y, Zhou W, Yu J, Zhao L, Wang K, Hu Z, Liu X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants (Basel) 2023; 12:antiox12020418. [PMID: 36829977 PMCID: PMC9951942 DOI: 10.3390/antiox12020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| |
Collapse
|
21
|
Valorization of Peels of Eight Peach Varieties: GC-MS Profile, Free and Bound Phenolics and Corresponding Biological Activities. Antioxidants (Basel) 2023; 12:antiox12010205. [PMID: 36671066 PMCID: PMC9854818 DOI: 10.3390/antiox12010205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Sustainability, becoming essential for food processing and technology, sets goals for the characterization of resources considered as food waste. In this work, information about the GC-MS metabolites of peach peels was provided as a tool that can shed more light on the studied biological activities. In addition, distribution patterns and contribution of the chemical profile and free and bound phenolic compounds as antioxidant, antimicrobial, and enzymatic clusters in peach peels of different varieties of Bulgarian origin were studied. The two applied techniques (alkaline and acid hydrolysis) for releasing the bound phenolics reveal that alkaline hydrolysis is a better extraction approach. Still, the results indicate the prevalence of the free phenolics in the studied peach peel varieties. Total phenolics of peach wastes were positively correlated with their antioxidant activity. The antioxidant activity results certainly defined the need of an individual interpretation for each variety, but the free phenolics fractions could be outlined with the strongest potential. The limited ability of the peels' extracts to inhibit α-amylase and acetylcholinesterase, and the moderate antimicrobial activity, on the other hand, indicate that the potential of peach peels is still sufficient to seek ways to valorize this waste. Indeed, this new information about peach peels can be used to characterize peach fruits from different countries and/or different food processes, as well as to promote the use of this fruit waste in food preparation.
Collapse
|
22
|
Cao C, Lin D, Zhou Y, Li N, Wang Y, Gong W, Zhu Z, Liu C, Yan L, Hu Z, Peng Y, Xie C. Solid-state fermentation of Apocynum venetum L. by Aspergillus niger: Effect on phenolic compounds, antioxidant activities and metabolic syndrome-associated enzymes. Front Nutr 2023; 10:1125746. [PMID: 36923696 PMCID: PMC10009174 DOI: 10.3389/fnut.2023.1125746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
This study aimed to evaluate the effect of solid-state fermentation (SSF) with Aspergillus niger on the total phenolic content (TPC), the total flavonoid content (TFC), individual phenolic contents, and antioxidant and inhibitory activities against metabolic syndrome-associated enzymes in an ethanol extract from Apocynum venetum L. (AVL). TPC, TFC, and the contents of quercetin and kaempferol during SSF were 1.52-, 1.33-, 3.64-, and 2.22-fold higher than those of native AVL in the ethyl acetate (EA) subfraction of the ethanol extract. The ABTS·+, DPPH· scavenging, and inhibitory activities against α-glucosidase and pancreatic lipase were found to be highest in the EA subfraction. Fermentation significantly increased the ABTS radical cation, DPPH radical scavenging, and pancreatic lipase inhibitory activities by 1.33, 1.39, and 1.28 times, respectively. TPC showed a significantly positive correlation with antioxidant activities or inhibition against metabolic syndrome-associated enzymes. This study provides a theoretical basis for producing tea products with enhanced antioxidant, antidiabetic, and antihyperlipidemic activities.
Collapse
Affiliation(s)
- Cha Cao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Dengfan Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Na Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiwen Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, College of Bioscience and Biotechnology of Hunan Agricultural University, Changsha, China
| | - Wenbeng Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
23
|
Martínez-Meza Y, Pérez-Jiménez J, Salgado-Rodríguez LM, Castellanos-Jiménez AK, Reynoso-Camacho R. In Vivo Evaluation of the Cardiometabolic Potential of Grape Pomace: Effect of Applying Instant Controlled Pressure Drop. Foods 2022; 11:3537. [PMID: 36360149 PMCID: PMC9655148 DOI: 10.3390/foods11213537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2023] Open
Abstract
Grape pomace (GP) is a source of polyphenols which may be present as free structures or associated with dietary fiber. Instant controlled pressure drop (DIC) is a technology which can modify the association of polyphenols with food matrixes, but how these modifications affect the health benefits associated with GP remains to be elucidated. In this study, in rats fed a high-fat-fructose diet (HFF), we evaluated the in vivo cardiometabolic effects of the modification of polyphenols in GP caused by DIC at 0.2 MPa for 60 s (DIC1) and 0.4 MPa for 120 s (DIC2). These treatments increased anthocyanin and total flavonoid contents, respectively, while all the supplementations caused significant improvements in insulin resistance and plasma triacylglycerols. Thus, the bioactive compounds present in GP (including a major fraction of non-extractable proanthocyanidins) caused these modifications independently of the specific polyphenol profiles which may have resulted from these DIC treatments. Additionally, only intact GP led to an increase in HDL cholesterol, while only DIC2-treated GP improved hepatic steatosis. In conclusion, GP always improves insulin sensitivity in this animal model of obesity, while the different compositions of GP modified by DIC may be associated with other cardiometabolic parameters.
