1
|
Yildiz G. From seed to solution: Enhancing techno-functionality and digestibility of pumpkin seed protein isolate through high-intensity ultrasound, high-pressure processing, and pH-shifting. Food Chem 2025; 474:143222. [PMID: 39923521 DOI: 10.1016/j.foodchem.2025.143222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
This study investigated a novel approach combining pH shifting with high-intensity ultrasound (HIUS) or high-pressure processing (HPP) to enhance pumpkin seed protein isolate (PSPI) properties. PSPI, derived from defatted pumpkin seed flour, was treated using pH shifting, HPP, HIUS, or their combinations. The pH shifting + HIUS treatment yielded the most significant improvements, including enhanced protein solubility (69.1 %), surface hydrophobicity (251.1), free sulfhydryl content (5.88 μmol/g), antioxidant activity (17.2 %), and total phenolic content (3.1 mg catechin/g). A heatmap analysis showed that this combination achieved the most substantial structural changes and functionality enhancements, followed by pH shifting + HPP. In comparison, pH shifting alone induced moderate changes, and individual treatments like HIUS or HPP were less effective than their combinations. Untreated PSPI, used as a baseline, exhibited minimal structural changes, larger particle size, lower solubility, and less desirable functionality. These findings highlight the superiority of combined treatments, particularly pH shifting + HIUS, in improving the properties and potential applications of PSPI.
Collapse
Affiliation(s)
- Gulcin Yildiz
- Department of Food Engineering, Igdir University, Iğdır 76000, Turkey.
| |
Collapse
|
2
|
Silva MA, Albuquerque TG, Ferreira DM, Alves RC, Oliveira MBPP, Costa HS. Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy. Molecules 2025; 30:1287. [PMID: 40142061 PMCID: PMC11944493 DOI: 10.3390/molecules30061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Food waste, due to the high quantities produced, becomes a significant environmental, economic, and social challenge worldwide. Simultaneously, the rising prevalence of chronic diseases has intensified the demand for healthier food options. A promising approach to address these issues involves the valorisation of food by-products for the development of innovative and healthier food products. Cucumis melo L., commonly consumed as a fruit, generates peels and seeds that are typically discarded. In the present study, the nutritional composition and antioxidant potential of pulp, peel, and seeds of C. melo L. (yellow and green melon) were comprehensively evaluated. The seeds were identified as a rich source of dietary fibre (39.0 and 39.7 g/100 g dw; p > 0.05) and protein (21.0 and 21.3 g/100 g dw; p > 0.05), exhibiting an appealing fatty acid profile. The peel contains high levels of dietary fibre (39.7 and 47.1 g/100 g dw; p > 0.05) and total phenolic compounds (1976 and 2212 mg GAE/100 g dw; p > 0.05), suggesting significant bioactive potential. The peels showed a high antioxidant capacity for both methods used, DPPH• (120 and 144 mg TE/100 g dw; p > 0.05) and FRAP (6146 and 7408 mg TE/100 g dw; p > 0.05) assays. Potassium emerged as the predominant mineral in the seeds (799 and 805 mg/100 dw; p > 0.05), while glutamic acid was the most abundant amino acid (4161 and 4327 mg/100 g dw; p > 0.05). These findings emphasise the antioxidant and nutritional properties of C. melo L. by-products, highlighting their potential for inclusion in novel food formulations. This study not only advances the understanding of C. melo L. properties but also supports the reduction of food waste and promotes sustainability within the food supply chain.
Collapse
Affiliation(s)
- Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Diana Melo Ferreira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.M.F.); (R.C.A.); (M.B.P.P.O.)
| |
Collapse
|
3
|
Shourove JH, Jon PH, Samadder M, Chy MWR, Miah MS, Fahim RH, Islam GMR. Extraction of pectin from watermelon rinds using sequential ultrasound-microwave technique: Optimization using RSM and ANN modeling and characterization. Int J Biol Macromol 2025; 307:141905. [PMID: 40064272 DOI: 10.1016/j.ijbiomac.2025.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
This study aimed to optimize pectin extraction from watermelon (Citrullus lanatus) rind using sequential ultrasound-microwave assisted extraction (UMAE) with artificial neural network (ANN) and response surface methodology (RSM). The effects of pH, sonication time, microwave power, and irradiation time on pectin yield were evaluated. The ANN model showed higher precision in predicting yield compared to the RSM model. The optimal yield was 32.11 % under the conditions of pH 2.01, sonication time 54.23 min, microwave power 900 watts, and irradiation time 6.34 min. This study evaluated the effects of different extraction techniques, including ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and microwave-ultrasound-assisted extraction (MUAE), on pectin yield and their physicochemical properties under optimal UMAE conditions. The highest pectin yield was achieved with UMAE, followed by MUAE, MAE, and UAE. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of homogalacturonan, galacturonic acid backbone, and methyl esters in the extracted pectin. The viscosity study revealed that the pectin solution showed pseudoplastic behavior at 0.2 % w/v. All extracted pectin in different methods had high-methoxy content ranging from 7.68 ± 0.56 % to 11.96 ± 1.29 % and a degree of esterification between 56.55 ± 0.68 % and 63.43 ± 1.54 %. However, UMAE showed significantly lower energy consumption and CO2 emissions, suggesting it as a sustainable approach for pectin extraction from watermelon rind.
Collapse
Affiliation(s)
- Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Parvej Hasan Jon
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mitu Samadder
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Waziur Rahman Chy
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Sumon Miah
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Rokibul Hasan Fahim
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - G M Rabiul Islam
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| |
Collapse
|
4
|
Alija D, Olędzki R, Nikolovska Nedelkoska D, Pejcz E, Wojciechowicz-Budzisz A, Stamatovska V, Harasym J. Cucurbita maxima Plomo Peel as a Valuable Ingredient for Bread-Making. Foods 2025; 14:597. [PMID: 40002041 PMCID: PMC11854699 DOI: 10.3390/foods14040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated into wheat flour at 1%, 10%, and 20% levels. The dough's rheological properties were analyzed using Mixolab. Bread samples were evaluated for physical characteristics (volume, texture, colour), antioxidant properties (DPPH, ABTS, FRAP), and reducing sugar content. Analyses were performed on day 0 and after 7 days of storage. PS incorporation significantly modified dough rheology, with increased development time and enhanced protein stability. Bread volume decreased progressively with PS addition (from 195.5 cm3 to 109.8 cm3 at 20% PS). However, antioxidant activity increased substantially, particularly in the crust, with ABTS values rising from 2.37 to 10.08 TE μM/g DM in water extracts. Total phenolic content and reducing sugars showed significant increases across all PS concentrations. Storage studies revealed stable antioxidant properties but progressive textural changes, with hardness increasing from 6.83 N to 108.8 N at 20% PS after 7 days. While PS incorporation affects bread's physical properties, the significant enhancement in antioxidant activity and phenolic content suggests its potential as a functional ingredient. The optimal incorporation level should balance technological properties with nutritional benefits.
