1
|
Cheng R, Cheng X, Jiang D, Xiong J, Ding Y, Liu J, Zhao H, Feng H, Wu D, Zhang W. Spectrum-effect relationship of the cardiovascular-protective effect of with Chrysanthemi Flos by UPLC-MS/MS and component knock-out method. Food Chem Toxicol 2025; 200:115372. [PMID: 40054725 DOI: 10.1016/j.fct.2025.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Chrysanthemi Flos (CF), as one of the important 'dual-use' plants, possesses great pharmacological research and development potential. This work aimed to find the pharmacodynamic material basis of CF in cardiovascular-protection by spectrum-effect relationship and component knock-out method. The fingerprint was established by ultra-high performance liquid chromatography and 25 peaks were picked out as common peaks. The common peaks were identified by ultra-performance liquid chromatography-quadrupole-orbitrap-mass spectrometry including twelve flavonoids, nine phenylpropanoids, three organic acids, and one nucleoside. The cardiovascular-protective effect of CF was determined by angiotensin II-induced injury model of human umbilical vein endothelial cells. Grey relation analysis, partial least squares regression analysis and Pearson's correlation analysis were performed to assess the relationship between the cardiovascular-protective effect and ingredients. Spectrum-effect relationship and component knock-out method revealed that P11 (luteolin-7-O-β-D-glucoside), P14 (3,4-O-dicaffeoylquinic acid), P16 (1,5-O-dicaffeoylquinic acid), and P17 (3,5-O-dicaffeoylquinic acid) were the pharmacological material basis for the cardiovascular-protective effect of CF. This work preliminarily elucidated the pharmacodynamic material basis of cardiovascular-protective effect of CF, which could be used to considerable methods and insight for the fundamental research of the pharmacodynamic material basis of Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Ranran Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiang Cheng
- Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Dongliang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Junwei Xiong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yangfei Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Juan Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hongsu Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hangmin Feng
- Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China.
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Ma J, Wang L, Li M, Yao J, Liu W, Zhang F, Sun M, Cao Y, Yang Y, Yang Y, Ying L, Shen M, Yuan R, She G. In silico identification for flavor antioxidant compounds in Chrysanthemi flos uncovers the interactions between saccharides and secondary metabolites. Food Chem 2025; 482:144160. [PMID: 40194337 DOI: 10.1016/j.foodchem.2025.144160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Secondary metabolites and saccharides are responsible for antioxidant activity and flavor of Chrysanthemi flos (CF). However, the flavor antioxidant compounds of CF and their intermolecular interactions remain unclear. Here, we primarily employed in silico methods to identify CF antioxidants. After characterizing by physicochemical properties, FT-NIR and HPLC fingerprint, the "spectrum-effect" fusion correlation was established to select the spectral features of CF antioxidants. Quercetagitrin (QU), chlorogenic acid (CA) and saccharides fragments were clarified based on their characteristic spectrum. The antioxidant efficacy as well as the sweet and bitter taste of these compounds were verified by molecular docking. Quantum chemical calculations demonstrated that non-covalent interactions dominant facilitated the stable existence of CF antioxidants. The most significant binding types between CA, QU and saccharides fragments were hydrogen bonding. These results indicate a novel approach and theoretical support to discovery of new information pertinent to the bioactive compounds related to CF or other tea.
Collapse
Affiliation(s)
- Jiamu Ma
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Le Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Mingxia Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Jianling Yao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Wei Liu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Feng Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Mengyu Sun
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Yu Cao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Yuqing Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Yongqi Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Letian Ying
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China
| | - Meng Shen
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China.
| | - Ruijuan Yuan
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China.
| | - Gaimei She
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Fangshan District, 100029 Beijing, China.
| |
Collapse
|
3
|
Xu H, Gao Y, Gao Y, Tan Z, Qian Z, He L, Wang X, Li Q. The Distribution and Variation of Phenolic Acids in Chrysanthemum morifolium (Chuju) in Different Plant Parts During Growth Stages. Chem Biodivers 2025:e202403398. [PMID: 40162613 DOI: 10.1002/cbdv.202403398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Chrysanthemum is commonly known as a natural Chinese herbal medicine, whose flowers are traditionally used for edible and therapeutic purposes for health benefits. Phenolic acids are the main compounds that are considered to have important biological activity in the Chrysanthemum flower. An efficient and accurate analytical method to quantify 16 targeted phenolic acids was established and validated using a high-performance liquid chromatography method. The distribution of free and bound phenolic acids in different Chuju organs was analyzed and quantified. The detected phenolic acids were present at higher concentrations in flower materials than in other plant organs, including salicylic acid, chlorogenic acid, and vanillic acid. Second only to flowers, the leaves also could be recommended as an optimal source of certain phenolic acids, which include benzoic acid and sinapic acid. The types and contents of bound phenolic acids increased markedly in root and stem materials. Additionally, phenolic acid content fluctuated throughout the growth stages, with the highest levels observed during full flowering. Our study provided valuable information on the distribution and variation of phenolic acids in the Chuju plant at different growth stages, further providing research prospects to promote Chuju usage and function in the herbal tea and pharmaceutical industries, and even promoting Chuju cultivation.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Ying Gao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Yinhao Gao
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Zhenyu Tan
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Zongyao Qian
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
- Anhui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou, China
| | - Lisi He
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
- Anhui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou, China
| | - Xuhui Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
- Anhui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou, China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
4
|
Breda C, Nascimento A, Meghwar P, Lisboa H, Aires A, Rosa E, Ferreira L, Barros AN. Phenolic Composition and Antioxidant Activity of Edible Flowers: Insights from Synergistic Effects and Multivariate Analysis. Antioxidants (Basel) 2025; 14:282. [PMID: 40227247 PMCID: PMC11939731 DOI: 10.3390/antiox14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The phenolic composition and antioxidant activity of four edible flowers-Orange marigold, yellow marigold, rose geranium, and Rosa de Santa Teresinha-were evaluated to explore their potential as natural antioxidants. Rosa de Santa Teresinha exhibited the highest total phenol content (83.34 ± 2.09 mg GA g-1 DW) and ortho-diphenol content (168.91 ± 0.15 mg GA g-1 DW), while the marigolds showed significantly lower levels (~17 mg GA g-1 DW for total phenols). Antioxidant activity, determined via ABTS, DPPH, and FRAP assays, ranged from 0.11 to 0.96 mmol Trolox g-1 DW, with rose geranium and Rosa de Santa Teresinha achieving the highest values. Theoretical antioxidant contributions, calculated based on the identified phenolic compounds, accounted for only a small fraction of the measured activity, with observed values exceeding predictions by factors of 56 to 1416, indicating the presence of synergistic interactions and additional bioactive compounds. Multivariate analyses (PCA and PLS regression) identified luteolin-7-O-glucoside and quercetin-3-O-galactoside as primary contributors to antioxidant capacity. These results underscore the importance of synergistic effects in edible flowers and highlight their potential as functional ingredients for nutraceutical applications.