Collapse
Affiliation(s)
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
25
|
Nasrollahzadeh F, Roman L, Swaraj V, Ragavan K, Vidal NP, Dutcher JR, Martinez MM. Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
27
|
Rodrigues NP, Pechina BDR, Sarkis JR. A comprehensive approach to pecan nut valorization: Extraction and characterization of soluble and insoluble‐bound phenolics. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naira Poerner Rodrigues
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | - Bruno Diniz Rocha Pechina
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | - Júlia Ribeiro Sarkis
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| |
Collapse
|
28
|
Gulsunoglu-Konuskan Z, Kilic-Akyilmaz M. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6901-6910. [PMID: 35164503 DOI: 10.1021/acs.jafc.1c06888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Collapse
Affiliation(s)
- Zehra Gulsunoglu-Konuskan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Meral Kilic-Akyilmaz
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
29
|
Pico J, Yan Y, Gerbrandt EM, Castellarin SD. Determination of free and bound phenolics in northern highbush blueberries by a validated HPLC/QTOF methodology. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Characteristics of Selected Silphium Species as Alternative Plants for Cultivation and Industry with Particular Emphasis on Research Conducted in Poland: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14095092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This article reviews the available research results of selected species of the genus Silphium L. (Asteraceae) as alternative plants for crops and industry. Silphium species have valuable qualities across a wide range of uses, which is very important in considering plant resources as a green alternative to a sustainable future. Species of the genus Silphium are tall perennials found in fields, prairies, open forests, and groves in the central and eastern parts of the United States and Canada. Various tribes of Native North American used Silphium for medicinal purposes. The cup plant Silphium perfoliatum L. is the most popular species of the genus Silphium due to its attractive ornamental, honey−giving, healing, and forage qualities. As the literature review shows, species of the genus Silphium are characterized by a high production potential in terms of yields and contain significant amounts of nutrients, i.e., carbohydrates, proteins, and L-ascorbic acid, as well as minerals and biologically active substances, e.g., terpenoids and essential oils, flavonoids, phenolic acids, and oleanosides. In addition, the research confirmed the possibility of using Silphium for fodder, as honeybee forage, phytoremediation plants, for reclamation of degraded land, as plants for energy purposes (biomass, biogas), and as plants that provide components with antimicrobial activity. This review largely takes into account many years of research experience conducted in Poland.
Collapse
|
31
|
Wang L, Li Z, Huang J, Liu D, Lefebvre C, Fan J. Effect of Ultrasound-Assisted Extraction of Polyphenols from Apple Peels in Water CO2 Systems. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02809-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Rajapaksha S, Shimizu N. Pilot-scale extraction of polyphenols from spent black tea by semi-continuous subcritical solvent extraction. Food Chem X 2022; 13:100200. [PMID: 35498997 PMCID: PMC9039883 DOI: 10.1016/j.fochx.2021.100200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Subcritical solvent extraction is a novel method to recover polyphenols from spent black tea at pilot-scale. After hot water extraction, non-extractable polyphenols were found in spent black tea. Subcritical solvent extraction recovered the non-extractable polyphenols from spent black tea. Water–ethanol mixture at hot-pressurised conditions promoted the recovery of non-extractable polyphenols.