Collapse
Affiliation(s)
- Durim Alija
- Faculty of Technology and Technical Sciences Veles, University St. Kliment Ohridski-Bitola, Dimitar Vlahov 57, 1400 Veles, North Macedonia; (D.A.); (D.N.N.); (V.S.)
- Faculty of Food Technology and Nutrition, University of Tetova, Str. Ilinden, nn., 1200 Tetova, North Macedonia
| | - Remigiusz Olędzki
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland; (E.P.); (A.W.-B.)
| | - Daniela Nikolovska Nedelkoska
- Faculty of Technology and Technical Sciences Veles, University St. Kliment Ohridski-Bitola, Dimitar Vlahov 57, 1400 Veles, North Macedonia; (D.A.); (D.N.N.); (V.S.)
| | - Ewa Pejcz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland; (E.P.); (A.W.-B.)
| | - Agata Wojciechowicz-Budzisz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland; (E.P.); (A.W.-B.)
| | - Viktorija Stamatovska
- Faculty of Technology and Technical Sciences Veles, University St. Kliment Ohridski-Bitola, Dimitar Vlahov 57, 1400 Veles, North Macedonia; (D.A.); (D.N.N.); (V.S.)
| | - Joanna Harasym
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland; (E.P.); (A.W.-B.)
| |
Collapse
|
5
|
Mavai S, Bains A, Sridhar K, Chawla P, Sharma M. Emerging deep eutectic solvents for food waste valorization to achieve sustainable development goals: Bioactive extractions and food applications. Food Chem 2025; 462:141000. [PMID: 39241686 DOI: 10.1016/j.foodchem.2024.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.
Collapse
Affiliation(s)
- Sayani Mavai
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research, and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
6
|
Ninčević Grassino A, Karlović S, Dujmić F, Rimac Brnčić S, Badanjak Sabolović M, Brnčić M. Effects of Hot Air, Vacuum, and Conductive Drying on the Fatty Acid Profile of Cucurbita maxima Pulp and Its Processing By-Products. Foods 2024; 14:57. [PMID: 39796349 PMCID: PMC11720293 DOI: 10.3390/foods14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Considering the short shelf life of fresh pumpkin due to its high water content and the extensive use of dried pumpkin in the food industry, it is necessary to find an efficient drying method that minimizes water activity and preserves nutritional properties. In this study, the effects of hot air drying (HAD), vacuum drying (VAD), and conductive drying (CD) at 50, 60, and 70 °C on fatty acid profiles were investigated to determine optimal drying conditions that preserve fatty acid (FA) quality and associated nutritional benefits. Results showed that drying methods had a significant effect (p < 0.05) on fatty acid composition and yield, resulting in different amounts of palmitic, oleic, linoleic, and linolenic acids as major FAs compared to fresh pulp. The saturated FA content was higher in CD pulp (up to 42.37%), followed by HAD and VAD. Oleic acid, as the most important representative of monounsaturated FAs, came from VAD (up to 30.64%). Linoleic and linolenic acid, as the most important polyunsaturated FAs of the omega-6 and omega-3 fatty acids, were found in higher proportions in CD pulp at 50 and 60 °C (up to 31.12%) and HAD pulp at 60 and 70 °C with an airflow velocity of 1.5 m/s (up to 39.70%). In addition, the peel and seeds, the by-products resulting from the processing of the fruit pulp, were also evaluated with regard to the fatty acid profile. Two fractions also contained the four major FAs in representative amounts, indicating their valuable reuse.
Collapse
Affiliation(s)
- Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.K.); (F.D.); (S.R.B.); (M.B.S.)
| | | | | | | | | | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.K.); (F.D.); (S.R.B.); (M.B.S.)
| |
Collapse
|
7
|
Gavril Rațu RN, Stoica F, Lipșa FD, Constantin OE, Stănciuc N, Aprodu I, Râpeanu G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024; 13:2694. [PMID: 39272458 PMCID: PMC11395535 DOI: 10.3390/foods13172694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin's potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste.
Collapse
Affiliation(s)
- Roxana Nicoleta Gavril Rațu
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Florin Daniel Lipșa
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Oana Emilia Constantin
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Iuliana Aprodu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Gabriela Râpeanu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| |
Collapse
|
8
|
Lakshmipathy K, Buvaneswaran M, Rawson A, Chidanand DV. Effect of dehulling and germination on the functional properties of grass pea (Lathyrus sativus) flour. Food Chem 2024; 449:139265. [PMID: 38604036 DOI: 10.1016/j.foodchem.2024.139265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The compositional, bioactive, functional, pasting, and thermal characteristics of native, dehulled, and germinated grass pea flour were examined. Germination significantly improved the protein content and bioactive properties while simultaneously reducing total carbohydrate and fat levels. However, dehulling increased the fat content, foaming, and emulsion properties. Dehulling and germination significantly increased (p < 0.05) the functional properties by improving flowability and cohesiveness. Although processing methods enhance functional properties, the pasting properties of dehulled and germinated flours differ significantly (p < 0.05) from the native flour. The X-ray diffraction patterns indicate a reduction in percentage crystallinity in germinated flours. Overall, the study suggests that the dehulling and germination processes enhanced the quality of grass peas by improving nutritive value and functional attributes.
Collapse
Affiliation(s)
- Kavitha Lakshmipathy
- Department of Industry-Academia Cell, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India
| | - Malini Buvaneswaran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India
| | - Ashish Rawson
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India; Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India
| | - D V Chidanand
- Department of Industry-Academia Cell, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India.
| |
Collapse
|
9
|
Gavril (Rațu) RN, Constantin OE, Enachi E, Stoica F, Lipșa FD, Stănciuc N, Aprodu I, Râpeanu G. Optimization of the Parameters Influencing the Antioxidant Activity and Concentration of Carotenoids Extracted from Pumpkin Peel Using a Central Composite Design. PLANTS (BASEL, SWITZERLAND) 2024; 13:1447. [PMID: 38891255 PMCID: PMC11174748 DOI: 10.3390/plants13111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
It has been discovered that the peel of a pumpkin (Cucurbita maxima), regarded as a waste product of pumpkin processing, has significant amounts of carotenoids and other antioxidants. This study aims to identify the most effective extraction parameters for an ultrasonic-assisted extraction method to extract the total carotenoids (TCs) and assess the antioxidant activity (AA) of pumpkin peel. To determine the effects of the extraction time, temperature, and material-to-solvent ratio on the recovery of TCs and AA, a response surface methodology utilizing the central composite design (CCD) was used. The extraction temperature (6.25-98.75 °C), extraction duration (13.98-128.98 min), and solvent ratio (0.23-50.23 mL) were the variables studied in the coded form of the experimental plan. The carotenoid concentration varied from 0.53 to 1.06 mg/g DW, while the AA varied from 0.34 to 7.28 µM TE/g DW. The findings indicated that the optimal extraction parameters were an 80 °C temperature, a 10 mL solvent ratio, and a 100 min extraction time. The study confirmed that the optimum extraction conditions resulted in an experimental TC yield of 0.97 mg/g DW and an AA of 7.25 µM TE/g DW. Overall, it should be emphasized that the extraction process can be enhanced by setting the operating factors to maximize the model responses.