Collapse
Affiliation(s)
- Cristiana Breda
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Amanda Nascimento
- Unidade Académica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso 882, Campina Grande 58429-900, PA, Brazil; (A.N.); (H.L.)
| | - Parkash Meghwar
- Department of Food Science and Technology, University of Karachi, Karachi 75270, Pakistan;
| | - Hugo Lisboa
- Unidade Académica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso 882, Campina Grande 58429-900, PA, Brazil; (A.N.); (H.L.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Luís Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| |
Collapse
|
5
|
Badawy SA, Hassan AR, Abu Bakr MS, Mohammed AESI. UPLC-qTOF-MS/MS profiling of phenolic compounds in Fagonia arabica L. and evaluation of their cholinesterase inhibition potential through in-vitro and in-silico approaches. Sci Rep 2025; 15:5244. [PMID: 39939326 PMCID: PMC11822067 DOI: 10.1038/s41598-025-86227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025] Open
Abstract
Fagonia arabica L. is a widely used traditional medicinal herb. This study explored the flavonoid and phenolic acid content in the aerial parts of F. arabica, leading to the tentative identification of 42 compounds using Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass/Mass Spectrometry and analyzed with the phytochemical-focused RIKEN tandem mass spectral database (ReSpect) for identification based on authentic standards. The total phenolic and flavonoid content was measured in the ethyl acetate and butanol fractions. The flavonoid content in the ethyl acetate fraction was 101 ± 1.43 µg Rutin/mg, compared to 6.48 ± 0.29 µg rutin/mg in the butanol fraction. Similarly, the ethyl acetate fraction contained 199.14 ± 1.58 µg gallic acid/mg, while the butanol fraction had 47.69 ± 0.54 µg gallic acid/mg. Also, the study demonstrated the effectiveness of the different fractions of Fagonia arabica L. in inhibiting the butyrylcholinesterase enzyme, which is a key contributor to the progression of Alzheimer's disease. At a concentration of 0.45 mg/mL, the ethyl acetate fraction showed the highest efficiency, inhibiting butyrylcholinesterase by 50% (IC50). Based on the in vitro results, a molecular docking study suggested the selectivity of the tentatively identified compounds towards butyrylcholinesterase over acetylcholinesterase, as kaempferol-3-O-glucoside achieved the highest selectivity. This insight could inform potential modifications to enhance selectivity, which may be applied in the synthesis, semi-synthesis, and development of novel treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Sarah A Badawy
- Medicinal and Aromatic Plants Department, Desert Research Center, El-Matariya 11753, Cairo, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy (for Girls), Al-Azhar University, Nasr City, Cairo, 11651, Egypt.
| | - Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center, El-Matariya 11753, Cairo, Egypt
| | - Marwa S Abu Bakr
- Department of Pharmacognosy, Faculty of Pharmacy (for Girls), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Abd El-Salam I Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy (for Boys), Al-Azhar University, Nasr City, Cairo, 13129, Egypt
| |
Collapse
|
6
|
Ding Y, Cheng R, Li Y, Jiang D, Zhao H, Wu X, Shu Y, Lu T, Jin C, Wu D, Zhang W. Effects of stir-frying on chemical profile, sensory quality and antioxidant activity of Chrysanthemi Flos: A metabolomics and sensory study. Food Res Int 2025; 200:115391. [PMID: 39779160 DOI: 10.1016/j.foodres.2024.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified. During stir-frying of Chrysanthemi Flos, glycosidic bond rupture in flavonoid glycosides, thermal decomposition of caffeoylquinic acid, Maillard, and caramelization reactions occurred. This led to the formation of 4 flavonoid glycosides (luteolin, diosmetin, apigenin, and quercetin) and 33 roasted aroma compounds like pyrazines, furans, 2-methylbutanal, and 2-furanmethanol. The Spearson's correlation analysis of metabolomics, E-eye, and E-tongue data showed that these compositional changes not only resulted in darkening and scorching of the color of Chrysanthemi Flos after stir-frying, but also improved the bitter and astringent taste of Chrysanthemi Flos tea broths, and enhanced the antioxidant activity of Chrysanthemi Flos. These findings will provide new perspectives on the selection of processing methods for Chrysanthemi Flos.
Collapse
Affiliation(s)
- Yangfei Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ranran Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dongliang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongsu Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xinfeng Wu
- Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei 230012, China.
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Seaside Rehabilitation Hospital, Lianyungang 222042, China.
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chuanshan Jin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Burgart YV, Makhaeva GF, Khudina OG, Krasnykh OP, Kovaleva NV, Elkina NA, Boltneva NP, Rudakova EV, Lushchekina SV, Shchegolkov EV, Triandafilova GA, Malysheva KO, Serebryakova OG, Borisevich SS, Ilyina MG, Zhilina EF, Saloutin VI, Charushin VN, Richardson RJ. 2-Arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropanoic acids as selective and effective carboxylesterase inhibitors with powerful antioxidant potential. Bioorg Med Chem 2024; 115:117938. [PMID: 39504592 DOI: 10.1016/j.bmc.2024.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
A series of 2-arylhydrazinylidene-3-oxo acids (AHOAs) was prepared by dealkylation of alkyl-2-arylhydrazinylidene-3-oxo-3-alkanoates with AlBr3. Using X-Ray, NMR spectroscopy, and quantum mechanical calculations (QM), the existence of AHOAs in a thermodynamically favorable Z-form stabilized by two intramolecular H-bonds was established. All AHOAs had acceptable ADME parameters. The esterase profile study showed that polyfluoroalkyl-AHOAs were effective and selective carboxylesterase (CES) inhibitors, while they were inactive against acetyl- and butyrylcholinesterase. In agreement with molecular docking, the most effective CES inhibitors (IC50 as low as 42 nM) were compounds bearing long polyfluoroalkyl substituents. The acids were also active against hCES1 and hCES2, and CF3-containing acids possessed selectivity against hCES2. Non-fluorinated acids did not inhibit CES, but they exhibited potent antioxidant capability. AHOAs having unsubstituted phenyl or electron-donating groups in the arylhydrazinylidene moiety displayed high primary antioxidant activity in the ABTS, FRAP, and ORAC tests, which did not depend on the substituent in the acyl fragment in the ABTS and ORAC assays. The radical-scavenging mechanism of AHOAs was investigated using QM calculations, showing a preference for cleavage of NH rather than OH bonds. For the lead antioxidants, 4-methoxysubstituted AHOAs, protective effects on erythrocyte membranes in AAPH-induced oxidative stress conditions were shown, including membrane stabilizing activity, inhibition of AAPH-induced lipid peroxidation of erythrocyte membranes, and Fe(II)-chelating ability. Thus, a new class of potent and selective CES inhibitors with powerful antioxidant potential has been developed as promising co-drugs capable of regulating the metabolism of esterified drugs and scavenging reactive radicals that form during Phase I biotransformation.
Collapse
Affiliation(s)
- Yanina V Burgart
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Olga G Khudina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Olga P Krasnykh
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm 614990,Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Natalia A Elkina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Sofya V Lushchekina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | | | - Ksenia O Malysheva
- Perm National Research Polytechnic University, Komsomolsky Av., 29, Perm 614990,Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, Chernogolovka 142432, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa 450078, Russia
| | - Margarita G Ilyina
- Ufa Institute of Chemistry of Russian Academy of Science, Octyabrya Av., 71, Ufa 450078, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Science, S. Kovalevskaya St., 22, Ekaterinburg 620108, Russia
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Chen N, Fan J, Li G, Guo X, Meng X, Wang Y, Duan Y, Ding W, Liu K, Liu Y, Xing S. Comparative Analysis of the Chemical Constituents of Chrysanthemum morifolium with Different Drying Processes Integrating LC/GC-MS-Based, Non-Targeted Metabolomics. Metabolites 2024; 14:481. [PMID: 39330488 PMCID: PMC11434334 DOI: 10.3390/metabo14090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Chrysanthemum morifolium is a perennial herbaceous plant in the Asteraceae family that is used as a medicine and food owing to its superior pharmacological properties. Irrespective of its application, C. morifolium must be dried before use. Shade drying (YG) and heat drying (HG) are the two drying methods used in most origins. Given the abundance of flavonoids, phenolic acids, and terpenoids, the primary medicinal active constituents of C. morifolium, it is important to determine whether the composition and content of these compounds are altered during the drying processes. To test this, the changes in the chemical composition of C. morifolium flowers after YG and HG using full-spectrum, non-targeted LC/GC-MS-based metabolomics and, subsequently, the three indicator components of C. morifolium-chlorogenic acid, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside-were accurately quantified by HPLC. The results of the non-targeted metabolomics analysis revealed that YG- and HG-processed C. morifolium differed significantly with respect to chemical contents, especially flavonoids, phenolic acids, and terpenoids. The levels of the indicator components and their precursors also differed significantly between the YG and HG treatments. The contents of most of the flavonoids and key phenolic acids, terpenoids, and carbohydrates were higher with YG than with HG pre-treatment. These results revealed the changes in the chemical composition of C. morifolium during the YG and HG processes, thus providing a reference for the further optimization of the production and processing of chrysanthemums.
