1
|
Lotfi A, Abroodi Z, Khazaei M. Biological activities of astaxanthin in the treatment of neurodegenerative diseases. Neurodegener Dis Manag 2024; 14:241-256. [PMID: 39648516 PMCID: PMC11703140 DOI: 10.1080/17582024.2024.2433932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Neurodegenerative diseases (NDs) develop with the gradual advancement of neuronal damage and dysfunction in the central nervous system (CNS). These disorders are mostly the outcomes of the improper sedimentation and accumulation of proteins, such as amyloid-β (Aβ), α-synuclein, and prions. Astaxanthin (AST) exists in different types of living organisms and displays antioxidant and anti-inflammatory functions. This review has concentrated on the therapeutic characteristics of AST on NDs. METHODS Data was collected by searching Scopus, PubMed, and Google Scholar databases. Articles selected for this review reported results on the neuroprotective properties of AST on NDs of studies conducted during the years 2000 to 2024. RESULTS AST decreases soluble Aβ levels by stimulating the Aβ degradation enzyme. It also reduces inflammation in the substantia nigra (SN) by decreasing IBA1 expression, thereby lessening microglia activity. This carotenoid reduces demyelination by increasing the survival of oligodendrocytes cells and increasing the number of their progenitor cells. AST has antioxidant, anti-inflammatory, and anti-apoptotic properties and can play a role in the treatment of many NDs. CONCLUSION There is no definitive treatment for some NDs. The use of AST and natural compounds can be an optimal method for preventing and treating NDs with few side effects.
Collapse
Affiliation(s)
- Alireza Lotfi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abroodi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Tissue Engineering Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Wang W, Bu Y, Li W, Zhu W, Li J, Li X. Effects of nano freezing-thawing on myofibrillar protein of Atlantic salmon fillets: Protein structure and label-free proteomics. Food Chem 2024; 442:138369. [PMID: 38232615 DOI: 10.1016/j.foodchem.2024.138369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
This study investigated the impact of magnetic nanoparticles (MNPs) -assisted cryogenic freezing integrated with MNPs combined microwave thawing (NNMT) on the structural integrity of myofibrillar proteins and alterations in protein profiles in salmon fillets. The NNMT showed the lowest myofibrillar fragmentation index (MFI) value (2.73 ± 0.31) among the four freezing-thawing groups. The myofibrillar structure exhibited the highest level of integrity, while the myofibrillar proteins demonstrated minimal aggregation and displayed the most stable secondary and tertiary structures in response to NNMT treatment. Compared with the other three treatments, NNMT exhibited a high abundance of ionic and hydrogen bonds, resulting in stronger interactions between the proteins and water molecules. The label-free proteomics analysis revealed that different freezing-thawing methods primarily affected the cytoskeletal proteins, with collagen and myosin being down-regulated due to degradation caused by cold stress and recrystallization. Additionally, NNMT demonstrated a superior capability in stabilizing salmon cytoskeletal proteins.
Collapse
Affiliation(s)
- Wenxuan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Wenzheng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
4
|
Sigüenza-Andrés T, Mateo J, Rodríguez-Nogales JM, Gómez M, Caro I. Characterization of a Fermented Beverage from Discarded Bread Flour Using Two Commercial Probiotics Starters. Foods 2024; 13:951. [PMID: 38540941 PMCID: PMC10970355 DOI: 10.3390/foods13060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The aim of this study was to develop a plant-based fermented beverage from discarded bread flour and to analyze its characteristics as a novel functional product. Eight cereal-based probiotic beverages were produced by inoculating discarded bread flour with a monoculture of Lactobacillus rhamnosus or a co-culture consisting of lactic acid bacteria and Bifidobacterium. Two additional factors, namely, the addition of amylolytic enzymes and matrix desalting, were studied alongside the type of culture. The organic acid content and microbial growth were monitored during fermentation and storage (15 and 21 days). Proximal composition, gamma-aminobutyric acid, and volatile compounds were measured in the final product. Sensory analysis was only conducted on the enzymatically treated samples. The estimated shelf life of the bread beverage was 15 days. The variables studied significantly influenced the amountof organic acids and specific volatile compounds responsible for the aroma of fermented beverages. The beverage produced via co-culturing was preferred by consumers in the sensory test.
Collapse
Affiliation(s)
- Teresa Sigüenza-Andrés
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain; (T.S.-A.); (M.G.)
| | - Javier Mateo
- Department of Food Hygiene and Technology, University of León, Campus de Vegazana s/n, 24071 León, Spain;
| | - José M. Rodríguez-Nogales
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain; (T.S.-A.); (M.G.)
| | - Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain; (T.S.-A.); (M.G.)