Collapse
Affiliation(s)
- Roxana Nicoleta Gavril (Rațu)
- Department of Food Technologies, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (R.N.G.); (F.D.L.)
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania; (O.E.C.); (E.E.); (N.S.); (I.A.)
| | - Oana Emilia Constantin
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania; (O.E.C.); (E.E.); (N.S.); (I.A.)
| | - Elena Enachi
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania; (O.E.C.); (E.E.); (N.S.); (I.A.)
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Florin Daniel Lipșa
- Department of Food Technologies, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (R.N.G.); (F.D.L.)
| | - Nicoleta Stănciuc
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania; (O.E.C.); (E.E.); (N.S.); (I.A.)
| | - Iuliana Aprodu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania; (O.E.C.); (E.E.); (N.S.); (I.A.)
| | - Gabriela Râpeanu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania; (O.E.C.); (E.E.); (N.S.); (I.A.)
| |
Collapse
|
10
|
Mehraj M, Das S, Feroz F, Waheed Wani A, Dar SQ, Kumar S, Wani AK, Farid A. Nutritional Composition and Therapeutic Potential of Pineapple Peel - A Comprehensive Review. Chem Biodivers 2024; 21:e202400315. [PMID: 38484117 DOI: 10.1002/cbdv.202400315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Pineapple (Ananas comosus), the succulent and vibrant tropical fruit, is a symbol of exoticism and sweetness that captures the hearts and palates of people around the world. The pineapple peel, often considered as waste, has garnered attention for its potential applications. The pineapple peel is rich in essential nutrients, including calcium, potassium, vitamin C, carbohydrates, dietary fiber, and water, making it beneficial for the digestive system, weight management, and overall balanced nutrition. It contains significant amounts of sugars such as sucrose, glucose, and fructose, along with citric acid as the predominant organic acid. The peel also contains bromelain, a proteolytic enzyme known for its digestive properties. Studies have highlighted the pharmacological properties of pineapple peel, such as its potential anti-parasitic effects, alleviation of constipation, and benefits for individuals with irritable bowel syndrome (IBS). Efforts are being made to promote the utilization of pineapple peel as a valuable resource rather than mere waste. Its applications range from the production of vinegar, alcohol, and citric acid to the development of various food products, including squash, syrup, jelly, and pickles. Further research and innovation are required to fully explore the potential of pineapple peel and establish sustainable practices for its utilization, contributing to waste reduction and the development of value-added products.
Collapse
Affiliation(s)
- Mahrukh Mehraj
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Susmita Das
- Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Fathima Feroz
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - S Q Dar
- ISAP, India Foundation, Goosu Pulwama, J&K, India
| | - Sanjeev Kumar
- Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering, and Biosciences, Lovely Professional University, Phagwara, 144411), Punjab, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan
| |
Collapse
|
11
|
Zhong T, Zhang J, Du L, Ding L, Zhang R, Liu X, Ren F, Yin M, Yang R, Tian P, Gan K, Yong T, Li Q, Li F, Li X. Comprehensive evaluation of the water-fertilizer coupling effects on pumpkin under different irrigation volumes. FRONTIERS IN PLANT SCIENCE 2024; 15:1386109. [PMID: 38708391 PMCID: PMC11067876 DOI: 10.3389/fpls.2024.1386109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Compared to conventional irrigation and fertilization, the Water-fertilizer coupling can significantly enhance the efficiency of water and fertilizer utilization, thereby promoting crop growth and increasing yield. Targeting the challenges of poor crop growth, low yield, and inefficient water and fertilizer utilization in the arid region of northwest China under conventional irrigation and fertilization practices. Therefore, a two-year on-farm experiment in 2022 and 2023 was conducted to study the effects of water-fertilizer coupling regulation on pumpkin growth, yield, water consumption (ET), and water and fertilizer use efficiency. Simultaneously the comprehensive evaluation of multiple objectives was carried out using principal component analysis (PCA) methods, so as to propose an suitable water-fertilizer coupling regulation scheme for the region. The experiment was set up as a two-factor trial using water-fertilizer integration technology under three irrigation volume (W1 = 37.5 mm, W2 = 45.5 mm, W3 = 52.5mm) and three organic fertilizer application amounts (F1 = 3900-300 kg ha-1, F2 = 4800-450 kg·ha-1, F3 = 5700-600 kg·ha-1), with the traditional irrigation and fertilization scheme from local farmers as control treatments (CK). The results indicated that irrigation volume and organic fertilizer application significantly affected pumpkin growth, yield, and water and fertilizer use efficiency (P<0.05). Pumpkin yield increased with increasing irrigation volume. Increasing organic fertilizer levels within a certain range benefited pumpkin plant growth, dry matter accumulation, and yield, however, excessive application beyond a certain level had inhibited effects on those. The increased fertilizer application under the same irrigation volume enhanced the efficiency of water and fertilizer utilization. However excessive irrigation only resulted in inefficient water consumption, reducing the water and fertilizer use efficiency. The Comprehensive evaluation by PCA revealed that the F2W3 treatment outperformed all the others, effectively addressing the triple objectives of increasing production, improving efficiency, and promoting green production. Therefore, F2W3 (Irrigation volume: 52.5 mm; Fertilizer application amounts: 4800-450 kg/ha-1) as a water and fertilizer management scheme for efficient pumpkin production in the arid region of northwest China.
Collapse
Affiliation(s)
- Tao Zhong
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jinxia Zhang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liangliang Du
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Lin Ding
- Gansu Research Institute for Water Conservancy, Lanzhou, Gansu, China
| | - Rui Zhang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xingrong Liu
- Geological Hazards Prevention Institute, Gansu Academy of Sciences, Lanzhou, Gansu, China
| | - Fangfang Ren
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Yin
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Runheng Yang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengliang Tian
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Kaiyuan Gan
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Tian Yong
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qirun Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fuqiang Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xuan Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Ahmed IA, Mikail MA. Diet and skin health: The good and the bad. Nutrition 2024; 119:112350. [PMID: 38232577 DOI: 10.1016/j.nut.2023.112350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
The skin protects humans from pathogens, ultraviolet light, chemicals, mechanical, thermal, and physical injuries as well as hazardous substances. Other important roles of the skin include the regulation of several important physiological processes of the body, sensing stimuli, synthesis of vitamin D, and immune surveillance. However, aging, diseases and environmental conditions significantly change the skin's behavior and functioning. The treatment and prevention strategies for various skin diseases especially photoaging usually include topical treatment with medical cosmetology, active ingredients and other physical means of photoprotection. In recent times, however, there is an increasing consciousness about the role of diet and nutrition in skin health with certain dietary components emerging as an adequate alternative approach to alleviate and prevent both endogenous and exogenous aging symptoms. Therefore, this narrative review uniquely discusses the basic structure of the skin and also addresses common dermatological signs of damaged skin, the impacts of unhealthy diet habits on the skin, and the beneficial effects of some healthy diet habits on skin health. The information and data were collated from various literature databases and resources such as Science Direct, PubMed, Wiley, Springer, Taylor and Francis, Inflibnet, Scopus, Google, and Google Scholar using relevant keywords Medical Subject Headings (MeSH). In conclusion, diet and nutrition play essential roles in the optimum functioning of the human body, including the skin. Thus, certain diet habits such as less water intake, high-fat diet, refined sugar, and certain food additives are unhealthy and harmful to the skin while alternative healthy diet habits such as adequate water intake; consumption of antioxidants and polyphenolic-rich fruits, vegetables, nuts, and legumes; a low glycemic index diet; probiotics; and phytoestrogens should be adopted to enhance skin health.