Spent black tea (SBT) is a residue from tea beverage production and considered as a potential source of active polyphenols. This study aimed to develop a pilot-scale process on semi-continuous subcritical solvent extraction (SSE) of polyphenols from SBT by exploiting the lab-scale knowledge. Treatment of SBT with ethanol–water (50% w/w) as solvent at 125 °C and 0.3 MPa achieved a significantly higher yield of polyphenols (80.82 g gallic acid equivalents/kg black tea) with antioxidant activity (64.20 g gallic acid equivalents/kg black tea), compared to hot water extraction (HWE). SSE increased the soluble matter content in extracts than HWE. Based on the results of LC-MS, theaflavin-3,3′-digallate was the most abundant polyphenol from a total of 12 compounds to be extracted by SBT with 50% ethanol. The results suggested that SSE can be used as a scale-up extraction method to recover polyphenols from SBT.
Collapse
Affiliation(s)
- Surakshi Rajapaksha
- Laboratory of Agricultural Biosystem Engineering, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Naoto Shimizu
- Research Faculty of Agriculture/Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|
33
|
Cangussu LB, Melo JC, Franca AS, Oliveira LS. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021; 10:foods10123125. [PMID: 34945676 PMCID: PMC8700850 DOI: 10.3390/foods10123125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Coffee husks are a major by-product of coffee production and are currently being underutilized. The aim of this work was to chemically characterize coffee husks to allow for an adequate evaluation of their potential for valorization. Blanched and non-blanched coffee husks were characterized for extractable and non-extractable phenolics, caffeine, trigonelline content, and for their polysaccharide and proximal composition. The total, soluble and insoluble fiber contents were determined, together with the husks’ technological properties. Antioxidant activity and bioaccessibility of phenolic compounds of coffee husks were evaluated. Two types of husk were studied: one comprised mostly of outer skin and pulp (CH1); and other comprised mostly of parchment (CH2). Blanching had positive effects on non-extractable phenolics, chlorogenic acid and on the bioaccessibility of phenolics, promoting small reductions in extractable phenolics, protocathecuic acid, caffeine and trigonelline contents. Blanched CH1 presented more appropriate properties than CH2 for potential applications in food. It also presented better antioxidant, hydration, and oil holding properties than those of other agri-food by-products. Tentatively identified polysaccharides included galactomannans, arabinogalactans type II, pectin and cellulose.
Collapse
Affiliation(s)
- Lais B. Cangussu
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
| | - Jean Carlos Melo
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
| | - Adriana S. Franca
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-3409-3512
| | - Leandro S. Oliveira
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
34
|
Bermúdez-Oria A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Fernández-Prior Á, Fernández-Bolaños J. Effect of the Olive Oil Extraction Process on the Formation of Complex Pectin-Polyphenols and Their Antioxidant and Antiproliferative Activities. Antioxidants (Basel) 2021; 10:1858. [PMID: 34942961 PMCID: PMC8698574 DOI: 10.3390/antiox10121858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to investigate the interaction of phenols and pectic polysaccharides during the olive oil extraction process. For this, pectin was extracted from fresh olive fruits and compared to the pectin isolated from the paste resulting from the extraction of the olive oil after milling with malaxation at 30 °C/30 min and subsequent centrifugation of the olive paste from the same lot of olive fruits in a system called ABENCOR (AB). The results indicate that these interactions were enhanced during the olive oil extraction process. In addition, the resulting AB extracts exhibited high antioxidant activity (ORAC) and strong antiproliferative activity in vitro against colon carcinoma Caco-2 cell lines compared to olive fruit extracts. The polyphenols associated mainly with the acidic pectin substance, with a higher content in AB extracts, seem to be responsible for these activities, and appear to maintain their activities in part after complexation. However, even in olive fruit extracts with smaller amounts of phenols in their compositions, pectic polysaccharides may also be involved in antioxidant and antiproliferative activities.
Collapse
Affiliation(s)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo Olavide University, Building 46, Ctra de Utrera km 1, 41013 Seville, Spain; (A.B.-O.); (E.R.-J.); (G.R.-G.); (Á.F.-P.)