Collapse
Affiliation(s)
- Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Gang Li
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Xuanxuan Guo
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Xiao Meng
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Yuqing Wang
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingying Duan
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Kai Liu
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Shihai Xing
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
9
|
Quan C, Cao S, Li J, Ma S. Research on extracting and preparing a Puerariae Flos and Chrysanthemum-based drink. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1675-1685. [PMID: 39049921 PMCID: PMC11263378 DOI: 10.1007/s13197-024-05937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 07/27/2024]
Abstract
In traditional Chinese medicine, Puerariae Flos and Chrysanthemum are widely utilized in herbal teas for hangover relief and heat-clearing detoxification. In this study, a new drink has been developed, employing these two flowers as primary raw materials. The objective of this study was to optimize the optimal formula, extraction process, and preparation method for the drink. The optimization of the formula and extraction process was guided by the utilization of the total flavonoids content in the water decoction of the two flowers as an indicator. Based on the sensory evaluation criteria, including color, smell, taste, and state of the drink, the water decoction addition, honey addition, and citric acid addition were optimized by single-factor experiments and orthogonal experiments. The best formula and extraction process was 10 g of Puerariae Flos, 10 g of Chrysanthemum, 48 min of decocting time, and 615 mL of water. The optimal preparation process consisted of 30% water decoction, 8% honey, and 0.025% citric acid. Subsequently, a golden yellow, transparent, and stable liquid was produced, possessing a sweet taste along with the distinctive aroma and flavor of Puerariae Flos and Chrysanthemum. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05937-x.
Collapse
Affiliation(s)
- Chunmei Quan
- College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800 Anhui Province People’s Republic of China
| | - Shuai Cao
- Traditional Chinese Medicine, Bozhou University, Bozhou, 236800 Anhui Province People’s Republic of China
| | - Jinfu Li
- Anhui Wan Hua Cao Biotechnology Company, Bozhou, 236800 Anhui People’s Republic of China
| | - Shengwei Ma
- Anhui Wan Hua Cao Biotechnology Company, Bozhou, 236800 Anhui People’s Republic of China
| |
Collapse
|
10
|
Xu J, Lv M, Ni X. Marein Alleviates Doxorubicin-Induced Cardiotoxicity through FAK/AKT Pathway Modulation while Potentiating its Anticancer Activity. Cardiovasc Toxicol 2024; 24:818-835. [PMID: 38896162 DOI: 10.1007/s12012-024-09882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, yet its clinical utility is hampered by dose-dependent cardiotoxicity. This study explores the cardioprotective potential of Marein (Mar) against DOX-induced cardiac injury and elucidates underlying molecular mechanisms. Neonatal rat cardiomyocytes (NRCMs) and murine models were employed to assess the impact of Mar on DOX-induced cardiotoxicity (DIC). In vitro, cell viability, oxidative stress were evaluated. In vivo, a chronic injection method was employed to induce a DIC mouse model, followed by eight weeks of Mar treatment. Cardiac function, histopathology, and markers of cardiotoxicity were assessed. In vitro, Mar treatment demonstrated significant cardioprotective effects in vivo, as evidenced by improved cardiac function and reduced indicators of cardiac damage. Mechanistically, Mar reduced inflammation, oxidative stress, and apoptosis in cardiomyocytes, potentially via activation of the Focal Adhesion Kinase (FAK)/AKT pathway. Mar also exhibited an anti-ferroptosis effect. Interestingly, Mar did not compromise DOX's efficacy in cancer cells, suggesting a dual benefit in onco-cardiology. Molecular docking studies suggested a potential interaction between Mar and FAK. This study demonstrates Mar's potential as a mitigator of DOX-induced cardiotoxicity, offering a translational perspective on its clinical application. By activating the FAK/AKT pathway, Mar exerts protective effects against DOX-induced cardiomyocyte damage, highlighting its promise in onco-cardiology. Further research is warranted to validate these findings and advance Mar as a potential adjunctive therapy in cancer treatment.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Cardiotoxicity
- Proto-Oncogene Proteins c-akt/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Signal Transduction/drug effects
- Focal Adhesion Kinase 1/metabolism
- Oxidative Stress/drug effects
- Apoptosis/drug effects
- Humans
- Disease Models, Animal
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/prevention & control
- Heart Diseases/enzymology
- Heart Diseases/pathology
- Male
- Anthraquinones/pharmacology
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Rats
- Cell Line, Tumor
- Cytoprotection
- Cells, Cultured
- Antibiotics, Antineoplastic/toxicity
- Mice
Collapse
Affiliation(s)
- Juanjuan Xu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China.
| | - Manjun Lv
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Ni
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
11
|
Li H, Lin L, Feng Y, Zhao M. Exploration of optimal preparation strategy of Chenpi (pericarps of Citrus reticulata Blanco) flavouring essence with great application potential in sugar and salt-reduced foods. Food Res Int 2024; 175:113669. [PMID: 38129020 DOI: 10.1016/j.foodres.2023.113669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
To obtain flavouring essence with application potential in sugar and salt-reduced foods, the optimal strategy for extraction and microencapsulation of essential oil (EO) from Chenpi was investigated. UPLC-QTOF-MS/MS and liquid-liquid-extraction-GC-MS confirmed the selectivity for volatiles ranked in hydrodistillation > supercritical fluid extraction > solvent extraction. The aroma characteristic of Chenpi EO was distinguished by 33 key volatiles (screened out via headspace-SPME-GC-MS) and quantitative descriptive analysis. EO extracted by supercritical fluid extraction was preferred for preserving the original aroma of Chenpi and displaying more fruity, honey and floral. Chenpi flavouring essence with superior encapsulation efficiency, particle size, water dispersibility, and thermostability was obtained through optimally microencapsulating EO with gum arabic and maltodextrin (1:1) by high-pressure homogenization coupled with spray drying. Chenpi flavouring essence was able to reduce the usage of sugar and salt by 20 % via enhancing flavour perception of sweetness and saltiness. This study first developed a flavouring essence promisingly effective in both sugar and salt-reduced foods.
Collapse
Affiliation(s)
- Hanliang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China.
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| |
Collapse
|
12
|
Huang Y, Tao M, Li R, Liang F, Xu T, Zhong Q, Yuan Y, Wu T, Pan S, Xu X. Identification of key phenolic compounds for alleviating gouty inflammation in edible chrysanthemums based on spectrum-effect relationship analyses. Food Chem X 2023; 20:100897. [PMID: 38144783 PMCID: PMC10739853 DOI: 10.1016/j.fochx.2023.100897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
Edible chrysanthemum is a common food resource for tea and functional foods with potential benefits for human health. Studies have indicated that chrysanthemum has the potential effect on inflammatory diseases, while the effects on gouty inflammation remain underexplored. The present study aimed to investigate the anti-gout activity and characterize the active ingredients of chrysanthemums by using metabolite profiles, in vitro experiments, and spectrum-effect analysis. Results showed that 'Boju' (BJ), 'Hangbaiju' (HBJ), and 'Huaiju' (HJ) exhibited regulatory effects on monosodium urate (MSU)-induced inflammation. At the dose of 50 µg/mL, the inhibitory rates of IL-1β secretion were 24.53 %, 14.36 %, and 38.10 %, respectively. A total of 32 phenolic compounds were identified or preliminarily assigned in UPLC-Q/TOF-MS analysis. And seven phenolics related to anti-gout activity were identified by spectrum-effect relationships. According to ADME (absorption, distribution, metabolism, excretion) evaluation and experiments verification, luteolin, acacetin-7-O-glucoside, and apigenin-7-O-glucoside were critical constituents potentially associated with the reduction of inflammation in gout. Additionally, these phenolics might be suitable as quality control indicators. This study clarified the anti-gout properties of different cultivars of chrysanthemums and active compounds, providing a theoretical basis for its scientific utilization in functional foods.