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
5
|
Beya MM, Netzel ME, Sultanbawa Y, Smyth H, Hoffman LC. Kakadu plum (Terminalia ferdinandiana) bioactivity against spoilage microorganisms and oxidative reactions in refrigerated raw beef patties under modified atmosphere packaging. Meat Sci 2023; 204:109268. [PMID: 37379705 DOI: 10.1016/j.meatsci.2023.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Raw beef patties were treated with either 450 ppm of Sodium metabisulphite (SMB), or Kakadu plum powder (KPP) (0.2%, 0.4%, 0.6%, 0.8%) or no additive (negative control) and stored under Modified Atmosphere Packaging at 4 ± 1 °C for 20 days. Lipid oxidation, microbial growth rate, pH, instrumental color, and surface myoglobin were studied. Total phenolic compounds (TPC) and vitamin C of the KPP were also measured. The TPC was 13.9 g GAE/ 100 g dry weight (DW) and for vitamin C, the L-AA (l-ascorbic acid) and DHAA (dehydroascorbic acid) were 12.05 g/100 g and 0.5 g/ 100 g DW, respectively. The experimental results indicated that lipid oxidation was significantly delayed throughout the storage period for KPP-treated samples compared to both the negative control and SMB-treated samples. KPP at levels of 0.2% and 0.4% in the raw beef patties were efficient in slowing down the microbial growth rate compared to the negative control; however, SMB had a higher antimicrobial activity. The pH, the redness as well as metmyoglobin formation in the raw beef patties were reduced by the inclusion of the KPP in treated samples. A correlation (r = -0.66) was noted between KPP treatments and lipid oxidation, but there was no correlation (r = -0.006) between KPP treatment and microbial growth. This study demonstrates that KPP could be used as natural preservative for shelf-life extension of raw beef patties.
Collapse
Affiliation(s)
- Michel M Beya
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael E Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Heather Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia.
| |
Collapse
|
6
|
Hussain Z, Ijaz M, Zhang Y, Bai Y, Hou C, Li X, Zhang D. Combined Effect of Cinnamon Bark Oil and Packaging Methods on Quality of Fresh Lamb Meat Patties during Storage at 4 °C. Foods 2023; 12:2916. [PMID: 37569184 PMCID: PMC10418461 DOI: 10.3390/foods12152916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The present study aimed to investigate the effects of adding cinnamon bark oil (CBO) on the quality of ground lamb meat, considering different packaging conditions, including modified atmospheric packaging (MAP) using Hengxian HX-300H and overwrapped packaging. The CBO was incorporated into lamb meat samples at three different levels: 0% (control), 0.025% and 0.05% (v/w). The samples were then subjected to three packaging methods: MAP1 (80% O2 + 20% CO2), MAP2 (40% O2 + 30% CO2 + 30% N2) and overwrapped packaging and stored at 4 °C for 0, 4, 8, 12 and 16 days. The findings of the present study revealed that the addition of 0.025% and 0.05% CBO under MAP1 condition significantly improved the color of the meat samples after 12 days of storage at 4 °C (p < 0.05). The overwrapped samples exhibited higher levels of thiobarbituric acid reactive substances (TBARS) compared to all other treatments, starting from day 4 of storage (p < 0.05). Furthermore, microbial counts were notably higher in the overwrapped samples than in all other samples after day 8 of storage (p < 0.05). In conclusion, the combination of 0.05% CBO with MAP proved to be an effective strategy for enhancing the color stability and oxidative stability of ground lamb meat. These results suggest that CBO can be utilized as a beneficial protective agent in meat packaging processes.
Collapse
Affiliation(s)
- Zubair Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
- Department of Agriculture and Food Technology, Karakorum International University, Main Campus University Road, Gilgit 15100, Pakistan
| | - Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
- Department of Animal Sciences, CVAS-Jhang 35200, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yejun Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.H.); (M.I.); (Y.Z.); (Y.B.); (C.H.); (D.Z.)
| |
Collapse
|
7
|
Olvera-Aguirre G, Piñeiro-Vázquez ÁT, Sanginés-García JR, Sánchez Zárate A, Ochoa-Flores AA, Segura-Campos MR, Vargas-Bello-Pérez E, Chay-Canul AJ. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023; 9:e17071. [PMID: 37383206 PMCID: PMC10293679 DOI: 10.1016/j.heliyon.2023.e17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.
