1
|
Skendi A, Karampatea A, Bouloumpasi E, Tseine G, Stefanou S, Mamalis S. Vineyard Location Impact on the Composition and Quality of Wines from International and Native Varieties Grown in Drama, Greece. Foods 2025; 14:1268. [PMID: 40238517 PMCID: PMC11989013 DOI: 10.3390/foods14071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
The objective of this work was to investigate the effect of location on the composition and quality of wines from the viticultural zone PGI Drama. Grapes from two white (Sauvignon blanc, Assyrtiko) and three red varieties (Merlot, Cabernet Sauvignon, Agiorgitiko) were collected from nine locations within the zone during 2022. The vineyards span distances ranging from several hundred meters to 100 km, and their altitudes vary from 90 to nearly 820 m. Vinification was performed following the same protocol according to the type of wine. Wines were analyzed for quality parameters such as pH, total acidity, alcohol, and residual sugar content. In addition, elemental composition, phenolic content, antioxidant capacity, and sensory attributes of the wines were assessed. The obtained results suggested that besides the type of wine and variety, the location significantly affects the quality parameters of the wine. PCA analysis revealed that location is an important factor affecting the wine quality. The areas north and northwest proved more suitable for specific varieties, as they produce wines with more distinct organoleptic characteristics. The results provide insights into the behavior of international and native varieties in the face of global warming and assist in decisions concerning the most suitable plant material.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Agricultural Biotechnology and Oenology, Democritus University of Thrace, 1st Km Dramas—Mikrohoriou, GR-66100 Drama, Greece; (A.K.); (E.B.); (G.T.)
| | - Aikaterini Karampatea
- Department of Agricultural Biotechnology and Oenology, Democritus University of Thrace, 1st Km Dramas—Mikrohoriou, GR-66100 Drama, Greece; (A.K.); (E.B.); (G.T.)
| | - Elisavet Bouloumpasi
- Department of Agricultural Biotechnology and Oenology, Democritus University of Thrace, 1st Km Dramas—Mikrohoriou, GR-66100 Drama, Greece; (A.K.); (E.B.); (G.T.)
| | - Georgia Tseine
- Department of Agricultural Biotechnology and Oenology, Democritus University of Thrace, 1st Km Dramas—Mikrohoriou, GR-66100 Drama, Greece; (A.K.); (E.B.); (G.T.)
| | - Stefanos Stefanou
- Department of Agriculture, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - Spyridon Mamalis
- Department of Management Science and Technology, Democritus University of Thrace, GR-65404 Kavala, Greece;
| |
Collapse
|
2
|
Martins V, Szakiel A, Teixeira A, Abdallah C, Moreira C, Pączkowski C, Lanoue A, Gerós H. Combined omics approaches expose metabolite-microbiota correlations in grape berries of three cultivars of Douro wine region. Food Chem 2023; 429:136859. [PMID: 37463536 DOI: 10.1016/j.foodchem.2023.136859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
This study hypothesized the existence of cultivar-associated correlations between grape berry metabolites and its microbial residents, in Douro wine region. Integrated metabolomics with metabarcoding showed that the microbial biodiversity is not associated to berry sugar concentration, but closely connected to the profile of amino acids, flavonoids and wax compounds, which drove cultivar differentiation together with the prevalence of pathogenic fungi, yeasts and bacteria, mainly Dothideomycetes and Gammaproteobacteria. Over 7000 metabolite-microbiota correlations with ρ >|0.99| exposed a core of 15 metabolites linked to 11 microbial taxa. Serine, oxalate, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, gallic acid, germanicol, sitosterol and erythrodiol correlated negatively to the abundance of most taxa, including Alternaria, Aureobasidium, Pseudopithomyces, Pseudomonas and Sphingomonas. In contrast, phenylalanine, asparagine, alanine, (epi)gallocatechin and procyanidin gallate mediated positive metabolite-OTU correlations. E. necator and A. carbonarius correlated negatively with stigmasterol and amyrin. Complex fungi-bacteria relationships ruled by Dothideomycetes and Alphaproteobacteria further suggest tight host-microbe interactions at the carposphere.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Cécile Abdallah
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France.
| | - Carolina Moreira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
3
|
Agostinelli F, Caldeira I, Ricardo-da-Silva JM, Damásio M, Egipto R, Silvestre J. First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2063. [PMID: 37653980 PMCID: PMC10224026 DOI: 10.3390/plants12102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Adaptation strategies in the wine sector consist of the use of cultural techniques to limit damages caused by climate change, using, among other resources, varieties better adapted to the scenarios of abiotic stress exacerbation, namely water and thermal stress, as well as those more tolerant to heatwaves. With the intention to determine the aromatic characterization of ten monovarietal wines produced from cultivars with high productive performance in a global warming scenario ('Petit Verdot', 'Marselan', 'Merlot', 'Touriga Franca', 'Syrah', 'Vinhão', 'Bobal', 'Preto Martinho', 'Trincadeira', and 'Alicante Bouschet'), grown in Esporão vineyard (Alentejo, Portugal) and submitted to deficit irrigation (Ks ± 0.5), their aromatic character has been analyzed. Each grape variety was vinified at a small scale, in duplicate, and the wines were evaluated by a sensory panel, which rated several sensory attributes (visual, olfactory, and gustatory). Sensory analysis revealed a discrete appreciation for the monovarietal wines tasted, showing a differentiation at the olfactory level that was not too marked, although present, between the samples. The free volatile compounds were analysed using gas chromatography-olfactometry (GC-O), identified using a gas chromatography-mass spectrometry (GC-MS) technique and semi-quantified using the gas chromatography-flame ionization detector (GC-FID) technique. Based on the interpolation of the results of the various statistical analyses carried out, 49 probable odor active compounds (pOACs) were identified and based on the odor activity values (OAVs), 24 of them were recognized as odor active compounds (OACs) originated mainly during the fermentation processes. An aromatic characterization of the varieties has been proposed.