Collapse
Affiliation(s)
- Idris Adewale Ahmed
- Department of Biotechnology, Faculty of Applied Science, Lincoln University College, Kelana Jaya 47301 Petaling Jaya, Selangor, Malaysia.; Mimia Sdn. Bhd., Selangor, Malaysia.
| | | |
Collapse
|
13
|
Wang S, Han H, Lei X, Ma J, Tao Z, Ren Y. Cellulose nanofibers produced from spaghetti squash peel by deep eutectic solvents and ultrasonication. Int J Biol Macromol 2024; 261:129777. [PMID: 38286364 DOI: 10.1016/j.ijbiomac.2024.129777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
In this study, the cellulose nanofibers (CNFs) derived from spaghetti squash peel (SSP) were prepared using a novel approach involving deep eutectic solvent (DES) pretreatment coupled with ultrasonication. Molecular dynamics (MD) simulations revealed that the number of hydrogen bonds influences the viscosity and density of DES systems, and experimental viscosity (ηexp) confirmed consistency with the computed viscosity (ηMD) trends. After DES pretreatment and ultrasonication, the cellulose content of ChCl/oxalic acid (ChCl/OA) CNF (35.63%) and ChCl/formic acid (ChCl/FA) (32.46%) is higher than ChCl/Urea CNF (28.27%). The widths of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF were 19.83, 11.34, and 18.27 nm, respectively, showing a network-like fiber distribution. Compared with SSP (29.76%) and non-ultrasonic samples, the crystallinity index of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF was improved by ultrasonication. The thermal decomposition residue of ChCl/OA CNF (25.54%), ChCl/FA CNF (18.54%), and ChCl/Urea CNF (23.62%) was lower than that of SSP (29.57%). These results demonstrate that CNFs can be prepared from SSP via DES pretreatment combined with ultrasonication. The lowest viscosity observed in the formic acid DES group (ηexp of 18 mPa·s), the ChCl/FA CNF exhibits excellent stability (Zeta potential of -37.6 mV), which can provide a promising prospect for utilization in biomass by-products and applications in the materials field.
Collapse
Affiliation(s)
- Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ze Tao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
14
|
Ferreira-Sousa D, Genisheva Z, Rodríguez-Yoldi MJ, Gullón B, Costa CE, Teixeira JA, Botelho CM, Ferreira-Santos P. Exploration of Polyphenols Extracted from Cytisus Plants and Their Potential Applications: A Review. Antioxidants (Basel) 2024; 13:192. [PMID: 38397790 PMCID: PMC10886355 DOI: 10.3390/antiox13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The increasing world population means an increased demand for sustainable processes and products related to foods, particularly those with added health benefits. Plants can be an alternative source of nutritional and biofunctional ingredients. Cytisus plants are an underexploited bioresource, currently prevalent in the Mediterranean Basin and western Asia. This manuscript addresses the processing potential of Cytisus plants for the development of added-value products, including food formulations, food packaging, cosmetics, and therapeutic applications. Most research has reported that Cytisus spp. are a promising source of inexpensive bioactive polyphenol compounds. Cytisus flowers should be considered and exploited as raw materials for the development of new food ingredients (antioxidants, preservatives, additives, etc.), nutraceuticals, or even direct therapeutic agents (anticancer, antibacterial, etc.). In order to evaluate the socioeconomic effect of these underutilized plants, more research is needed to assess their valorization for therapeutic and dietary possibilities, as well as the economic impact.
Collapse
Affiliation(s)
- Diana Ferreira-Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
| | | | - María Jesús Rodríguez-Yoldi
- Pharmacology and Physiology and Legal and Forensic Medicine Department, Veterinary Faculty, Zaragoza University, 50009 Zaragoza, Spain;
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain;
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), 32004 Ourense, Spain
| | - Carlos E. Costa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Cláudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.F.-S.); (C.E.C.); (J.A.T.)
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain;
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), 32004 Ourense, Spain
| |
Collapse
|
15
|
Hammad KSM, Hefzalrahman T, Morsi MKS, Morsy NFS, Abd El-Salam EA. Optimization of ultrasound- and enzymatic-assisted extractions of polyphenols from dried red onion peels and evaluation of their antioxidant activities. Prep Biochem Biotechnol 2024; 54:247-259. [PMID: 37345908 DOI: 10.1080/10826068.2023.2225086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
There is a recognized need for exploring new natural antioxidants that have high antioxidant potential. Thus, the aim of this study was to optimize the extraction process of onion peels using ultrasound- and enzymatic-assisted extractions (UAE and EAE) methods to utilize the optimal extracts as natural antioxidants. Box-Behnken Design (BBD) was implemented to reach the optimal extracts with the highest simultaneous content of total phenolic content (TPC) and total flavonoid content (TFC). The optimal UAE and EAE extracts were subjected to High Performance Liquid Chromatography (HPLC) analysis to identify their chemical profile. The antioxidant activities of optimal extracts obtained by UAE and EAE were evaluated in vitro using DPPH and FRAP assays and their abilities to increase the oxidative stability of sunflower oil were studied using Rancimat test. The optimal conditions for UAE were 34.02 W, 26.87 mL/g solid, and 45.43 min, meanwhile they were 30.00 mL/g solid, 45.43 min at enzyme concentration of 0.52% for EAE method. DPPH and FRAP assays results revealed that EAE optimal extract show superior antioxidant activity over UAE optimal extract. The protection factor of optimal EAE extract against sunflower oil oxidation was close to that of butylated hydroxytoluene (BHT).