Collapse
Affiliation(s)
| | | | | | | | - Angélica Alejandra Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| | - Maira Rubi Segura-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, Mérida, Yucatán, Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, 31453, Mexico
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| |
Collapse
|
8
|
Martín A, Giráldez FJ, Mateo J, Caro I, Andrés S. Dietary administration of l-carnitine during the fattening period of early feed restricted lambs modifies lipid metabolism and meat quality. Meat Sci 2023; 198:109111. [PMID: 36657262 DOI: 10.1016/j.meatsci.2023.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Early feed restriction of lambs promotes a permanent mitochondrial dysfunction that impairs β-oxidation of fatty acids along the whole life. Therefore, dietary l-carnitine might help to improve the mitochondrial function of these lambs, thus modifying lipid metabolism and meat quality traits. In order to test this hypothesis an experiment was carried out with 22 Merino lambs that were subjected to an early feed restriction during the suckling period. Once weaned, the lambs were allocated to a control group (CTRL, n = 11) being fed ad libitum a complete pelleted diet during the fattening phase, whereas the second group (CARN, n = 11) received the same diet formulated with 3 g/kg of l-carnitine. Carcass characteristics were not affected (P > 0.05) by treatment. However, lambs fed l-carnitine showed higher amounts of intramuscular fat (26.5 vs. 33.6 g/kg fresh matter; P = 0.047) with a lower ratio between polyunsaturated and saturated fatty acids (0.425 vs 0.333; P = 0.023) and a higher atherogenic (0.507 vs 0.597; P < 0.001) and thrombogenic index (1.23 vs 1.42; P < 0.001). An increase in lightness (P < 0.05) and a tendency to improved oxidative stability in cooked meat (P = 0.066) were also observed in the CARN group. Consequently, dietary l-carnitine supplied during the fattening period of early feed restricted lambs modifies meat quality traits thus increasing lightness, oxidative stability and intramuscular fat content, but worsening the fatty acid profile.
Collapse
Affiliation(s)
- A Martín
- Departamento de Nutrición y Producción de Herbívoros, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, 24346, Grulleros, León, Spain
| | - F J Giráldez
- Departamento de Nutrición y Producción de Herbívoros, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, 24346, Grulleros, León, Spain
| | - J Mateo
- Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de León, Campus Vegazana s/n, 24071 León, Spain
| | - I Caro
- Departamento de Pediatría e Inmunología, Obstetricia y Ginecología, Nutrición y Bromatología, Psiquiatría e Historia de la Ciencia, Facultad de Medicina, Universidad de Valladolid, Avda. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - S Andrés
- Departamento de Nutrición y Producción de Herbívoros, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, 24346, Grulleros, León, Spain.
| |
Collapse
|
9
|
Bergamaschi M, Simoncini N, Spezzano VM, Ferri M, Tassoni A. Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans. Foods 2023; 12:foods12061264. [PMID: 36981190 PMCID: PMC10047961 DOI: 10.3390/foods12061264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
The effects of polyphenol-rich extract obtained from non-compliant defatted green coffee beans (dGCBs) on physicochemical and antioxidant properties, as well as on the sensory profile of vacuum-packed pork burgers stored at 4 °C for 14 days and after cooking were assessed. The dGCB extract obtained by means of supercritical water extraction was analyzed for its polyphenol profile, total phenolic content, radical scavenging, and ferric-reducing antioxidant activities (DPPH and FRAP), Fe2+-chelating capacity, and total iron. The most abundant polyphenol component observed in the dGCB extract was chlorogenic acid, and the alkaloid caffeine was also present. This extract showed antioxidant properties. Thereafter, five formulations of pork meat burgers with added NaCl (1%) were prepared; one without the antioxidant (negative control, C) and one with the use of a synthetic antioxidant (0.05% ascorbic acid = positive control, A), while the other three were supplemented with a different amount of dGCB extract (P15 = 0.15%; P30 = 0.30%; P60 = 0.60%). The addition of dGCB extract increased the antioxidant activity of the raw and cooked burgers and reduced the lipid oxidation of the cooked burgers (0.47, 0.21, and 0.20 vs. 1.28 and 0.55 mg MDA eq./Kg, for P15, P30, and P60 vs. C and A, respectively). No negative effects were observed on the meat’s color parameters and its stability during refrigerated storage and after cooking, nor on sensory attributes (color and aroma) for the lowest concentration of coffee extract. The results obtained indicate that 0.15% dGCB extract is a promising alternative to commercial synthetic antioxidants to improve the quality of refrigerated pork burgers.