Collapse
Affiliation(s)
- Francesco Agostinelli
- Department of Agricultural, Forest and Food Sciences, University of Torino, Via Verdi, 8, 10124 Torino, Italy;
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - Ilda Caldeira
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, 7006-554 Évora, Portugal
| | - Jorge M. Ricardo-da-Silva
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Miguel Damásio
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - Ricardo Egipto
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - José Silvestre
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| |
Collapse
|
4
|
Martins V, Szakiel A, Pączkowski C, Teixeira A, Gerós H. The restructuring of grape berry waxes by calcium changes the surface microbiota. Food Res Int 2021; 150:110812. [PMID: 34863502 DOI: 10.1016/j.foodres.2021.110812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The observation that exogenous Ca shifted the polyphenolic profile of grape berries and conferred a glossy appearance to mature fruits led us to hypothesize that the composition of grape berry waxes and thus surface microbiota are modified. In two cultivars sharing the same microclimate, the triterpenoid and steroid profile of berry cuticle was characterized by a targeted metabolomic approach, and surface microbial communities were surveyed by ITS and 16S metabarcoding. Results showed that Ca strongly decreased the levels of oleanolic acid, while steroids and neutral triterpenoids were affected in a cultivar-dependent manner. A total of 174 fungi and 192 bacteria OTUs were identified, with Dothideomycetes, Leotiomycetes, Alphaproteobacteria and Gammaproteobacteria comprising the most abundant classes. Ca decreased fungi biodiversity, favoring the growth of Basidiomycetes, and shifting fungi-bacteria relationships. Metabolite-microbiota networks revealed a tight relationship between microbial communities and triterpenoid components of fruit waxes, mainly stigmasterol, tremulone and oleanolic acid.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
5
|
Martins V, Soares C, Spormann S, Fidalgo F, Gerós H. Vineyard calcium sprays reduce the damage of postharvest grape berries by stimulating enzymatic antioxidant activity and pathogen defense genes, despite inhibiting phenolic synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:48-55. [PMID: 33667966 DOI: 10.1016/j.plaphy.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/20/2021] [Indexed: 05/29/2023]
Abstract
Calcium supplements have been increasingly used for decay prevention, sanitation and nutritional enrichment of fruits, as more environmentally friendly alternatives to fungicides. However, little is known on the effects of these supplements on grape berry biochemical and molecular properties during storage. In this study, we addressed the hypothesis that the application of calcium chloride (CaCl2) in grapevines throughout the fruiting season reduces damage (and decay) of postharvest grape berries, through several biochemical and transcriptional modifications in sugar transport, secondary metabolism, antioxidant activity, cell wall organization and pathogen defense. Results showed that calcium (Ca) treatments in cv. "Vinhão" vines increased fruit Ca content and significantly decreased fruit damage by 60%, 10-d after storage at 4 °C. Grape berries from Ca-treated vines displayed lower levels of total phenolics and anthocyanins, compared to control fruits, corroborating the downregulation of PAL1 and STS which resulted in decreased non-enzymatic antioxidant capacity estimated by FRAP assay. In contrast, a strong upregulation of CAT1, ASPX1, ASPX3, GLPX1, CSD3 and CSD6 encoding antioxidant enzymes was observed. Accordingly, catalase enzyme activity was stimulated, significantly reducing hydrogen peroxide (H2O2) levels by 36%. The overexpression of the cell wall and pathogen defense genes PME, PGIP, PIN and PR1 likely contributed to the reduction in fruit rot. This work suggested that preharvest Ca treatment is an efficient agronomical strategy that prolongs the shelf life of grape berries through modifications at molecular and biochemical levels, bringing further insight on the benefits and drawbacks of preharvest Ca applications on postharvest fruit quality attributes.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Sofia Spormann
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
6
|
Martins V, Unlubayir M, Teixeira A, Lanoue A, Gerós H. Exogenous Calcium Delays Grape Berry Maturation in the White cv. Loureiro While Increasing Fruit Firmness and Flavonol Content. FRONTIERS IN PLANT SCIENCE 2021; 12:742887. [PMID: 34512709 PMCID: PMC8430324 DOI: 10.3389/fpls.2021.742887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 05/17/2023]
Abstract
Vineyard calcium (Ca) sprays have been increasingly used by grape growers to improve fruit firmness and thus maintain quality, particularly in periods of heavy rains and hail. The observation that Ca visibly modified berry size, texture, and color in the most prominent white cultivar of the DOC region 'Vinhos Verdes', cultivar (cv.) Loureiro, led us to hypothesize that Ca induced metabolic rearrangements that resulted in a substantial delay in fruit maturation. Targeted metabolomics by ultra-performance liquid chromatography coupled to mass spectrometry and directed transcriptomics were thus combined to characterize the metabolic and transcriptional profiles of cv. Loureiro berries that, together with firmness, °Brix, and fruit weight measurements, allowed to obtain an integrated picture of the biochemical and structural effects of Ca in this cultivar. Results showed that exogenous Ca decreased amino acid levels in ripe berries while upregulating PAL1 expression, and stimulated the accumulation of caftaric, coutaric, and fertaric acids. An increase in the levels of specific stilbenoids, namely E-piceid and E-ω-viniferin, was observed, which correlated with the upregulation of STS expression. Trace amounts of anthocyanins were detected in berries of this white cultivar, but Ca treatment further inhibited their accumulation. The increased berry flavonol content upon Ca treatment confirmed that Ca delays the maturation process, which was further supported by an increase in fruit firmness and decrease in weight and °Brix at harvest. This newly reported effect may be specific to white cultivars, a topic that deserves further investigation.