Collapse
Affiliation(s)
- Karima S M Hammad
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Tarek Hefzalrahman
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed K S Morsi
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Nashwa F S Morsy
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | | |
Collapse
|
16
|
Pires CA, de Oliveira Cavalcante LSP, de Carvalho AAM, de Siqueira PA, Dos Santos GV, de Paiva Anciens Ramos GL, Matoso Souto RN, de Barros Pinto Moreira RV, Teodoro AJ, Conte Junior CA, Cadena R, Domingues JR. Watermelon (Citrullus lanatus) rind flour: Development and characterization of a novel watermelon byproduct. J Food Sci 2023; 88:4495-4508. [PMID: 37830877 DOI: 10.1111/1750-3841.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/03/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Watermelon (Citrullus lanatus) is a fruit widely consumed by the Brazilian population; however, its rind is usually discarded, despite its nutritional value. This work aimed to develop a watermelon rind flour (WRF) and a fiber-rich bread. The WRF was submitted to microbiological analysis, proximate composition, antioxidant activity, and a profile of phenolic compounds. Six types of bread were developed: three using WRF (20%, 30%, and 40% of wheat flour replacement) and three control samples (only wheat flour), which were submitted to the same analysis, in addition to colorimetric properties, instrumental texture profile, and sensory evaluation (check-all-that-apply, purchase intent, and acceptance test). A high fiber content was observed in WRF (27.15%). The total concentration of phenolic compounds was 2.38 ± 0.20 mg of gallic acid equivalent per g and benzoic acid was the main compound found (73.50 mg/100 g WRF). The results of the antioxidant capacity through the DPPH method indicated a 30% reduction. The WRF 40% bread had 3.06 g of insoluble fiber, characterizing itself as a source of fiber. In the instrumental texture analysis, it was observed that bread hardness increased significantly as the WRF content increased. The formulation of the bread containing WRF is an alternative for the use of waste, favoring the development of a fiber-source product, with a functional food claim.
Collapse
Affiliation(s)
- Caroline Abreu Pires
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | | | - Paula Azevedo de Siqueira
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Guilherme Vargas Dos Santos
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Renata Nascimento Matoso Souto
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Cadena
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane Roberto Domingues
- Food Biotechnology Laboratory (LABIOTEC), Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Vivar-Vera MA, Navarro-Cortez RO, Hernández-Santos B, Ramírez-Rivera EJ, Torruco-Uco JG, Ramírez-Figueroa E, Amador-Mendoza A, Cruz-Cabrera I, Rodríguez-Miranda J. Multiresponse optimization of the extrusion process for ready-to-eat snacks from pineapple byproducts and maize flour. J Food Sci 2023; 88:3820-3838. [PMID: 37548648 DOI: 10.1111/1750-3841.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
This research aimed to optimize the processing conditions to obtain ready-to-eat extruded snacks with a high fiber content from mixtures of pineapple byproduct powder (PBP) and nixtamalized maize flour (PBP-NMF) or maize flour (PBP-MF). The effects of barrel temperature, feed moisture content, and PBP were evaluated. The increase in barrel temperature has a negative effect on the bulk density, the water absorption index, and the texture in both mixtures (PBP-MF and PBP-NMF) and increases the expansion index and the water solubility index in the mixture with MF. The increase in the feed moisture content increased the bulk density and water absorption index in both mixtures and the texture in the mixtures with MF. The increasing PBP decreases the expansion index and increases the water solubility index in both mixtures. The increase in PBP in the mixtures with MF decreases the water absorption index, texture, and bulk density. From the optimization, four products were obtained, two for the NMF mixture and two for the MF mixtures. The optimal formulations can be considered a good source of total fiber (12.46-12.78 g/100 g) and protein (8.27-8.85 g/100 g) with good acceptance by consumers. PRACTICAL APPLICATION: Pineapple byproducts in combination with nixtamalized and nonnixtamalized maize flour are viable raw materials for the development of ready-to-eat extruded snacks with a high content of dietary fiber and good acceptance by consumers. Due to their characteristic nutritional properties, the consumption of this ready-to-eat snack could present potential benefits for human health.
Collapse
Affiliation(s)
- María A Vivar-Vera
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Oaxaca, México
| | - Ricardo O Navarro-Cortez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Área Académica de Ingeniería Agroindustrial y Alimentos, Hidalgo, México
| | | | | | - Juan G Torruco-Uco
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Oaxaca, México
| | | | | | - Irma Cruz-Cabrera
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Oaxaca, México
| | | |
Collapse
|
18
|
Garg M, Yadav RL, Chopra R, Pani B, Sablania V. "Optimization and evaluation of quality characteristics of traditional Indian snack (baked balls) made by using pumpkin peel powder". JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2223-2233. [PMID: 37273562 PMCID: PMC10232705 DOI: 10.1007/s13197-023-05749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
The baked balls (traditional Indian snack litti) were formulated along with the standardization and optimization of different ingredients and recipe. The optimization was done by using response surface methodology. Box behnken model was selected for the optimization in which wheat flour (40-80%), roasted bengal gram flour (10-50%), and pumpkin peel powder (2.5-15%) were selected as an independent factor for the standardization of baked balls recipe against the dependent factors including sensory attributes (colour and texture), moisture content and water activity. The proximate analysis of optimized baked balls resulted in energy, carbohydrate, protein, fat, dietary fibre, calcium, iron, and zinc value as 310 kcal, 55.6 g/100 g, 13.78 g/100 g, 2.73 g/100 g, 40.18 mg/100 g, 4.57 mg/100 g and 2.97 mg/100 g respectively. Additionally, carotenoid content of control and optimized baked balls was found to be 284 µg/100 g and 838.93 µg/100 g whereas the ascorbic acid content was observed as 1.84 mg/100 g and 5.82 mg/100 g respectively. It showed a significant increase in nutritional parameters when compared with control (wheat flour) baked balls. This study also evidenced that pumpkin peel powder can be used as a food supplement for various nutritional components.
Collapse
Affiliation(s)
- Meenakshi Garg
- Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi 110075 India
| | - Roshan Lal Yadav
- Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi 110075 India
| | - Rajni Chopra
- National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana India
| | - Balaram Pani
- Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi 110075 India
| | - Vandana Sablania
- Institute of Home Economics, University of Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
19
|
Vella FM, Calandrelli R, Cautela D, Laratta B. Natural Antioxidant Potential of Melon Peels for Fortified Foods. Foods 2023; 12:2523. [PMID: 37444261 DOI: 10.3390/foods12132523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Agricultural and food waste recycling reduces natural resource losses, contributing significantly to the development of new green markets through the creation of redesigned products. In order to cycle valuable molecules, the peels from Italian cantaloupe (Cucumis melo L.) cultivars were studied and successfully characterized for high-added biomolecules to verify their possible exploitation as wealthy biomasses. Peels were investigated for their cell wall-modifying and browning enzymes, as well as for total polyphenols, ortho-diphenols, flavonoids, tannins, and antioxidant properties. The results of the analyses displayed great promise in one of the three cultivars investigated. Later on, a preliminary study using the best peel extract as a dietary supplement was carried out by preparing fortified seawater to enhance its antioxidant power. The effects of storage time (60 days) were examined at two temperatures through the determination of the stability of the polyphenol content. The kinetic parameters of degradation were also calculated. The "enriched sea water" retained great antioxidant activity in refrigerated conditions, demonstrating that there is good potential for melon by-products to add their natural compounds for food fortification. These findings may provide valuable data for scale-up, from the lab to the pilot or industrial application.