Collapse
Affiliation(s)
- Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Agricultural Quality Standards and Detection Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen 448000, China
| | - Fuqiang Liang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhong
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Yuan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Peng A, Lin L, Zhao M. Chemical basis and self-assembly mechanism of submicroparticles forming in chrysanthemum tea infusion. Food Chem 2023; 427:136745. [PMID: 37392633 DOI: 10.1016/j.foodchem.2023.136745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Submicroparticles are important components generally existed in chrysanthemum tea infusion, but their functionality, chemical composition, structure and self-assembly mechanism are unclear due to lack of suitable preparation method and research strategy. This study showed that submicroparticles promoted the intestinal absorption of phenolics in chrysanthemum tea infusion by comparison of chrysanthemum tea infusion, submicroparticles-free chrysanthemum tea infusion and submicroparticles. Submicroparticles efficiently prepared by ultrafiltration mainly consisting of polysaccharide and phenolics accounted for 22% of total soluble solids in chrysanthemum tea infusion. The polysaccharide, which was determined as esterified pectin with a spherical conformation, provided spherical skeleton to form submicroparticles. A total of 23 individual phenolic compounds were identified in submicroparticles with the total phenolic content of 7.63 μg/mL. The phenolics not only attached to the external region of spherical pectin by hydrogen bonds, but also got into hydrophobic cavities of spherical pectin and attached to the internal region by hydrophobic interactions.
Collapse
Affiliation(s)
- An Peng
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
14
|
Yang F, Wang T, Guo Q, Zou Q, Yu S. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:791-803. [PMID: 36840758 DOI: 10.1007/s00299-023-02991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium MYB3 factors are transcriptional activators for the regulation of flavonol biosynthesis. Flavonol was not only the critical secondary metabolite participating in the growth and development of plants but also the main active ingredient in medicinal chrysanthemum. However, few pieces of research revealed the transcriptional regulation of flavonol biosynthesis in Chrysanthemum morifolium. Here, we isolated two CmMYB3 transcription factors (CmMYB3a and CmMYB3b) from the capitulum of Chrysanthemum morifolium cv 'Hangju'. According to the sequence characteristics, the CmMYB3a and CmMYB3b belonged to the R2R3-MYB subgroup 7, whose members were often reported to regulate flavonol biosynthesis positively. CmMYB3a and CmMYB3b factors were identified to localize in the nucleus by subcellular localization assay. Besides, both of them have obvious transcriptional self-activation activity in their C-terminal. After the overexpression of CmMYB3 genes in Nicotiana benthamiana and Arabidopsis thaliana, the flavonol contents in plants were increased, and the expression of AtCHS, AtCHI, AtF3H, and AtFLS genes in A. thaliana was also improved. Interestingly, the CmMYB3a factor had stronger functions in improving flavonol contents and related gene expression levels than CmMYB3b. The interaction analysis between transcription factors and promoters suggested that CmMYB3 could bind and activate the promoters of CmCHI and CmFLS genes in C. morifolium, and CmMYB3a also functioned more powerfully. Overall, these results indicated that CmMYB3a and CmMYB3b work as transcriptional activators in controlling flavonol biosynthesis.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qingjun Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuyan Yu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
15
|
Cui Y, Peng S, Deng D, Yu M, Tian Z, Song M, Luo J, Ma X, Ma X. Solid-state fermentation improves the quality of chrysanthemum waste as an alternative feed ingredient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117060. [PMID: 36587550 DOI: 10.1016/j.jenvman.2022.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Chrysanthemum waste (CW) is an agricultural and industrial by-product produced during chrysanthemum harvesting, drying, preservation, and deep processing. Although it is nutritious, most CW is discarded, wasting resources and contributing to serious environmental problems. This work explored a solid-state fermentation (SSF) strategy to improve CW quality for use as an alternative feed ingredient. Orthogonal experiment showed that the optimal conditions for fermented chrysanthemum waste (FCW) were: CW to cornmeal mass ratio of 9:1, Pediococcus cellaris + Candida tropicalis + Bacillus amyloliquefaciens proportions of 2:2:1, inoculation amount of 6%, and fermentation time of 10 d. Compared with the control group, FCW significantly increased the contents of crude protein, ether extract, crude fiber, acid detergent fiber, neutral detergent fiber, ash, calcium, phosphorus, and total flavonoids (p < 0.01), and significantly decreased pH and saponin content (p < 0.01). SSF improved the free and hydrolyzed amino acid profiles of FCW, increased the content of flavor amino acids, and improved the amino acid composition of FCW protein. Overall, SSF improved CW nutritional quality. FCW shows potential use as a feed ingredient, and SSF helps reduce the waste of chrysanthemum processing.
Collapse
Affiliation(s)
- Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Su Peng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Jingjing Luo
- Guangzhou Pastoral Agriculture and Forestry Co., Ltd, Guangzhou, 511300, China
| | - Xinyan Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China.
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
16
|
Rao H, Lin L, Zhao M. Insights into a novel chrysanthemum-coix seed beverage prepared by enzymatic hydrolysis: Chemical profile, sensory quality, and functional property. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
17
|
Zhou H, Zhang X, Li B, Yue R. Fast and efficient identification of hyaluronidase specific inhibitors from Chrysanthemum morifolium Ramat. using UF-LC-MS technique and their anti-inflammation effect in macrophages. Heliyon 2023; 9:e13709. [PMID: 36852058 PMCID: PMC9957760 DOI: 10.1016/j.heliyon.2023.e13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of the study was to establish a rapid analytical strategy to screen potential anti-inflammatory compounds from Flos Chrysanthemum flower. The enzyme assay was conducted to prescreen botanical extracts, in which Chrysanthemum morifolium aqueous extract (CME) displayed hyaluronidase (HAase) inhibitory activity in a dose-dependent manner with the values of 8.31, 24.25, and 66.51% at concentrations of 1.00, 2.00, and 4 0.00 mg/mL, respectively. Eight potential compounds targeting HAase (compounds 9, 10, 11, 13, 15, 17, 20 and 21) from CME were screened using ultrafiltration affinity liquid chromatography coupled with mass spectrometry (UF-LC-MS) technology. The well-known inhibitor, dipotassium glycyrrhizinate (DG), was used as a positive control and competitive ligand to eliminate false positives. Then, four of these potential components (compounds 9, 10, 17, and 21), namely eriodictyol-7-O-glucoside, luteoloside, apigenin-7-O-glucoside and diosmetin-7-O-glucoside, were distinguished as potent HAase specific inhibitor candidates with high BD and CBD values. The enzyme inhibitory activities of candidate compounds were verified using enzyme inhibition assay. At a concentration of 1000 μM, compounds 9, 10, 17, and 21 showed 40.15, 44.85, 18.04, and 24.15% inhibition of HAase, respectively. Furthermore, all the four compounds significantly decreased the production of nitric oxide (NO) and IL-6, and significantly suppressed the mRNA expression of inducible NO synthase (iNOS) and IL-1β in both murine and human macrophages.