Collapse
Affiliation(s)
- Monica Bergamaschi
- Dipartimento Carni, Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Tanara 31/A, 43121 Parma, Italy; (N.S.); (V.M.S.)
- Correspondence: ; Tel.: +39-0521795234
| | - Nicoletta Simoncini
- Dipartimento Carni, Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Tanara 31/A, 43121 Parma, Italy; (N.S.); (V.M.S.)
| | - Vincenzo Maria Spezzano
- Dipartimento Carni, Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Tanara 31/A, 43121 Parma, Italy; (N.S.); (V.M.S.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco delle Scienze 27/A, 43124 Parma, Italy
| | - Maura Ferri
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.F.); (A.T.)
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.F.); (A.T.)
| |
Collapse
|
10
|
Singh S, Aeri V, Sharma V. Encapsulated natural pigments: Techniques and applications. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Shivani Singh
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Vidhu Aeri
- Department of Pharmacognosy and Phytochemistry School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi India
| | - Vasudha Sharma
- Department of Food Technology Jamia Hamdard New Delhi India
| |
Collapse
|
11
|
Zhu K, Yan W, Dai Z, Zhang Y. Astaxanthin Extract from Shrimp ( Trachypenaeus curvirostris) By-Products Improves Quality of Ready-to-Cook Shrimp Surimi Products during Frozen Storage at -18 °C. Foods 2022; 11:foods11142122. [PMID: 35885365 PMCID: PMC9323547 DOI: 10.3390/foods11142122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
The effects of astaxanthin extract (AE) from shrimp by-products on the quality and sensory properties of ready-to-cook shrimp surimi products (RC-SSP) during frozen storage at −18 °C were investigated. Changes in 2-thiobarbituric acid reactive substances (TBARS) value, sulfhydryl groups, carbonyls, salt-soluble protein content, textural properties, color, and sensory quality over specific storage days were evaluated. The AE from shrimp by-products contained 4.49 μg/g tocopherol and 23.23 μg/g astaxanthin. The shrimp surimi products supplemented with 30 g/kg AE had higher redness values and greater overall acceptability and texture properties after cooking (p < 0.05). AE showed higher oxidative stability in RC-SSP than the control, as evidenced by lower TBARS and carbonyl content, and higher sulfhydryl and salt-soluble protein content. AE from shrimp by-products had positive effects on the antioxidant activity and color difference of RC-SSP, and could be used as a potential multifunctional additive for the development of shrimp surimi products.
Collapse
|
12
|
Zahid MA, Eom JU, Parvin R, Seo JK, Yang HS. Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage. Antioxidants (Basel) 2022; 11:antiox11030534. [PMID: 35326184 PMCID: PMC8944691 DOI: 10.3390/antiox11030534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
This study was accomplished by comparing the oxidative stability of (0.1%) Syzygium aromaticum extract (SAE) and (0.02%) butylated hydroxytoluene (BHT)-added cooked ground beef with an antioxidant free-control sample during frozen storage. All samples showed a non-significant (p > 0.05) effect on pH, thawing loss, redness, and yellowness values during storage. Incorporation of BHT and SAE led to a significant (p < 0.05) reduction in thiobarbituric acid-reactive substances (TBARS) and volatile levels as an active antioxidant. The generation of less volatiles found in SAE-treated samples up to 6 months (p < 0.05) of storage. Therefore, SAE-protected ground beef can lead to lower lightness, lipid oxidation, and volatile compounds levels after cooking compared with control and BHT samples.
Collapse
Affiliation(s)
- Mohammad Ashrafuzzaman Zahid
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (M.A.Z.); (R.P.)