Collapse
Affiliation(s)
- Filomena Monica Vella
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via P. Castellino, 80131 Naples, Italy
| | - Roberto Calandrelli
- National Research Council (CNR), Institute of Research on Terrestrial Ecosystems (IRET), Via P. Castellino, 80131 Naples, Italy
| | - Domenico Cautela
- Department of Theoretical and Applied Sciences, e-Campus University, 22060 Novedrate, Como, Italy
| | - Bruna Laratta
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via P. Castellino, 80131 Naples, Italy
| |
Collapse
|
20
|
Yang C, Li P, Wei Y, Wang Y, Jiang B, Wu W. Preparation of Nitrogen and Phosphorus Doped Porous Carbon from Watermelon Peel as Supercapacitor Electrode Material. MICROMACHINES 2023; 14:1003. [PMID: 37241626 PMCID: PMC10222317 DOI: 10.3390/mi14051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The use of green and sustainable biomass-derived compounds to obtain excellent electrochemical properties is important to address growing environmental and energy issues. In this paper, cheap and abundant watermelon peel was used as a raw material to successfully synthesize nitrogen-phosphorus double-doped bio-based porous carbon by a one-step carbonization method and explore it as a renewable carbon source for low-cost energy storage devices. The supercapacitor electrode exhibited a high specific capacity of 135.2 F/g at a current density of 1 A/g in a three-electrode system. A variety of characterization methods and electrochemical tests indicate that porous carbon prepared by this simple method has great potential as electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
| | - Penghui Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
| | - Yanting Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
| | - Bo Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Aili Hamzah AF, Hamzah MH, Che Man H, Jamali NS, Siajam SI, Show PL. Subcritical Water Pretreatment for Anaerobic Digestion Enhancement: A Review. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This work reviews hydrothermal subcritical water pretreatment to enhance biogas production through anaerobic digestion. The complexity of the lignocellulosic structure has been the main limitation contributing to unsatisfactory biogas production throughout the anaerobic digestion. The high resistance of the structure to biological hydrolysis has increased the interest in applying pretreatment prior to anaerobic digestion to facilitate hydrolysis. Hydrothermal subcritical water technology, an environmentally friendly pretreatment that uses water as the main medium, is gaining prominence in biogas enhancement. However, the subcritical water pretreatment influence on structural properties, biogas production, and the production of anaerobic process inhibitors signifies a knowledge gap and needs an evaluation. This review presents the need for pretreatment reaction and properties in the subcritical water region, biogas production from subcritical water pre-treated waste, production of inhibitors, and its challenges are discussed. This pretreatment could be a promising option and further enhance biogas production throughout the anaerobic digestion process.
Collapse
|
22
|
Chiocchio I, Mandrone M, Tacchini M, Guerrini A, Poli F. Phytochemical Profile and In Vitro Bioactivities of Plant-Based By-Products in View of a Potential Reuse and Valorization. PLANTS (BASEL, SWITZERLAND) 2023; 12:795. [PMID: 36840143 PMCID: PMC9961642 DOI: 10.3390/plants12040795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Wastes and by-products of plant origin are of particular interest to develop a circular economy approach, which attempts to turn them into resources. In this work, thirty-seven neglected plant matrices, including agricultural residues, pest plants, and by-products from the herbal and food industry were extracted and tested for their in vitro anti-tyrosinase, antioxidant, and antibacterial activity against the phytopathogens Pseudomonas syringae pv. syringae ATCC 19310 and Clavibacter michiganensis subsp. nebraskense ATCC 27822. Antioxidant activity ranged from 0.3 to 5 mg of Tr. eq/mL of plant extract, and extract of Castanea sativa pericarp (Csp), Rosa damascena buds (post-distillation) (Rod), and Prunus amygdalus exocarp and mesocarp (Pam) were the most powerful ones. Csp was also capable of inhibiting tyrosinase (IC50 = 16.5 µg/mL), as well as three distillation by-products, namely: Cupressus sempervirens (Css) (IC50 = 95.5 µg/mL), Salvia officinalis (Sco) (IC50 = 87.6 µg/mL), and Helichrysum italicum (Hei) (IC50 = 90.1 µg/mL). Five residues from distillation showed antibacterial activity against C. michiganensis (MICs ranging from 0.125 to 1 mg/mL), namely: Salvia sclarea L. (Sas), Salvia rosmarinus Schleid (Sar), Sco, Hei, and Css. The 1H NMR fingerprinting of the bioactive matrices was acquired, detecting primary and secondary metabolites (rosmarinic acid, shikimic acid, sclareol, and hydroxycinnamic acids).
Collapse
Affiliation(s)
- Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| |
Collapse
|
23
|
The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Value-added utilization of pineapple waste is very import for the food industry and environmental protection. In this study, whey protein (2.6%, w/w) was added to pineapple waste in order to make up for the protein deficiency of the raw material and give the final products better flavor characteristics. Autochthonous Lactococcus lactis LA5 and Hanseniaspora opuntiae SA2 were used for the co-inoculation of pineapple by-products; during fermentation, the metabolite profiling and microbial community dynamics were investigated. Results showed that the contents of organic acids, total FAAs, total phenolic compounds and flavonoids significantly increased with fermentation, and 152 kinds of peptides were identified in the final products. Relevant analyses demonstrated that dominant strains including Lactococcus lactis, Hanseniaspora and Saccharomyces not only significantly promoted the accumulation of organic acids, total phenols and other active substances, but also inhibited the growth of pathogenic bacteria and further influenced the fermentation process of pineapple waste.
Collapse
|
24
|
Ninčević Grassino A, Rimac Brnčić S, Badanjak Sabolović M, Šic Žlabur J, Marović R, Brnčić M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020858. [PMID: 36677916 PMCID: PMC9861221 DOI: 10.3390/molecules28020858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
The goal of this review is to provide an overview of the current findings on the major carotenoids and their content in pumpkin products and by-products. The content of total carotenoids and the composition of carotenoids in pumpkins depend mainly on the species and cultivar, pedoclimatic conditions, the part of the plant (pulp, peel or seed), extraction procedures and the type of solvent used for extraction. The major carotenoids identified in pumpkins were β-carotene, α-carotene, lutein and zeaxanthin. β-Carotene is the major carotenoid in most pumpkin species. The number and content of total carotenoids are higher when minor carotenoids and ester forms are considered. The use of carotenoids in the development of functional foods has been the topic of many versatile studies in recent years, as they add significant value to foods associated with numerous health benefits. In view of this, pumpkin and pumpkin by-products can serve as a valuable source of carotenoids.
Collapse
Affiliation(s)
- Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
- Correspondence: (A.N.G.); (M.B.)