Collapse
Affiliation(s)
- Huiji Zhou
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, 201203, Shanghai, China
| | - Xue Zhang
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, 201203, Shanghai, China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, 201203, Shanghai, China.,Amway (China) Botanical R&D Center, Wuxi, 214145, China
| | - Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, Fujian, China
| |
Collapse
|
18
|
Chen L, Sun J, Pan Z, Lu Y, Wang Z, Yang L, Sun G. Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules 2023; 28:579. [PMID: 36677639 PMCID: PMC9866508 DOI: 10.3390/molecules28020579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Chrysanthemum extract possesses antioxidant potential and carbohydrate and fat digestive enzyme inhibitory in vitro. However, no evidence supporting chrysanthemum in modulation of postprandial lipemia and antioxidant status in humans presently exists. This study was to analyze the composition of Imperial Chrysanthemum (IC) extract and determine the effect on changes in postprandial glycemic and lipemic response and antioxidant status in adults after consumption of a high-fat (HF) meal. UHPLC-MS method was used to analyze the components of two kinds of IC extracts (IC-P/IC-E) and in vitro antioxidant activities were evaluated using 1,1-diphenyl-2-picrylhydraxyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and Hydroxyl radical (HR) radical scavenging assays. Following a randomized design, 37 healthy adults (age, 25.2 ± 2.6 years, and BMI, 20.9 ± 1.5 kg/m2) were assigned to two groups that consumed the HF meal, or HF meal supplemented by IC extract. Blood samples were collected at fasting state and then at 0.5, 1, 2, 4, 6 and 8 h after the meal consumption. There were 12 compounds with relative content of more than 1% of the extracts, of which amino acid and derivatives, flavonoids, carboxylic acids and derivatives were the main components. Compared with IC-E, the contents of flavonoids in IC-P increased significantly (p < 0.05), and the cynaroside content exceeded 30%. In addition, IC-P showed strong free radical scavenging activity against DPPH, ABTS and HR radicals. Furthermore, according to repeated−measures ANOVA, significant differences were observed in the maximal changes for postprandial glucose, TG, T-AOC and MDA among the two groups. Postprandial glucose has significant difference between the two groups at 1 h after meal and the level in IC group was significantly lower than that in control group. No significant differences were observed in the incremental area under the curve (iAUC) among the two groups. IC significantly improved the serum antioxidant status, as characterized by increased postprandial serum T-AOC, SOD, GSH and decreased MDA. This finding suggests that IC can be used as a natural ingredient for reducing postprandial lipemia and improving the antioxidant status after consuming a HF meal.
Collapse
Affiliation(s)
- Lin Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| | - Jihan Sun
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Zhengyu Pan
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Yifei Lu
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Zhaodan Wang
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| | - Ligang Yang
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| |
Collapse
|
19
|
Mi Y, Xu J, Shi R, Meng Q, Xu L, Liu Y, Guo T, Zhou D, Liu J, Li W, Li N, Hou Y. Okanin from Coreopsis tinctoria Nutt. alleviates cognitive impairment in bilateral common carotid artery occlusion mice by regulating the miR-7/NLRP3 axis in microglia. Food Funct 2023; 14:369-387. [PMID: 36511396 DOI: 10.1039/d2fo01476a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive impairment is the main clinical feature following stroke, and microglia-mediated inflammatory response is a major contributor to it. Coreopsis tinctoria Nutt., an edible chrysanthemum, is commonly used as a functional ingredient in healthcare beverages and food. Okanin, the main active ingredient of Coreopsis tinctoria Nutt. flower, inhibits microglial activation. However, the role of okanin in cognitive impairment following ischemic stroke is still unknown. In this study, we investigated the effect of okanin on ischemic stroke and its underlying mechanism both in vivo and in vitro. Okanin was found to attenuate cognitive impairment in bilateral common carotid artery occlusion (BCCAO) mice, inhibit neuronal loss and microglial activation, decrease NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, and increase miR-7 expression. Okanin suppressed NLRP3 inflammasome activation in oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS)-stimulated microglia by increasing miR-7 expression and inhibited microglia-induced neuronal injury. This study provides new insights into the role of okanin in ischemic stroke and shows that the miR-7/NLRP3 axis plays an important role in mediating the beneficial effects of okanin on cerebral ischemia. These findings suggest that okanin has great potential as a functional food for stroke recovery.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Jikai Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ruijia Shi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Qingqi Meng
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Libin Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Yeshu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Jingyu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China.
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China. .,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| |
Collapse
|
20
|
Long W, Bai X, Wang S, Chen H, Yin XL, Gu HW, Yang J, Fu H. UHPLC-QTOF-MS-based untargeted metabolomics and mineral element analysis insight into the geographical differences of Chrysanthemum morifolium Ramat cv. "Hangbaiju" from different origins. Food Res Int 2023; 163:112186. [PMID: 36596127 DOI: 10.1016/j.foodres.2022.112186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Chrysanthemum morifolium Ramat cv. "Hangbaiju" (HBJ), known as one of the "eight flavors of Zhejiang", is commonly used as a classical tea material for both food and medicine over three thousand years in China. The quality of HBJ is closely related to its geographical origins. However, the mechanism underlying the geographical differences of HBJ remains to be elucidated. In this study, an untargeted metabolomic strategy based on UHPLC-QTOF-MS was established to discover the differential metabolites in HBJ samples from four different origins and explore the possible relationship with mineral elements in planting soils by chemometric analysis. Eight compounds were screened and identified as the key differential metabolites in HBJ samples from different origins. Among them, four important pharmacodynamic compounds including L-arginine, rutin, chlorogenic acid and apigenin-7-O-glucoside are the most abundant in HBJ samples from Tongxiang region, which suggests that HBJ planted in Tongxiang has higher medicinal values. Pearson correlation analysis revealed that the contents of soil mineral elements are positively correlated with those of chlorogenic acid, rutin, apigenin-7-O-glucoside in HBJ samples. Furthermore, an interrelationship model based on random forest algorithm was established to successfully predict the contents of differential metabolites in HBJ samples by soil mineral elements. All these results indicated that the contents of differential metabolites in HBJ samples seemed to be affected by soil mineral elements and therefore resulted in the geographical differences of HBJ.
Collapse
Affiliation(s)
- Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiuyun Bai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Siyu Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Li Yin
- College of Chemistry and Environmental Engineering, College of Life Sciences, Yangtze University, Jingzhou 434023, China
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, College of Life Sciences, Yangtze University, Jingzhou 434023, China.
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
21
|
Ma YL, Wang Y, Wu ZF, Mei J, Zhang WQ, Shang YF, Liu FR, Yang SH, Thakur K, Wei ZJ. Profile and activity of phenolic antioxidants in chrysanthemum (Huangshan Gongju) as affected by simulated digestions. J Food Biochem 2022; 46:e14458. [PMID: 36265159 DOI: 10.1111/jfbc.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
The phenolics are the main bioactive substances of Huangshan Gongju, a famous chrysanthemum of China, but their digestive characteristics are still unknown. To explore the digestive properties of Huangshan Gongju phenolics, the flower was extracted and subjected to simulated digestions, and their phenolic profile and activity were analyzed. The results indicated that the total phenolics content and antioxidant activity of the extract varied with the simulated digestion steps, and they generally decreased in the oral and small intestine digestions but increased in the gastric digestion, and high correlations were detected between the total phenolics content and antioxidant activity (0.873 < r < 0.979, p < .01). The change of phenolic profile during the simulated digestions was similar to that of total phenolics content, and six individual phenolics were identified and quantified, and three of them, including chlorogenic acid, apigenin-7-O-rutinoside, and apigenin-7-O-6″-acetylglucoside showed higher recovery (>64.29%), implying they may be the main functional phenolics of Huangshan Gongju. PRACTICAL APPLICATIONS: This study proved that most phenolics in Huangshan Gongju were relatively stable during digestion. The finding may guarantee the application of Huangshan Gongju in the field of functional foods.