| |
Collapse
|
35
|
Rico X, Nuutinen EM, Gullón B, Pihlajaniemi V, Yáñez R. Application of an eco-friendly sodium acetate/urea deep eutectic solvent in the valorization of melon by-products. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Cangussu LB, Fronza P, Franca AS, Oliveira LS. Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu ( Spondias tuberosa A.) Fruit Peel and Pulp Flours. Foods 2021; 10:foods10112597. [PMID: 34828884 PMCID: PMC8617674 DOI: 10.3390/foods10112597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
Umbu, a common fruit from the northeastern region of Brazil, contains many bioactive compounds not yet exploited. Thus, this study evaluated the potential of pulps and peels of mature and semi-mature umbu as a source of bioactive compounds. Trigonelline contents ranged from 1.75 to 6.14 mg/100 g, values higher than those of many vegetables described in the literature, such as corn and barley. The contents of extractable and non-extractable phenolic compounds were also higher than those of other vegetables. Bioaccessibility of total extractable phenolics, flavonoids, and tannins was determined (15.67–37.73%, 31.87–39.10% and 18.81–114.27%, respectively). The constituent polysaccharides of the pulp and peel were tentatively chemically characterized as arabinoxylans, arabinogalactans, rhamnoarabinogalactans, xyloglucans, and pectin of the rhamnogalacturonan type. The technological potential of peel flours was evaluated. The maturation advancement showed no significant changes in the technological properties of the flours, except for color and water solubility index. Results indicated excellent prospects for future research on umbu pulps and peels as potential sources of natural bioactive compounds.
Collapse
Affiliation(s)
- Laís B. Cangussu
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (P.F.); (L.S.O.)
| | - Pãmella Fronza
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (P.F.); (L.S.O.)
| | - Adriana S. Franca
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (P.F.); (L.S.O.)
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34093512
| | - Leandro S. Oliveira
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (P.F.); (L.S.O.)
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
37
|
Katsirma Z, Dimidi E, Rodriguez-Mateos A, Whelan K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct 2021; 12:8850-8866. [PMID: 34505614 DOI: 10.1039/d1fo01125a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fruits are the seed-bearing product of plants and have considerable nutritional importance in the human diet. The consumption of fruits is among the dietary strategies recommended for constipation due to its potential effects on the gut microbiota and gut motility. Dietary fiber from fruits has been the subject of research on the impact on gut microbiota, gut motility and constipation, however, fruits also contain other components that impact the intestinal luminal environment that may impact these outcomes including sorbitol and (poly)phenols. This review aims to explore the mechanisms of action and effectiveness of fruits and fruit products on the gut microbiota, gut motility and constipation, with a focus on fiber, sorbitol and (poly)phenols. In vitro, animal and human studies investigating the effects of fruits on gut motility and gut microbiota were sought through electronic database searches, hand searching and consulting with experts. Various fruits have been shown to modify the microbiota in human studies including blueberry powder (lactobacilli, bifidobacteria), prunes (bifidobacteria), kiwi fruit (Bacteroides, Faecalibacterium prausnitzii) and raisins (Ruminococcus, F. prausnitzii). Prunes, raisins and apple fiber isolate have been shown to increase fecal weight in humans, whilst kiwifruit to increase small bowel and fecal water content. Apple fiber isolate, kiwifruit, fig paste, and orange extract have been shown to reduce gut transit time, while prunes have not. There is limited evidence on which fruit components play a predominant role in regulating gut motility and constipation, or whether a synergy of multiple components is responsible for such effects.
Collapse
Affiliation(s)
- Zoi Katsirma
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| |
Collapse
|
38
|
Zhao Y, Li B, Li C, Xu Y, Luo Y, Liang D, Huang C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021; 10:1845. [PMID: 34441621 PMCID: PMC8392450 DOI: 10.3390/foods10081845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Cuicui Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yi Luo
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Dongwu Liang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
39
|
Biotransformation of Polyphenols in Apple Pomace Fermented by β-Glucosidase-Producing Lactobacillus rhamnosus L08. Foods 2021; 10:foods10061343. [PMID: 34200756 PMCID: PMC8230369 DOI: 10.3390/foods10061343] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Apple pomace, the main by-product in apple processing, is a cheap source of bioactive compounds that could be used in the food industry. However, the value of this by-product is still far from being fully realized. In this study, 11 strains of Lactobacillus strains were assayed for β-glucosidase activity, and only Lactobacillus rhamnosus L08 (L. rhamnosus L08) showed high cell-membrane associated β-glucosidase activity. We then evaluated the effects of fermentation of apple pomace using the selected strain, focusing on the biotransformation of polyphenols and antioxidant capacity. We found that L. rhamnosus L08 fermentation significantly reduced the contents of quercitrin and phlorizin in apple pomace, while increasing the contents of quercetin and phloretin. The contents of gallic acid, epicatechin acid, caffeic acid, and ferulic acid were also increased in apple pomace after fermentation. In addition, the antioxidant activities of apple pomace were enhanced during fermentation, based on the bioconversion of phenolic profiles. Our results demonstrate that lactic acid bacteria fermentation is a promising approach to enhance the bioactivity of phenolic compounds in apple pomace. Moreover, this study demonstrates that, as a valuable processing by-product with bioactive components, apple pomace can be used in the food industry to provide economic benefits.