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
| | - Marija Badanjak Sabolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Roko Marović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia
- Correspondence: (A.N.G.); (M.B.)
| |
Collapse
|
25
|
Pereira MTL, de Oliveira Farias VS, da Silva Júnior AF, do Nascimento Lima AR, Vieira VB, de Medeiros RA, da Silva WP, Franco CMR, de Ataíde JSP. Analysis of drying of melon peels using numerical solution of the diffusion equation. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | - Vanessa Bondin Vieira
- Postgraduate Program in Natural Sciences and Biotechnology Federal University of Campina Grande Cuité Brazil
| | - Raquel Alves de Medeiros
- Postgraduate Program in Natural Sciences and Biotechnology Federal University of Campina Grande Cuité Brazil
| | | | | | | |
Collapse
|
26
|
Batista KS, Cavalcante HC, Gomes JADES, Silva LADA, Cavalcanti NSDEH, Garcia EF, Menezes FNDD, Lima TASDE, Souza ELDE, Magnani M, Aquino JDES. Effects of supplementation of tropical fruit processing by-products on lipid profile, retinol levels and intestinal function in Wistar rats. AN ACAD BRAS CIENC 2023; 95:e20201684. [PMID: 37075372 DOI: 10.1590/0001-3765202320201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/08/2021] [Indexed: 04/21/2023] Open
Abstract
Fruits agro-industrial by-products may have a great variety of bioactive compounds that promote health. Thus, the effects of supplementation with acerola, cashew and guava processing by-products for 28 days on retinol level, lipid profile and on some aspects related to intestinal function in rats were investigated. The animals supplemented with different fruit by-products presented similar weight gain, faecal pH values and intestinal epithelial structures; however, they showed higher moisture and Lactobacillus spp. and Bifidobacterium spp. counts in faeces compared to the control group. Supplementation with the cashew by-product decreased the blood glucose, acerola and guava by-products reduced serum lipid levels and all fruit by-products tested increased serum and hepatic retinol. The results indicated that acerola and guava by-products possess a potential hypolipidemic effect. The three fruit by-products increase the hepatic retinol deposition and the faecal populations of beneficial bacterial groups and modulated aspects of intestinal function. The findings of this study can contribute to sustainable fruticulture and support future clinical studies with the supplementation of by-products.
Collapse
Affiliation(s)
- Kamila S Batista
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Hassler Clementino Cavalcante
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Jéssyca A DE Sousa Gomes
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Laiane A DA Silva
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Natália S DE Holanda Cavalcanti
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Estefânia F Garcia
- Universidade Federal da Paraíba, Departamento de Gastronomia, Centro de Tecnologia e Desenvolvimento Regional, Cidade Universitária, 58058-600 João Pessoa, PB, Brazil
| | - Francisca Nayara D D Menezes
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Microbiologia de Alimentos, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Tamires A S DE Lima
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Evandro L DE Souza
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Microbiologia de Alimentos, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Marciane Magnani
- Universidade Federal da Paraíba, Departamento de Engenharia de Alimentos, Laboratório de Processos Microbianos em Alimentos, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Jailane DE Souza Aquino
- Universidade Federal da Paraíba, Departamento de Nutrição, Laboratório de Nutrição Experimental -LANEX, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
27
|
Maletti L, D’Eusanio V, Durante C, Marchetti A, Tassi L. VOCs Analysis of Three Different Cultivars of Watermelon ( Citrullus lanatus L.) Whole Dietary Fiber. Molecules 2022; 27:molecules27248747. [PMID: 36557880 PMCID: PMC9785562 DOI: 10.3390/molecules27248747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, the trend of VOCs of dietary fiber samples, coming from three different watermelon cultivars Citrullus lanatus L. (variety Gavina®®, Crimson Sweet, and Asahi Miyako) was investigated. This foodstuff, obtained as a by-product of residual agri-food production, has gained increasing attention because of its many bioactive components and high dietary fiber content. The result is a fibrous material for specific applications in food manufacturing, such as corrector for some functional and technological properties. In this study, a method based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to characterize the aromatic profiles of the dried raw materials. Therefore, the VOCs of the samples of the three cultivars were investigated. Experimental results have shown that watermelon fibers generate VOCs, which can be grouped into six common classes of analytes. The different distributions of the identified compounds made it possible to effectively differentiate the three cultivars studied based on their peculiar aroma profiles. In particular, Gavina®® fiber is distinguished by the high content of terpenes, Asahi Miyako by the presence of aldehydes generated as fatty acid metabolites, and Crimson Sweet by the higher content of acetyl esters.
Collapse
Affiliation(s)
- Laura Maletti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence: (L.M.); (C.D.)
| | - Veronica D’Eusanio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence: (L.M.); (C.D.)
| | - Andrea Marchetti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 41121 Reggio Emilia, Italy
| | - Lorenzo Tassi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 41121 Reggio Emilia, Italy
| |
Collapse
|
28
|
Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Leichtweis MG, Molina AK, Pires TCS, Dias MI, Calhelha R, Bachari K, Ziani BEC, Oliveira MBPP, Pereira C, Barros L. Biological Activity of Pumpkin Byproducts: Antimicrobial and Antioxidant Properties. Molecules 2022; 27:molecules27238366. [PMID: 36500462 PMCID: PMC9739767 DOI: 10.3390/molecules27238366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Pumpkin fruits are widely appreciated and consumed worldwide. In addition to their balanced nutritional profile, pumpkin species also present valuable bioactive compounds that confer biological and pharmacological properties to them. However, the seeds, peels, and fibrous strands resulting from pumpkin processing are still poorly explored by the food industry. The current study used those fruit components from the genotypes of pumpkin that are economically significant in Portugal and Algeria to produce bioactive extracts. In order to support their usage as preservatives, their phenolic content (HPLC-DAD-ESI/MS) and antioxidant (OxHLIA and TBARS) and antimicrobial properties (against eight bacterial and two fungal strains) were assessed. In terms of phenolic profile, the peel of the Portuguese 'Common Pumpkin' showed the most diversified profile and also the highest concentration of total phenolic compounds, with considerable concentrations of (-)-epicatechin. Regarding the antioxidant capacity, the seeds of 'Butternut Squash' from both countries stood out, while the fibrous strands of Portuguese 'Butternut Squash' and the seeds of Algerian 'Gold Nugget Pumpkin' revealed the strongest antimicrobial activity. The bioactive compounds identified in the pumpkin byproducts may validate their enormous potential as a source of bio-based preservatives that may enhance consumers' health and promote a circular economy.