| | - Jeong-Uk Eom
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
| | - Rashida Parvin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (M.A.Z.); (R.P.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
| | - Jin-Kyu Seo
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
| | - Han-Sul Yang
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
- Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1948; Fax: +82-55-772-1949
| |
Collapse
|
13
|
Villaró S, Ciardi M, Morillas-España A, Sánchez-Zurano A, Acién-Fernández G, Lafarga T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods 2021; 10:foods10102303. [PMID: 34681351 PMCID: PMC8534595 DOI: 10.3390/foods10102303] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a high-value carotenoid currently being produced by chemical synthesis and by extraction from the biomass of the microalga Haematococcus pluvialis. Other microalgae, such as Chlorella zofingiensis, have the potential for being used as sources of astaxanthin. The differences between the synthetic and the microalgae derived astaxanthin are notorious: not only their production and price but also their uses and bioactivity. Microalgae derived astaxanthin is being used as a pigment in food and feed or aquafeed production and also in cosmetic and pharmaceutical products. Several health-promoting properties have been attributed to astaxanthin, and these were summarized in the current review paper. Most of these properties are attributed to the high antioxidant capacity of this molecule, much higher than that of other known natural compounds. The aim of this review is to consider the main challenges and opportunities of microalgae derived products, such as astaxanthin as food. Moreover, the current study includes a bibliometric analysis that summarizes the current research trends related to astaxanthin. Moreover, the potential utilization of microalgae other than H. pluvialis as sources of astaxanthin as well as the health-promoting properties of this valuable compound will be discussed.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Martina Ciardi
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ana Sánchez-Zurano
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Gabriel Acién-Fernández
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
- Correspondence:
| |
Collapse
|
14
|
Carballo DE, Caro I, Gallego C, González AR, Giráldez FJ, Andrés S, Mateo J. Banana Pseudo-Stem Increases the Water-Holding Capacity of Minced Pork Batter and the Oxidative Stability of Pork Patties. Foods 2021; 10:foods10092173. [PMID: 34574283 PMCID: PMC8471179 DOI: 10.3390/foods10092173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
Banana pseudo-stem (BPS), which is rich in fibre and polyphenols, is a potential functional ingredient for the food industry. In this study, BPS was added at concentrations of 1.5, 3.0, and 4.5 g/kg to a minced pork batter to evaluate its performance as a filler and to pork burger patties to evaluate its performance as a natural antioxidant. The effects of BPS were compared with those of carrageenan and ascorbate, which are a conventional binder and antioxidant, respectively. The performance of BPS was similar to that of carrageenan in terms of the cooking yield and texture of the cooked batter. BPS reduced the brightness of fresh patties and appeared to reduce oxidative discolouration during the frozen storage of raw patties. Moreover, BPS reduced the levels of thiobarbituric acid reactive substances (TBARS) during the refrigerated and frozen storage of cooked patties. A greater decrease in TBARS formation was observed with 4.5 g BPS/kg compared with 0.5 g sodium ascorbate/kg during refrigerated storage. In contrast to ascorbate, BPS promoted the presence of lipid-derived volatile compounds induced by thermal breakdown in the headspace of cooked patties. Nonetheless, this effect was reduced as the amount of BPS in the patties increased. In cooked minced meat products, BPS could increase cooking yields and lipid oxidative stability during storage and might result in a more intense flavour.
Collapse
Affiliation(s)
- Diego E. Carballo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain; (D.E.C.); (C.G.); (A.R.G.)
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain;
| | - Cristina Gallego
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain; (D.E.C.); (C.G.); (A.R.G.)
| | - Ana Rebeca González
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain; (D.E.C.); (C.G.); (A.R.G.)
- Comercializadora GONAC SA de CV, Camino Nacional No. 7. Ciudad Industrial Xicohtencati II, Huamantla 90500, Mexico
| | - Francisco Javier Giráldez
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain; (F.J.G.); (S.A.)
| | - Sonia Andrés
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain; (F.J.G.); (S.A.)
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain; (D.E.C.); (C.G.); (A.R.G.)
- Correspondence: ; Tel.: +34-9872-91247
| |
Collapse
|
15
|
Giráldez FJ, Mateo J, Carballo DE, Caro I, Andrés S. Divergent values in feed efficiency promote changes on meat quality of fattening lambs. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Luzardo-Ocampo I, Ramírez-Jiménez AK, Yañez J, Mojica L, Luna-Vital DA. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021; 10:634. [PMID: 33802794 PMCID: PMC8002548 DOI: 10.3390/foods10030634] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
Natural colorants have emerged as an alternative to their synthetic counterparts due to an existing health concern of these later. Moreover, natural-food colorants are a renewable option providing health benefits and interesting technological and sensory attributes to the food systems containing them. Several sources of natural colorants have been explored aiming to deliver the required wide color range demanded by consumers. This review aimed to compare and discuss the technological applications of the main natural-food colorants into food system in the last six years, giving additional information about their extraction process. Although natural colorants are promising choices to replace synthetic ones, optimization of processing conditions, research on new sources, and new formulations to ensure stability are required to equate their properties to their synthetic counterparts.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Santiago de Querétaro, QRO 76230, Mexico;