Collapse
|
40
|
Tang W, Li W, Yang Y, Lin X, Wang L, Li C, Yang R. Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species ( Hylocereus polyrhizus and Hylocereus undatus). Foods 2021; 10:foods10061183. [PMID: 34070235 PMCID: PMC8225021 DOI: 10.3390/foods10061183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Pitahaya peel is a good source of bioactive polyphenols. However, the bound phenolics and their antioxidant activity remain unclear. The bound phenolics of pitahaya peel from two red-skinned species with red pulp (RP) and white pulp (WP) were released with different methods (acid, base, and composite enzymes hydrolysis). The results revealed that base hydrolysis was the most efficient method for releasing the bound phenolics from RP (11.6 mg GAE/g DW) and WP (10.5 mg GAE/g DW), which was 13.04-fold and 8.18-fold for RP and 75.07-fold and 10.94-fold for WP compared with acid hydrolysis and enzymatic hydrolysis, respectively. A total of 37 phenolic compounds were identified by UPLC-TOF/MS with most chlorogenic acid, caffeic acid, ferulic acid and p-coumaric acid in RP, whereas chlorogenic acid, caffeic acid, ferulic acid, rutin and isoquercitrin were the main compounds in WP. Regardless of the hydrolysis method, the extracts having the highest phenolic content showed the strongest antioxidant activities. The work shows that hydrolysis methods have a significant effect on the release of phenolics, and the contents of major characteristic bound phenolic compounds are related to the ecological type of pitahaya.
Collapse
Affiliation(s)
- Wanpei Tang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Yuzhe Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Xue Lin
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
- Correspondence: (X.L.); (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.)
| | - Lu Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (X.L.); (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.)
| |
Collapse
|
41
|
Ramírez‐Bolaños S, Pérez‐Jiménez J, Díaz S, Robaina L. A potential of banana flower and pseudo‐stem as novel ingredients rich in phenolic compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Ramírez‐Bolaños
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| | - Jara Pérez‐Jiménez
- Department of Metabolism and Nutrition Institute of Food Science, Technology and Nutrition (ICTAN‐CSIC) José Antonio Novais 10 Madrid 28040 Spain
| | - Sara Díaz
- Fabricación Integrada y Avanzada Research Group Departamento de Ingeniería de Procesos Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria 35017 Spain
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| |
Collapse
|
42
|
Arfaoui L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021; 26:molecules26102959. [PMID: 34065743 PMCID: PMC8156030 DOI: 10.3390/molecules26102959] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary plant polyphenols are natural bioactive compounds that are increasingly attracting the attention of food scientists and nutritionists because of their nutraceutical properties. In fact, many studies have shown that polyphenol-rich diets have protective effects against most chronic diseases. However, these health benefits are strongly related to both polyphenol content and bioavailability, which in turn depend on their origin, food matrix, processing, digestion, and cellular metabolism. Although most fruits and vegetables are valuable sources of polyphenols, they are not usually consumed raw. Instead, they go through some processing steps, either industrially or domestically (e.g., cooling, heating, drying, fermentation, etc.), that affect their content, bioaccessibility, and bioavailability. This review summarizes the status of knowledge on the possible (positive or negative) effects of commonly used food-processing techniques on phenolic compound content and bioavailability in fruits and vegetables. These effects depend on the plant type and applied processing parameters (type, duration, media, and intensity). This review attempts to shed light on the importance of more comprehensive dietary guidelines that consider the recommendations of processing parameters to take full advantage of phenolic compounds toward healthier foods.