Collapse
Affiliation(s)
- Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, China
| | - Yue Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zheng-Fang Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jie Mei
- Research Institute of Jiangnan Small Pit Brewing Technology, Xuanjiu, China
| | - Wen-Qing Zhang
- Research Institute of Jiangnan Small Pit Brewing Technology, Xuanjiu, China
| | - Ya-Fang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, China
| | - Feng-Ru Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shao-Hua Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, China
| |
Collapse
|
22
|
Hao DC, Song Y, Xiao P, Zhong Y, Wu P, Xu L. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. FRONTIERS IN PLANT SCIENCE 2022; 13:973197. [PMID: 36035721 PMCID: PMC9403765 DOI: 10.3389/fpls.2022.973197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The ecologically and economically important genus Chrysanthemum contains around 40 species and many hybrids and cultivars. The dried capitulum of Chrysanthemum morifolium (CM) Ramat. Tzvel, i.e., Flos Chrysanthemi, is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between Chrysanthemum and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of Chrysanthemum. This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of Chrysanthemum and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of Chrysanthemum containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of Flos Chrysanthemi, i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environment and Chemical Engineering, Biotechnology Institute, Dalian Jiaotong University, Dalian, China
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
23
|
Comparative Analysis of Chemical Composition andAntibacterial and Anti-Inflammatory Activities of theEssential Oils from Chrysanthemum morifolium ofDifferent Flowering Stages and Different Parts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5954963. [PMID: 35707466 PMCID: PMC9192287 DOI: 10.1155/2022/5954963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The inflorescence of Chrysanthemum morifolium Ramat., a well-known traditional Chinese herb, has been proved to have a certain inhibitory effect on some bacteria; however, its main components and acne bacteria inhibition effect remain to be elucidated. In this study, GC-MS was used to analyze the components of different flowering stages and different parts and to study the inhibitory effects of six essential oils on S. aureus and P. acnes and their alleviating effects on THP-1 cell inflammation. GC-MS combined with relative retention index method analyzed results stated that the 5 samples of C. morifolium to detect the 124 kinds of volatile components, including (E)-tibetin spiroether, are first detected in the volatile oil of the C. morifolium, and the content of (E)-tibetin spiroether is higher in immature inflorescence of C. morifolium and decreases as it extends its flowering period. Furthermore, the research results of inhibiting common acne-causing bacteria showed that the bacteriostatic effect of essential oils from JH at different flowering stages was better than that from JM and TJ, while the bacteriostatic effect of essential oil from stem and leaf of C. morifolium (SLC) at different parts was better than the roots of C. morifolium (RC). Finally, it was proved that the essential oil from SLC and C. morifolium could alleviate the inflammation of THP-1 cells induced by P. acnes. In conclusion, the antibacterial and anti-inflammatory effects of C. morifolium essential oil may be related to heterospiroolefins compounds, and the antibacterial activity decreases with the prolongation of flowering stage. It was suggested that volatile oil from C. morifolium and SLC could be used as effective components of antibacterial and anti-inflammatory cosmetics.
Collapse
|
24
|
Yang Y, Lin L, Zhao M, Yang X. The hypoglycemic and hypolipemic potentials of Moringa oleifera leaf polysaccharide and polysaccharide-flavonoid complex. Int J Biol Macromol 2022; 210:518-529. [PMID: 35523361 DOI: 10.1016/j.ijbiomac.2022.04.206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023]
Abstract
In this study, Moringa oleifera leaf (MOL) flavonoids (MOLF) with strong α-glucosidase inhibitory activity and MOL polysaccharides (MOLP) with strong cholic acid-binding capacity were efficiently prepared by two-stage extraction method and mixed in a certain proportion for development of MOL highly-processed products with hypoglycemic and hypolipemic potentials. Quercetin-3-O-glucoside (6.86%) and kaempferol-3-O-glucoside (4.02%) were identified as the main components of MOLF. MOLP constructed by galactose, arabinose, rhamnose and galacturonic acid possessed the strongest effects on delaying glucose diffusion and dialysis, delaying starch digestion, binding bile acids and inhibiting cholesterol micelle solubility, being the best MOL highly-processed products for regulating carbohydrate and lipid digestion and absorption. MOLF and MOLP had synergistic effect on delaying glucose diffusion and dialysis, delaying starch digestion and binding bile acids, while MOLF impaired the inhibitory effect of MOLP on cholesterol micelle solubility. Compared with MOL primary-processed products including MOL powder and de-phenolic MOL powder, MOL highly-processed products including MOLP and MOLF-MOLP complex possessed stronger hypoglycemic/hypolipemic potentials.
Collapse
Affiliation(s)
- Yanqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xinyi Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
25
|
Li Y, Zhang J, Yan C, Chen Q, Xiang C, Zhang Q, Wang X, Jiang K. Marein Prevented LPS-Induced Osteoclastogenesis by Regulating the NF-κB Pathway In Vitro. J Microbiol Biotechnol 2022; 32:141-148. [PMID: 35001005 PMCID: PMC9628836 DOI: 10.4014/jmb.2109.09033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Many bone diseases such as osteolysis, osteomyelitis, and septic arthritis are caused by gram-negative bacterial infection, and lipopolysaccharide (LPS), a bacterial product, plays an essential role in this process. Drugs that inhibit LPS-induced osteoclastogenesis are urgently needed to prevent bone destruction in infective bone diseases. Marein, a major bioactive compound of Coreopsis tinctoria, possesses anti-oxidative, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic effects. In this study, we measured the effect of marein on RAW264.7 cells by CCK-8 assay and used TRAP staining to determine osteoclastogenesis. The levels of osteoclast-related genes and NF-κB-related proteins were then analyzed by western blot, and the levels of pro-inflammatory cytokines were quantified by ELISA. Our results showed that marein inhibited LPS-induced osteoclast formation by osteoclast precursor RAW264.7 cells. The effect of marein was related to its inhibitory function on expressions of pro-inflammatory cytokines and osteoclast-related genes containing RANK, TRAF6, MMP-9, CK, and CAII. Additionally, marein leads to markedly inhibited NF-κB signaling pathway activation in LPS-induced RAW264.7 cells. Concurrently, when the NF-κB signaling pathway was inhibited, osteoclast formation and pro-inflammatory cytokine expression were decreased. Collectively, marein could inhibit LPS-induced osteoclast formation in RAW264.7 cells via regulating the NF-κB signaling pathway. Our data demonstrate that marein might be a potential drug for bacteria-induced bone destruction disease. Our findings provide new insights into LPS-induced bone disease.
Collapse
Affiliation(s)
- Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Caiping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Qian Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Qingyan Zhang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Xingkuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province 637000, P.R. China,Corresponding author Phone: +86-18382917277 E-mail:
| |
Collapse
|
26
|
Ma P, Zhang R, Xu L, Liu H, Xiao P. The Neuroprotective Effects of Coreopsis tinctoria and Its Mechanism: Interpretation of Network Pharmacological and Experimental Data. Front Pharmacol 2022; 12:791288. [PMID: 35222009 PMCID: PMC8874282 DOI: 10.3389/fphar.2021.791288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background:Coreopsis tinctoria Nutt. (CT), an annual herb in the genus Coreopsis, is an important traditional medicine to be used for antidiabetes and antioxidation. Objective: The antioxidant compounds from CT may affect mitochondrial function and apoptosis, which in turn may affect related diseases. The aim of this study was to explore the potential molecular mechanism and new therapeutic opportunities of CT based on network pharmacology. Methods: A network pharmacology-based method, which combined data collection, drug-likeness filtering, target prediction, disease prediction, and network analysis, was used to decipher the potential targets and new therapeutic opportunities of CT. The potential molecular mechanism and pathway were explored through Gene Ontology (GO) and KEGG analyses. Then MPTP-induced SH-SY5Y cell model was applied to evaluate the neuroprotective effects and key targets. Results: There were 1,011 targets predicted for 110 compounds. Most targets were regulated by flavones, phenylpropanoids, and phenols and had synergistic effects on memory impairment, pancreatic neoplasm, fatty liver disease, and so on. The compounds–targets–diseases network identified TNF, PTGS2, VEGFA, BCL2, HIF1A, MMP9, PIK3CG, ALDH2, AKT1, and EGFR as key targets. The GO and KEGG analyses revealed that the cell death pathway, mitochondrial energy metabolism, and PI3K-AKT signal pathway were the main pathways. CT showed neuroprotective effects via regulating gene and protein expression levels of key targets in an in vitro model. Conclusion: CT had potential neuroprotective effects by targeting multiple targets related with apoptosis, which were affected by the BCL-2 and AKT signaling pathways. This study provided a theoretical basis for the research of neuroprotective effects of CT.