| | - Aurea K. Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Jimena Yañez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A. C., Camino Arenero #1227 Col. El Bajío, Zapopan, JAL 45019, Mexico;
| | - Diego A. Luna-Vital
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| |
Collapse
|
17
|
Physicochemical Characteristics, Fatty Acid Profile, Alpha-Tocopherol Content, and Lipid Oxidation of Meat from Ewes Fed Different Levels of Distilled Myrtle Residues. Molecules 2020; 25:molecules25214975. [PMID: 33121144 PMCID: PMC7662583 DOI: 10.3390/molecules25214975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/03/2022] Open
Abstract
The aim of this work was to study the sheep meat physicochemical traits as affected by distilled myrtle residues (MR) supplementation. For this, 27 culled ewes were divided into three groups receiving a ration composed by concentrate and hay for the Control group, concentrate and MR as a total substitute to hay for the Myrt-H group, or hay, less concentrate, and MR as a partial substitute to concentrate for the Myrt-C group. The meat chemical composition, pH, and color parameters were not affected by the MR intake. However, this animal’s dietary treatment resulted in higher meat polyphenol and α-tocopherol content for both MR groups (9.38 and 8.05 vs. 3.04 μg g−1 DM for Myrt-H, Myrt-C, and Control, respectively). In addition, since day 3 of meat storage, the lipid oxidation was improved by MR intake being lower for both MR groups than the Control (0.51 vs. 1.11 mg MDA/kg of meat). The total polyunsaturated fatty acid (PUFA) and saturated fatty acid (SFA) were similar among groups. However, the meat of Myrt-H had the highest C18:2n-6 and total PUFAn-6. In conclusion, the MR intake could be useful given it increases the meat content of vitamin E and improves its oxidative status without negative effects on the FA profile.
Collapse
|
18
|
Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants (Basel) 2020; 9:antiox9090851. [PMID: 32927869 PMCID: PMC7555821 DOI: 10.3390/antiox9090851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
Clean labelling refers to consumers' desire for manufacturers to be more transparent in the way their products are made and sourced. Natural antioxidants (spices, herbs, fruits, or vegetables) have been proven to offer the same functionality as their synthetic counterparts, with the advantage of being label friendly and process compatible, maintaining meat quality and reducing food waste. Lamb meat has the challenges to have an intense flavour and fat composition to test the effectiveness of some of these natural antioxidants like hydroxytyrosol (HXT). The current paper was designed to test both natural (HXTo) and synthetic (HXTs) antioxidants using four lamb patty batches: one Control (C) (which included sulphites); a reference (R) sample (14.6% carnosic acid and 6% carnosol from natural rosemary extracts, 200 ppm); a sample containing synthetic hydroxytyrosol (HXTs, 99% purity, 200 ppm); and a sample with added organic hydroxytyrosol (HXTo, sample 7% purity from olive tree leaves, 200 ppm). A shelf-life study was carried out for 6 days at 4 °C, testing proximal composition and mineral bioavailability, pH changes, colour (by CIELab), total antioxidant capacity (TAC by oxygen radical absorbance capacity (ORAC)), lipid and protein oxidation (thiobarbituric acid reactive substances (TBARs) and thiol loss, respectively), volatile compound profiles (by HPC-MS), sensory evaluation, and microbiological growth (as total vial count (TVC) and total coliform count (TCC)). Results revealed that lamb burgers with added HXTs had better-preserved raw lamb meat in the test conditions, with reduced colour losses, lipid oxidation, and release of volatile compounds, the half the microbiological growth (TVC) of the Control, the best TAC, and significantly increased (p < 0.05) minerals bioavailability, while maintaining sensory acceptability. In summary, natural antioxidants are an adequate strategy for lamb meat burgers. Regarding HXTo, obtained from olives, the synthetic analogue is even more effective in terms of preservative and antioxidant activity, and in maintaining the nutritional value, sensory characteristics, and safety of food products.
Collapse
|
19
|
Zahid MA, Seo JK, Parvin R, Ko J, Park JY, Yang HS. Assessment of the Stability of Fresh Beef Patties with the Addition of Clove Extract during Frozen Storage. Food Sci Anim Resour 2020; 40:601-612. [PMID: 32734267 PMCID: PMC7372992 DOI: 10.5851/kosfa.2020.e37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/06/2022] Open
Abstract
The study assessed the stability for fresh beef patties with the inclusion of clove extract (CE) as a natural antioxidant in comparison to butylated hydroxytoluene (BHT) and ascorbic acid (AA) at frozen storage. Four different patties were made dependent on the added antioxidants: control (added no antioxidants), added with 0.02% BHT, 0.05% AA, and 0.1% CE. Inclusion of BHT, AA, and CE resulted in a significant reduction of thiobarbituric acid reactive substances (TBARS) and hue angle (h°) value and increase of redness (CIE a*) and chroma (C*) values (p<0.05). BHT, AA, and CE were observed effectively to retard lipid oxidation and increase color stability. BHT and AA revealed significantly (p<0.05) higher thiol content than the control and CE. However, the reduction percentage for thiol content in CE treated patties was lower than the control and AA-treated patties from first to last time of storage. Moreover, inclusion of AA and CE led to significantly (p<0.05) increased heme iron content when compared to BHT and the control. In conclusion, CE can replace the application of AA and BHT while improving lipid stability, heme iron content, and color stableness of fresh beef patties throughout frozen storage.