Collapse
Affiliation(s)
- Leila Arfaoui
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia
| |
Collapse
|
43
|
Zamuz S, Munekata PE, Gullón B, Rocchetti G, Montesano D, Lorenzo JM. Citrullus lanatus as source of bioactive components: An up-to-date review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Brito Cangussu L, P Leão D, Oliveira LS, Franca AS. Profile of bioactive compounds in pequi (Caryocar brasilense Camb.) peel flours. Food Chem 2021; 350:129221. [PMID: 33618096 DOI: 10.1016/j.foodchem.2021.129221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The bioactive compounds of pequi peel flours were characterized. Flavonoid contents ranged from 19.67 to 87.61 mg/100 g, high in comparison to many vegetables described in the literature. Gallic acid (11.52-418.67 mg/100 g), gallate ethyl (2026.75 - 5205.90 mg/100 g), ellagic acid (509.47 - 1630.66 mg/100 g), lutein (0.17-1.36 mg/100 g), β-carotene (0.82 - 1.49 mg/100 g), and β-cryptoxanthin (0.07 - 0.11 mg/100 g) were identified by HPLC, contributing to a greater valorization of the pequi peel flours. Phytochemical tests indicated the presence of hydrolyzable tannins and saponins. The detection of these compounds makes the product commercially attractive, in addition to generating value for an agro-industrial residue. The results obtained in this study confirm the multifunctional potential of pequi peel flour as a functional ingredient.
Collapse
Affiliation(s)
- Lais Brito Cangussu
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Daniela P Leão
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Leandro S Oliveira
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; DEMEC/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Adriana S Franca
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; DEMEC/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
45
|
Reynoso-Camacho R, Rodríguez-Villanueva LD, Sotelo-González AM, Ramos-Gómez M, Pérez-Ramírez IF. Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. Food Chem 2021; 350:129239. [PMID: 33592362 DOI: 10.1016/j.foodchem.2021.129239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to carry out an exhaustive chemical characterization of citrus (orange, mandarin, and grapefruit) decoctions as well as the residues obtained during the decoction process (by-products). The citrus decoctions were rich in hesperidin, naringin, and narirutin, but carotenoids and phytosterols were not detected. Interestingly, these flavanones were found in a higher concentration in the extractable polyphenol fraction of the citrus decoction by-products. Moreover, the greatest content of hesperidin and naringin was found bound to the food matrix by ether/ester bonds. Violaxanthin and β-cryptoxanthin were found as major carotenoids in the orange and mandarin decoction by-products, respectively, whereas the grapefruit decoction by-product showed a low content of carotenoids. All citrus by-products showed β-sitosterol as the major phytosterol, followed by β-campesterol. Therefore, the by-products obtained during the elaboration of citrus decoctions are rich sources of bioactive compounds that can be used for the development of functional foods or dietary supplements.
Collapse
Affiliation(s)
| | | | | | - Minerva Ramos-Gómez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
| |
Collapse
|
46
|
Rico X, Gullón B, Yáñez R. Environmentally Friendly Hydrothermal Processing of Melon by-Products for the Recovery of Bioactive Pectic-Oligosaccharides. Foods 2020; 9:E1702. [PMID: 33233621 PMCID: PMC7699732 DOI: 10.3390/foods9111702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Melon by-products, that currently lack high value-added applications, could be a sustainable source of bioactive compounds such as polysaccharides and antioxidants. In this work, melon peels were extracted with water to remove free sugars, and the water-insoluble solids (WISs) were subjected to hydrothermal processing. The effect of temperature on the composition of the obtained liquors and their total phenolic content was evaluated. The selected liquors were also characterized by matrix assisted laser desorption/ionization-time of flight mass spectroscopy (MALDI-TOF MS), fourier transform infrared spectroscopy (FTIR) and high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and its phenolic compounds were identified and quantified by high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). In addition, the spent solids from the hydrothermal treatment were characterized and their potential use was assessed. At the optimal conditions of 140 °C (severity 2.03), the total oligosaccharide yield accounted for 15.24 g/100 g WIS, of which 10.07 g/100 g WIS were oligogalacturonides. The structural characterization confirmed the presence of partially methyl esterified oligogalacturonides with a wide range of polymerization degrees. After precipitation, 16.59 g/100 g WIS of pectin were recovered, with a galacturonic acid content of 55.41% and high linearity.
Collapse
Affiliation(s)
| | | | - Remedios Yáñez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (X.R.); (B.G.)