Collapse
Affiliation(s)
- Pei Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Rong Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Lijia Xu, ; Haibo Liu,
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Lijia Xu, ; Haibo Liu,
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
27
|
Lu YF, Li DX, Zhang R, Zhao LL, Qiu Z, Du Y, Ji S, Tang DQ. Chemical Antioxidant Quality Markers of Chrysanthemum morifolium Using a Spectrum-Effect Approach. Front Pharmacol 2022; 13:809482. [PMID: 35197853 PMCID: PMC8859431 DOI: 10.3389/fphar.2022.809482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Traditionally, the quality evaluation of Chrysanthemum morifolium (CM) cv. (Juhua) attributes its habitats and processing methods, however, this strategy of neglecting bioactive ingredients usually results in deviation of quality evaluation. This study aims to explore the quality marker (Q-marker) based on spectrum-effect relationship and quality control strategy of CMs. The chromatographic fingerprint of 30 flower head samples of CMs from five different habitats including Hang-baiju, Gongju, Huaiju, Taiju and Boju were constructed by high performance liquid chromatography and analyzed through chemometrics methods such as similarity analysis (SA), cluster analysis (CA) and principal component analysis (PCA). The common peaks were quantified by external standard method and relative correction factor method. The in-vitro radical scavenging capacity assays of DPPH·, ·OH and ABTS were carried out. The Q-marker was explored by the correlation analysis between the contents of common peaks and in-vitro radical scavenging capacity, and then used to evaluate the quality of 30 flower head samples of CMs. A total of eight common peaks were appointed in 30 flower head samples of CMs, and their similarities ranged from 0.640 to 0.956. CA results showed that 30 flower head samples of CMs could be divided into five categories with reference to the Euclidean distance of 5. PCA results showed that common peaks played a major role in differential contribution of CMs. The quantification of common peaks hinted that their contents possessed significant variation whether for different accessions or the same accessions of CMs. The correlation analysis showed that chlorogenic acid, 3,5-O-dicaffeoylquinic acid, unknown peak 1, 4,5-O-dicaffeoylquinic acid and kaempferol-3-O-rutinoside could be used as the Q-markers for the quality evaluation of 30 flower head samples of commercially available CMs. The analysis strategy that combines chromatographic fingerprint analysis, multiple ingredients quantification, in-vitro chemical anti-oxidant activity evaluation and spectrum-effect relationship analysis clarified the therapeutic material basis and discovered the Q-markers, which possibly offers a more comprehensive quality assessment of CMs.
Collapse
Affiliation(s)
- Yi-Fan Lu
- The Second Clinical College, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhen Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dao-Quan Tang,
| |
Collapse
|
28
|
Peng A, Lin L, Zhao M. Discovery, characterization and stability evaluation of self-assembled submicroparticles in chrysanthemum tea infusions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Alotaibi B, Mokhtar FA, El-Masry TA, Elekhnawy E, Mostafa SA, Abdelkader DH, Elharty ME, Saleh A, Negm WA. Antimicrobial Activity of Brassica rapa L. Flowers Extract on Gastrointestinal Tract Infections and Antiulcer Potential Against Indomethacin-Induced Gastric Ulcer in Rats Supported by Metabolomics Profiling. J Inflamm Res 2021; 14:7411-7430. [PMID: 35002276 PMCID: PMC8721290 DOI: 10.2147/jir.s345780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALsalam University, Al Gharbiyah, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Sally A Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, El Sadat City, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
30
|
Pires EDO, Di Gioia F, Rouphael Y, Ferreira ICFR, Caleja C, Barros L, Petropoulos SA. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021; 26:6940. [PMID: 34834031 PMCID: PMC8619536 DOI: 10.3390/molecules26226940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Edible flowers are becoming very popular, as consumers are seeking healthier and more attractive food products that can improve their diet aesthetics and diversify their dietary sources of micronutrients. The great variety of flowers that can be eaten is also associated with high variability in chemical composition, especially in bioactive compounds content that may significantly contribute to human health. The advanced analytical techniques allowed us to reveal the chemical composition of edible flowers and identify new compounds and effects that were not known until recently. Considering the numerous species of edible flowers, the present review aims to categorize the various species depending on their chemical composition and also to present the main groups of compounds that are usually present in the species that are most commonly used for culinary purposes. Moreover, special attention is given to those species that contain potentially toxic or poisonous compounds as their integration in human diets should be carefully considered. In conclusion, the present review provides useful information regarding the chemical composition and the main groups of chemical compounds that are present in the flowers of the most common species.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 38446 Volos, Greece
| |
Collapse
|
31
|
Kim BR, Paudel SB, Han AR, Park J, Kil YS, Choi H, Jeon YG, Park KY, Kang SY, Jin CH, Kim JB, Nam JW. Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations. PLANTS 2021; 10:plants10081661. [PMID: 34451706 PMCID: PMC8401970 DOI: 10.3390/plants10081661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Coreopsis species have been developed to produce cultivars of various floral colors and sizes and are also used in traditional medicine. To identify and evaluate mutant cultivars of C. rosea and C. verticillata, their phytochemical profiles were systematically characterized using ultra-performance liquid chromatography time-of-flight mass spectrometry, and their anti-diabetic effects were evaluated using the dipeptidyl peptidase (DPP)-IV inhibitor screening assay. Forty compounds were tentatively identified. This study is the first to provide comprehensive chemical information on the anti-diabetic effect of C. rosea and C. verticillata. All 32 methanol extracts of Coreopsis cultivars inhibited DPP-IV activity in a concentration-dependent manner (IC50 values: 34.01–158.83 μg/mL). Thirteen compounds presented as potential markers for distinction among the 32 Coreopsis cultivars via principal component analysis and orthogonal partial least squares discriminant analysis. Therefore, these bio-chemometric models can be useful in distinguishing cultivars as potential dietary supplements for functional plants.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
- Natural Product Research Division, Honam National Institute of Biological Resources, Mokpo-si 58762, Jeollanam-do, Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yeo Gyeong Jeon
- Uriseed Group, Icheon-si 17408, Gyeonggi-do, Korea; (Y.G.J.); (K.Y.P.)
| | - Kong Young Park
- Uriseed Group, Icheon-si 17408, Gyeonggi-do, Korea; (Y.G.J.); (K.Y.P.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan-gun 32439, Chungcheongnam-do, Korea;
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
- Correspondence: ; Tel.: +82-53-810-2818
| |
Collapse
|
32
|
Shen J, Hu M, Tan W, Ding J, Jiang B, Xu L, Hamulati H, He C, Sun Y, Xiao P. Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113690. [PMID: 33309917 DOI: 10.1016/j.jep.2020.113690] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coreopsis tinctoria Nutt. (family Asteraceae) is an important traditional medicine in North America, Europe, and Asia for quite a long historical period, which has received great attention due to its health-benefiting activities, including disinfection, treatment sexual infection, diarrhoea, acute and chronic dysentery, red-eye swelling as well as pain, heat, thirst, hypertension, palpitation, gastrointestinal discomfort, and loss of appetite. AIM OF THE REVIEW The purpose of this review is to give an overview of the current phytochemistry and pharmacological activities of C. tinctoria, and reveals the correlation among its traditional uses, phytochemistry, pharmacological profile, and potential toxicity. MATERIALS AND METHODS This review is based on published studies and books from electronic sources and library, including the online ethnobotanical database, ethnobotanical monographs, Scopus, SciFinder, Baidu Scholar, CNKI, and PubMed. These reports are related to the traditional uses, phytochemistry, pharmacology, and toxicology of C. tinctoria. RESULTS Coreopsis tinctoria is traditionally used in diarrhoea, infection, and chronic metabolic diseases. From 1954 to now, more than 120 chemical constituents have been identified from C. tinctoria, such as flavonoids, polyacetylenes, polysaccharides, phenylpropanoids, and volatile oils. Flavonoids are the major bioactive components in C. tinctoria. Current research has shown that its extracts and compounds possess diverse biological and pharmacological activities such as antidiabetes, anti-cardiovascular diseases, antioxidant, anti-inflammatory, protective effects on organs, neuroprotective effects, antimicrobial, and antineoplastic. Studies in animal models, including acute toxicity, long-term toxicity, and genotoxicity have demonstrated that Snow Chrysanthemum is a non-toxic herb, especially for its water-soluble parts. CONCLUSIONS Recent findings regarding the main phytochemical and pharmacological properties of C. tinctorial have confirmed its traditional uses in anti-infection and treatment of chronic metabolic disease and, more importantly, have revealed the plant as a valuable medicinal plant resource for the treatment of a wide range of diseases. The available reports indicated that most of the bioactivities in C. tinctorial could be attributed to flavonoids. However, higher quality studies on animals and humans studies are required to explore the efficacy and mechanism of action of C. tinctoria in future.