Collapse
Affiliation(s)
- Viviana Martins
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho – Campus de Gualtar, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- *Correspondence: Viviana Martins,
| | - Marianne Unlubayir
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France
| | - António Teixeira
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho – Campus de Gualtar, Braga, Portugal
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France
| | - Hernâni Gerós
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho – Campus de Gualtar, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho – Campus de Gualtar, Braga, Portugal
| |
Collapse
|
7
|
Pulsed Light: Challenges of a Non-Thermal Sanitation Technology in the Winemaking Industry. BEVERAGES 2020. [DOI: 10.3390/beverages6030045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pulsed light is an emerging non-thermal technology viable for foodstuff sanitation. The sanitation is produced through the use of high energy pulses during ultra-short periods of time (ns to µs). The pulsed light induces irreversible damages at the DNA level with the formation of pyrimidine dimers, but also produces photo-thermal and photo-physical effects on the microbial membranes that lead to a reduction in the microbial populations. The reduction caused in the microbial populations can reach several fold, up to 4 log CFU/mL decrement. A slight increase of 3 to 4 °C in temperature is observed in treated food; nonetheless, this increase does not modify either the nutritional properties of the product or its sensory profile. The advantages of using pulsed light could be used to a greater extent in the winemaking industry. Experimental trials have shown a positive effect of reducing native yeast and bacteria in grapes to populations below 1–2 log CFU/mL. In this way, pulsed light, a non-thermal technology currently available for the sanitation of foodstuffs, is an alternative for the reduction in native microbiota and the later control of the fermentative process in winemaking. This certainly would allow the use of fermentation biotechnologies such as the use of non-Saccharomyces yeasts in mixed and sequential fermentations to preserve freshness in wines through the production of aroma volatile compounds and organic acids, and the production of wines with less utilization of SO2 in accordance with the consumers’ demand in the market.
Collapse
|
8
|
Martins V, Garcia A, Alhinho AT, Costa P, Lanceros-Méndez S, Costa MMR, Gerós H. Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition and expression of cell wall-related genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:49-55. [PMID: 32114399 DOI: 10.1016/j.plaphy.2020.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 05/29/2023]
Abstract
Having a central role in cell wall pectin cross-linking, calcium has been increasingly used as supplement to promote fruit firmness and extended shelf-life. However, the molecular rearrangements associated to increased fruit robustness are still a matter of debate. In this study, mechanical, histochemical and molecular assays were conducted to understand the mechanisms underlying the effects of Ca in fruit physical properties. In a two-year field trial, grapevines were sprayed with exogenous CaCl2 throughout the fruiting season. Results showed an increase in berry Ca concentration at harvest, associated to increased fruit consistency and skin resistance. Scanning electron microscopy showed that fruits from Ca-treated plants had smoother skin surfaces than control fruits, and that microcracks encircling the lenticels were less prominent. Histochemistry assays suggested higher deposition of pectin-like material in skin cell walls in grapes from Ca-treated vines, but no evident modifications in cellulose content were observed. Accordingly, the expression of cellulose synthase family gene CesA3 was not affected by exogenous Ca, while polygalacturonase-encoding genes PG1 and PG2 were downregulated, together with EXP6 belonging to expansin family, and CER9 and CYP15 involved in cuticle biosynthesis. These results suggested that Ca acts by inhibiting pectin degradation and cell wall loosening, while remodeling cuticle structure.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.
| | - Ana Garcia
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana T Alhinho
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Pedro Costa
- Center of Physics, Department of Physics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute for Polymers and Composites IPC/i3N, University of Minho, 4800-058, Guimarães, Portugal
| | - Senentxu Lanceros-Méndez
- Center of Physics, Department of Physics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - M Manuela R Costa
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|