Collapse
Affiliation(s)
- Md Ashrafuzzaman Zahid
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Jin-Kyu Seo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Rashida Parvin
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Jonghyun Ko
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Jun-Young Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Han-Sul Yang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.,Department of Agriculture, University of Arkansas at Pine Bluff, AR 71601, USA
| |
Collapse
|
20
|
Li F, Zhong Q, Kong B, Wang B, Pan N, Xia X. Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Res Int 2020; 133:109142. [DOI: 10.1016/j.foodres.2020.109142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
21
|
Gullón B, Gagaoua M, Barba FJ, Gullón P, Zhang W, Lorenzo JM. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
|
23
|
Zahid MA, Choi JY, Seo JK, Parvin R, Ko J, Yang HS. Effects of clove extract on oxidative stability and sensory attributes in cooked beef patties at refrigerated storage. Meat Sci 2020; 161:107972. [DOI: 10.1016/j.meatsci.2019.107972] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
|
24
|
Tayengwa T, Chikwanha OC, Gouws P, Dugan MER, Mutsvangwa T, Mapiye C. Dietary citrus pulp and grape pomace as potential natural preservatives for extending beef shelf life. Meat Sci 2019; 162:108029. [PMID: 31837542 DOI: 10.1016/j.meatsci.2019.108029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
The shelf-life of beef was compared from 7-months old Angus steers (281 ± 15.4 kg initial body weight) fed 150 g/kg DM dried citrus pulp (DCP) or grape pomace (DGP) for 90 days. The antioxidant activity, bacterial load, and lipid and protein oxidation were evaluated on the longissimus lumborum subjected to air-permeable packaging at days 1, 3, 5, 7 and 9 post-slaughter. Beef antioxidant activity was DGP > DCP > control (P ≤ 0.05). Beef from steers fed DGP or DCP had higher L* values (P ≤ 0.05) and fewer (P ≤ 0.05) coliform counts than steers fed the control diet. Beef antioxidant activity was DGP > DCP > control (P ≤ 0.05). Beef TBARS and carbonyl contents were DGP < DCP < control (P ≤ 0.05). Overall, antioxidant activity decreased (P ≤ 0.05), while bacterial loads, TBARS and carbonyl contents increased (P ≤ 0.05) during retail display for all diets. Current findings indicate that DGP could be a better natural preservative than DCP when included in beef cattle finishing diets.
Collapse
Affiliation(s)
- Tawanda Tayengwa
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Pieter Gouws
- Department of Food Science, Center for Food Safety, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy Mutsvangwa
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
25
|
de Carvalho FAL, Lorenzo JM, Pateiro M, Bermúdez R, Purriños L, Trindade MA. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Res Int 2019; 125:108554. [PMID: 31554074 DOI: 10.1016/j.foodres.2019.108554] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
The effects of guarana seed and pitanga leaf extracts on the physical-chemical and sensory characteristics, and oxidative stability of modified atmosphere-packaged lamb patties with fat replacement during storage (2 °C) were investigated. Four treatments were prepared: control (without antioxidant); with BHT (10 mg/kg); with 250 mg/kg guarana extract (G250); with 250 mg/kg pitanga extract (P250). Analysis included the proximate composition (moisture, protein, fat, and ash) and sensory acceptance (day 0); pH, color (L*, a*, b*), TBARs, carbonyl content, DPPH, and visual sensory assessment (0, 6, 12, and 18 days); fatty acid profile and volatile compounds (0 and 18 days). G250 and P250 did not alter the centesimal composition and the acceptance of the lamb burgers on day 0. The extracts also delayed discoloration of the burgers, endowed the reddest intensity, and retarded lipid and protein oxidation throughout storage time, particularly P250, which presented the lowest TBARs levels (6.92 mg MDA/kg) and carbonyl values (5.59 nmol carbonyl/mg), and the highest antioxidant activity (249.48 μg Trolox/g), at day 18. The MUFA, SFA, and PUFA levels, AI, TI, and h/H ratio were comparable between treatments; only the n-6/n-3 ratio was higher in P250 treatment but within the recommended levels. More volatile compounds were derived from lipid oxidation in the control and BHT treatments than G250 and P250 treatments. As a result, both G250 and P250 groups are effective against color deterioration, and lipid and protein oxidation, without impairing the sensorial characteristics, representing a promising alternative to replace synthetic antioxidants by natural products in lamb burger.