Collapse
Affiliation(s)
- Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Mengyin Hu
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Wei Tan
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Jiwei Ding
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China; CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Baoping Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Lei Xu
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Hasimu Hamulati
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Yuhua Sun
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
33
|
Niu G, Zhou M, Wang F, Yang J, Huang J, Zhu Z. Marein ameliorates Ang II/hypoxia-induced abnormal glucolipid metabolism by modulating the HIF-1α/PPARα/γ pathway in H9c2 cells. Drug Dev Res 2020; 82:523-532. [PMID: 33314222 DOI: 10.1002/ddr.21770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/06/2022]
Abstract
The objectives of this study were to investigate the effects of marein, a major bioactive compound in functional food Coreopsis tinctoria, in hypertrophic H9c2 cells. Treating angiotensin II/hypoxia-stimulated H9c2 cells with marein led to decreasing cell surface area, intracellular total protein, atrial natriuretic peptide, and free fatty acids levels, but increasing glucose level. Marein treatment decreased hypoxia inducible factor-1α (HIF-1α), peroxisome proliferator activated receptor γ (PPARγ), medium chain acyl-coenzyme A dehydrogenase, glucose transporter-4, and glycerol-3-phosphate acyltransferase protein expressions, and increased PPARα, fatty acid transport protein-1, carnitine palmitoyltransferase-1, and pyruvate dehydrogenase kinase-4 protein expressions. Similar results were observed in HIF-1α-overexpressing H9c2 cells, whereas these effects were abolished in siRNA-HIF-1α-transfected H9c2 cells. It was concluded that marein could ameliorate abnormal glucolipid metabolism in hypertrophic H9c2 cells, and the effects could be attributable to reduction of HIF-1α expression and subsequent regulation PPARα/γ-mediated lipogenic gene expressions.
Collapse
Affiliation(s)
- Guanghao Niu
- The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Mi Zhou
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| | - Feng Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingxing Yang
- Ulink College of Suzhou Industrial Park, Suzhou, China
| | - Jie Huang
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Peng A, Lin L, Zhao M. Screening of key flavonoids and monoterpenoids for xanthine oxidase inhibitory activity-oriented quality control of Chrysanthemum morifolium Ramat. ‘Boju’ based on spectrum-effect relationship coupled with UPLC-TOF-MS and HS-SPME-GC/MS. Food Res Int 2020; 137:109448. [DOI: 10.1016/j.foodres.2020.109448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022]
|
35
|
|
36
|
Protective effects of Coreopsis tinctoria buds extract against cognitive impairment and brain aging induced by d-galactose. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Xu YQ, Gao Y, Granato D. Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chem 2020; 339:128060. [PMID: 32950901 DOI: 10.1016/j.foodchem.2020.128060] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022]
Abstract
The effects of epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG) on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage were modeled using response surface methodology. Results showed that ECG presented the highest reducing capacity while EGCG presented the highest Cu2+ chelating ability. Binary interactions (EGCG/EGC and EGCG/ECG) had an additive effect on CUPRAC, DPPH and Cu2+ chelating ability. The mixture containing 67.4% ECG and 32.6% EGCG was the optimal combination of flavanols (OPC). In a beverage model - chrysanthemum tea - OPC enhanced the anti-proliferative activity in relation to OVCAR-3, HEK293 and HFL1 cells and decreased the intracellular generation of reactive oxygen species. OPC enhanced the bitterness and astringency of the beverage models impacting in a decrease in overall acceptance. The pasteurization process did not decrease the antioxidant activity and the flavanol concentration of the beverages.
Collapse
Affiliation(s)
- Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 310008, China
| | - Daniel Granato
- Natural Resources Institute Finland (Luke), Food Processing and Quality, Tietotie 2, 02150 Espoo, Finland.
| |
Collapse
|
38
|
de Morais JS, Sant'Ana AS, Dantas AM, Silva BS, Lima MS, Borges GC, Magnani M. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res Int 2020; 131:109046. [DOI: 10.1016/j.foodres.2020.109046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
39
|
Ma X, Wu Y, Li Y, Huang Y, Liu Y, Luo P, Zhang Z. Rapid discrimination of Notopterygium incisum and Notopterygium franchetii based on characteristic compound profiles detected by UHPLC-QTOF-MS/MS coupled with multivariate analysis. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:355-365. [PMID: 31908072 DOI: 10.1002/pca.2902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The herbs Notopterygium incisum (NI) and N. franchetii (NF) are referred to as "Qianghuo" in the Chinese Pharmacopeia and are popular for treatment of certain conditions, including headaches, rheumatoid arthritis and the common cold. Recently, several adulterations of NI and NF have been found in the Chinese herbal market. OBJECTIVE The aim of this study was to rapidly identify the unique characteristic compounds of NI and NF, to discriminate Qianghuo from its adulterations. METHODOLOGY Twenty-four batches of NI and NF samples with different origins were collected and extracted with methanol. The extracts were analysed using ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). Principal component analysis (PCA) and orthogonal partial squared discriminant analysis (OPLS-DA) were then used to distinguish between NI and NF and to identify their potential characteristic markers. RESULTS Fifty compounds were identified or tentatively characterised according to the retention time, m/z value and MS/MS fragment analysis. Six compounds were selected as potential markers of NI and NF by PCA and OPLS-DA. They were successfully applied to authenticate 17 kinds of Chinese patent medicines containing Qianghuo. The markers could not be detected in three of the Chinese patent medicines, indicating that they were counterfeit products. CONCLUSION The UHPLC-QTOF-MS/MS coupled with the multivariate analysis method could discriminate NI and NF from their adulterations. Moreover, the data clearly demonstrated significant differences in the chemical compositions of NI and NF. Further research is needed to examine the relationship between therapeutic efficacy and the chemical constituents of NI and NF.
Collapse
Affiliation(s)
- Xiaobing Ma
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan Province, China
| | - Youjiao Wu
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan Province, China
| | - Yanfei Huang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan Province, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhifeng Zhang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan Province, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
40
|
Peng A, Lin L, Zhao M, Sun B. Identifying mechanisms underlying the amelioration effect of Chrysanthemum morifolium Ramat. 'Boju' extract on hyperuricemia using biochemical characterization and UPLC-ESI-QTOF/MS-based metabolomics. Food Funct 2020; 10:8042-8055. [PMID: 31746890 DOI: 10.1039/c9fo01821b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was aimed at evaluating the prospect of edible chrysanthemum extract as a potential substance for the prevention and treatment of hyperuricemia. Chrysanthemum morifolium Ramat. 'Boju' extract (CBE), which had the strongest xanthine oxidase inhibitory activity, showed a significant hypouricemic effect on potassium oxonate-induced hyperuricemic rats through inhibiting serum xanthine oxidase activity, regulating renal uric acid transport-related protein (ABCG2, URAT1 and GLUT9) expression and blood lipid levels, and protecting renal function. Serum metabolomics based on UPLC-ESI-QTOF/MS was used to illustrate mechanisms underlying the amelioration effect of CBE on hyperuricemia. A total of 35 potential biomarkers were identified. CBE prevented the pathological process of hyperuricemia by regulating 16/17 biomarkers associated with tryptophan, sphingolipid, glycerophospholipid and arachidonic acid metabolisms. CBE could alleviate hyperuricemia-related diseases including chronic kidney disease, hyperlipidemia and inflammation via reducing indoxyl sulfate, lysophosphatidylcholines and arachidonic acid levels, exhibiting its applicability and superiority in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- An Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
41
|
Chen Y, Pan G, Xu W, Sun Q, Wang B, Zhang Y, Yang T. Spectrum-effect relationship study between HPLC fingerprints and antioxidant activity of Sabia parviflora. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1140:121970. [DOI: 10.1016/j.jchromb.2020.121970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
|