| |
Collapse
|
47
|
Alfieri ML, Moccia F, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers. Polymers (Basel) 2020; 12:E2544. [PMID: 33143251 PMCID: PMC7692195 DOI: 10.3390/polym12112544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phenolic polymers produced by enzymatic oxidation under biomimetic and eco-friendly reaction conditions are usually endowed with potent antioxidant properties. These properties, coupled with the higher biocompatibility, stability and processability compared to low-molecular weight phenolic compounds, open important perspectives for various applications. Herein, we report the marked boosting effect of acid treatment on the antioxidant properties of a series of polymers obtained by peroxidase-catalyzed oxidation of natural phenolic compounds. Both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated a remarkable increase in the antioxidant properties for most phenolic polymers further to the acid treatment. In particular, up to a ca. 60% decrease in the EC50 value in the DPPH assay and a 5-fold increase in the Trolox equivalents were observed. Nitric oxide- and superoxide-scavenging assays also indicated highly specific boosting effects of the acid treatment. Spectroscopic evidence suggested, in most cases, that the occurrence of structural modifications induced by the acid treatment led to more extended π-electron-conjugated species endowed with more efficient electron transfer properties. These results open new perspectives toward the design of new bioinspired antioxidants for application in food, biomedicine and material sciences.
Collapse
Affiliation(s)
| | | | | | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (M.L.A.); (F.M.); (G.D.); (M.d.); (A.N.)
| | | | | |
Collapse
|
48
|
Patiño-Rodríguez O, Bello-Pérez LA, Agama-Acevedo E, Pacheco-Vargas G. Pulp and peel of unripe stenospermocarpic mango (Mangifera indica L. cv Ataulfo) as an alternative source of starch, polyphenols and dietary fibre. Food Res Int 2020; 138:109719. [PMID: 33292964 DOI: 10.1016/j.foodres.2020.109719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
As a result of climate change, the production of stenospermocarpic mangoes has increased dramatically. The stenospermocarpic mango, a fruit with reduced size and no seed, is considered to be a by-product that is both underutilised and wasted. Here, we studied the colour, chemical composition, polyphenol content, antioxidant capacity and starch in vitro digestibility of unripe stenospermocarpic mango flours (pulp and peel). The stenospermocarpic mango pulp flour had 11.7 g/100 g of dietary fibre with a balance of soluble and insoluble fractions; additionally, the total starch content of 41 g/100 g in its uncooked flour (resistant starch) can contribute to an increase in the indigestible carbohydrates. The mango peel flour had higher dietary fibre (40.5 g/100 g) and lower total starch content (21 g/100 g) compared with mango pulp flour. The mango pulp flour had higher phenolic compounds content (99.71 mg/g) and antioxidant capacity (248.5 mg/g, DPPH) compared with the peel flour (16.51 mg/g and 92.08 mg/g, DPPH), respectively. The rapidly digestible starch fraction was approximately 50%, with a balance in the content of slowly and resistant starch fractions in the mango pulp flour (approximately 20% per fraction). The flours of the pulp and peel of unripe stenospermocarpic mangoes can be used as alternative ingredients for preparing functional foods with high dietary fibre content and polyphenol compounds with antioxidant capacities.
Collapse
Affiliation(s)
- Omar Patiño-Rodríguez
- CONACyT-Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec, Morelos, Mexico.
| | - Luis A Bello-Pérez
- Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec, Morelos, Mexico
| | - Edith Agama-Acevedo
- Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec, Morelos, Mexico
| | - Glenda Pacheco-Vargas
- Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec, Morelos, Mexico
| |
Collapse
|
49
|
Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem 2020; 339:128086. [PMID: 33152877 DOI: 10.1016/j.foodchem.2020.128086] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Sweet cherries processing produces big amounts of wastes mainly constituted by cherry pomace that can be a source of bioactive polyphenols. However, during the extraction process, an important fraction called non-extractable polyphenols (NEPs) remains retained in the extraction residue. This work describes the development of an enzyme-assisted extraction (EAE) method to obtain NEPs from sweet cherry pomace employing three different enzymes. Box-Behnken experimental designs were employed to select the optimal conditions of extraction time, temperature, enzyme concentration, and pH. The total phenolic and proanthocyanidin contents and the antioxidant and antihypertensive capacities were measured. Optimal EAE conditions extracted higher content of proanthocyanidins and with higher bioactivity from extraction residue than alkaline and acid hydrolysis. Moreover, there were higher amounts of bioactive phenolics in the extraction residue than in the sweet cherry pomace extract. The estimation of NEPs molecular weight distribution by HPLC-SEC demonstrated that EAE extracted NEPs with high molecular weight.
Collapse
|
50
|
De Wit M, Du Toit A, Osthoff G, Hugo A. Antioxidant Content, Capacity and Retention in Fresh and Processed Cactus Pear (Opuntia ficus-indica and O. robusta) Fruit Peels From Different Fruit-Colored Cultivars. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|