Collapse
Affiliation(s)
- Francisco Allan L de Carvalho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Laura Purriños
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Marco Antonio Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| |
Collapse
|
26
|
Chikwanha OC, Moelich E, Gouws P, Muchenje V, Nolte JVE, Dugan MER, Mapiye C. Effects of feeding increasing levels of grape (Vitis vinifera cv. Pinotage) pomace on lamb shelf-life and eating quality. Meat Sci 2019; 157:107887. [PMID: 31323453 DOI: 10.1016/j.meatsci.2019.107887] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/15/2022]
Abstract
The study evaluated shelf-life and sensory quality of meat from lambs fed finisher diets containing increasing levels of grape pomace (GP; 0, 5, 10, 15 and 20% GP/kg DM). Color, antioxidant activity and lipid oxidation of the longissimus lumborum were evaluated on different storage times (days 1, 3, 5, 7 and 9) post-slaughter using overwrapped air-permeable packaging. Treatments 0, 10 and 20% GP/kg DM were used for evaluation of protein oxidation and microbial counts on days 1, 5 and 7, while a trained panel assessed the sensory quality on day 1. Diet neither influenced meat color nor sensory quality. Diet × day interactions were observed for antioxidant activity, lipid and protein oxidation. Overall, the 20% GP/kg-diet finished lamb meat had the highest antioxidant activity and the lowest total viable bacterial counts, lipid and protein oxidation values during the shelf-life period. The 20% GP/kg DM in lamb diets, therefore, improved lamb meat shelf-life without negatively affecting sensory quality.
Collapse
Affiliation(s)
- Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Erika Moelich
- Department of Food Science, Center for Food Safety, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Pieter Gouws
- Department of Food Science, Center for Food Safety, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Voster Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, Alice 5700, South Africa
| | | | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
27
|
Carballo DE, Giráldez FJ, Andrés S, Caro I, Fernández-Gutiérrez M, Mateo J. Effects of dietary astaxanthin supplementation on the oxidative stability of meat from suckling lambs fed a commercial milk-replacer containing butylated hydroxytoluene. Meat Sci 2019; 156:68-74. [PMID: 31132590 DOI: 10.1016/j.meatsci.2019.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022]
Abstract
Meat colour and lipid oxidative stability can be improved by adding antioxidants to animal diet. This study investigated the effects of the addition of astaxanthin to a butylated hydroxytoluene (BHT)-containing commercial milk-replacer, at a rate of 25 mg of astaxanthin/kg of milk-replacer powder, on suckling lamb meat quality. Twenty newborn (2 day old) lambs allocated to individual pens were artificially reared for 22 days. Ten lambs (Control) were fed a commercial milk-replacer and the other ten (Astaxanthin) received the same milk-replacer but included astaxanthin. After the feeding trial, meat and fat colour, astaxanthin and BHT levels in meat, oxidative stability in refrigerated and frozen raw meat and refrigerated cooked meat, and meat volatiles in cooked meat were determined. Astaxanthin in artificially reared suckling lambs at the levels used reduced the accumulation of BHT in the meat, slightly affected meat colour, by reducing meat lightness and increasing meat and fat redness, and increased the lipid stability of frozen meat.
Collapse
Affiliation(s)
- Diego E Carballo
- Department of Food Hygiene and Technology, Faculty of Veterinary Sciences, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
| | - F Javier Giráldez
- Instituto de Ganadería de Montaña, CSIC, Universidad de León, Finca Marzanas, E-24346 Grulleros, León, Spain
| | - Sonia Andrés
- Instituto de Ganadería de Montaña, CSIC, Universidad de León, Finca Marzanas, E-24346 Grulleros, León, Spain
| | - Irma Caro
- Department of Food Science and Nutrition, College of Medicine, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Miguel Fernández-Gutiérrez
- Instituto de Ganadería de Montaña, CSIC, Universidad de León, Finca Marzanas, E-24346 Grulleros, León, Spain
| | - Javier Mateo
- Department of Food Hygiene and Technology, Faculty of Veterinary Sciences, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain.
| |
Collapse
|