Collapse
Affiliation(s)
- Maria G. Leichtweis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Tânia C. S. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques-CRAPC, Bou Ismaïl 42004, Algeria
| | - Borhane E. C. Ziani
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques-CRAPC, Bou Ismaïl 42004, Algeria
| | - M. Beatriz P. P. Oliveira
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +351-2733-309-04
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
30
|
From Biorefinery to Food Product Design: Peach (Prunus persica) By-Products Deserve Attention. FOOD BIOPROCESS TECH 2022; 16:1197-1215. [PMID: 36465719 PMCID: PMC9702882 DOI: 10.1007/s11947-022-02951-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is an increasing demand for functional foods to attend the consumers preference for products with health benefits. Peach (Prunus persica), from Rosaceae family, is a worldwide well-known fruit, and its processing generates large amounts of by-products, consisting of peel, stone (seed shell + seed), and pomace, which represent about 10% of the annual global production, an equivalent of 2.4 million tons. Some studies have already evaluated the bioactive compounds from peach by-products, although, the few available reviews do not consider peach by-products as valuable materials for product design methodology. Thereby, a novelty of this review is related to the use of these mostly unexplored by-products as alternative sources of valuable components, encouraging the circular bioeconomy approach by designing new food products. Besides, this review presents recent peach production data, compiles briefly the extraction methods for the recovery of lipids, proteins, phenolics, and fiber from peach by-products, and also shows in vivo study reports on anti-inflammatory, anti-obesity, and anti-cerebral ischemia activities associated with peach components and by-product. Therefore, different proposals to recover bioactive fractions from peach by-products are provided, for further studies on food-product design.
Collapse
|
31
|
Habotta OA, Dawood MAO, Kari ZA, Tapingkae W, Van Doan H. Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2022; 130:317-322. [PMID: 36122634 DOI: 10.1016/j.fsi.2022.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Huge amounts of non-edible by-products could be generated from fruit industrial processes. They consist mainly of peels together with low amounts of pulp and seeds. These by-products pose an environmental hazard due to soil, air, and water pollution. Moreover, treating these by-products is very expensive and under strict governmental regulations. Nevertheless, they are an excellent source of bioactive constituents, such as phenols, flavonoids, terpenes, and glucans. Based on their constituents, these by-products can significantly enhance the antioxidant defense, immune response, and modulation of gut microbiota and host resistance against various diseases. Therefore, sustainable valorization of fruits by-products can efficiently obtain value-added products that improve the well-being of organisms and reduce environmental stress, in addition to earning an additional industrial income. Since aquaculture is a vital economic sector, there is urgent to look for inexpensive natural food additives that improve health and maintain high nutritional quality for farming organisms without harming the environment and human health. Therefore, using fruit wastes as feed additives represents a striking alternative for fruitful aquaculture. In order to make use of these value-added products, it is a dire need to determine their biological effects on aquaculture organisms by understanding their mechanism of action. In this context, this review will holistically address a comprehensive focus on utilizing fruits by-products and their immunostimulant and antioxidative action.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt.
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Malaysia
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innoviative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
32
|
Rivera AMP, Toro CR, Londoño L, Bolivar G, Ascacio JA, Aguilar CN. Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractThe effect of temperature, moisture content and pH during solid-state fermentation (SSF) of MD2 pineapple peel with Rhizopus oryzae (MUCL 28168) was evaluated on the release of bioactive compounds with antioxidant capacity. Applying a central composite design, it was found that temperature had a significant effect (p < 0.05) on the total phenolic content and DPPH antioxidant activity while for the ABTS radical elimination activity, the factor that presented a significant effect was the pH (p < 0.05); as this factor increases, the antioxidant activity enhances. The optimal conditions for fermentation process were 80% of moisture content, pH 5.5, temperature 37.3 °C and 24 h of process to maximize phenolic content and antioxidant activity. Gallic acid, chlorogenic acid, caffeic acid and cinnamic acid were identified in the extracts by HPLC analysis. These results permit to conclude that SSF of pineapple peel is an effective bioprocess for the release of phenolic compounds with antioxidant activity.
Graphical abstract
Collapse
|
33
|
Mid-infrared and near-infrared spectroscopies to classify improper fermentation of pineapple wine. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zia S, Khan MR, Aadil RM, Shahid M. Development and storage stability of value‐added watermelon fruit butter by incorporating watermelon rind byproduct. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sania Zia
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
- Department of Biosystems and Agricultural Engineering Michigan State University East Lansing Michigan USA
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Shahid
- Department of Biochemistry University of Agriculture Faisalabad Pakistan
| |
Collapse
|
35
|
In Vitro Role of Pumpkin Parts as Pharma-Foods: Antihyperglycemic and Antihyperlipidemic Activities of Pumpkin Peel, Flesh, and Seed Powders, in Alloxan-Induced Diabetic Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4804408. [PMID: 35959224 PMCID: PMC9363229 DOI: 10.1155/2022/4804408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
Pumpkin is a well-known vegetable, among the members of Cucurbitaceae family, due to its importance as pharma food. Keeping in view the antidiabetic and plasma lipids lowering potential of pumpkin, the present study was conducted to investigate that, which part of pumpkin (peel, flesh, and seeds), possess more bioactive compounds, exhibiting antihyperglycemic and antihyperlipidemic potential. Albino rats with 190-210 g body weight were divided into 11 groups. Five rats were included in each group; group A was negative control, group B was positive control, and groups C to K were diabetic rats fed with pumpkin peel, flesh, and seed powders. Diabetes was induced in rats with the help of alloxan monohydrate. During 28 days of experimental period, blood glucose level of different rat's groups was checked with the help of glucometer, at every 7 days interval and at the end of 28 days study, plasma lipids were checked with the help of commercial kits. A significant decrease in blood glucose level (128.33 ± 1.67 mg/dl), TC (88.43 ± 0.66 mg/dl), TG (69.79 ± 0.49 mg/dl), and LDL-C (21.45 ± 0.08 mg/dl) was recorded in rat groups fed with 15 g pumpkin seed powder, at the end of study. After pumpkin seeds, second significant antihyperglycemic and antihyperlipidemic effect was recorded in rat's groups fed with 15 g pumpkin peel powder. Pumpkin flesh powder effect in lowering blood glucose level and plasma lipids was less significant as compared to seeds and peel powder. As the dose of the pumpkin powders was increased from 5 to 10 and then 15 g, the blood glucose-lowering and plasma lipid-lowering effect became more significant. Similarly, as the experimental duration was expanded from first week to 28 days, this antihyperglycemic and antihyperlipidemic effect became more significant. These results were sufficient to conclude that pumpkin has high potential to be used in human diet to cope with noncommunicable diseases like diabetes and hypercholesterolemia.
Collapse
|
36
|
|
37
|
Sun LH, Wang YY, Gong YQ. Life cycle assessment of rice bran oil production: a case study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39847-39859. [PMID: 35112253 DOI: 10.1007/s11356-021-18172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Environmental problems caused by the food processing industry have always been one of the concerns for the public. Herein, for the first time, a gate-to-gate life cycle assessment (LCA) was employed to evaluate the environmental impact of rice bran oil production. Four subsystems, namely, transportation of the raw rice bran to oil factory, crude oil extraction, oil refining, and oil storage, were established. The product sustainability software GaBi and the method CML 2001-Jan. 2016 were used to calculate and analyze the environmental burdens at each stage of the rice bran oil production chain. The results show the oil refining stage had the greatest environmental impact, followed by the oil extraction stage. High demands for coal and electricity make a critical difference in generating vast majority of environmental impacts. Modifying the electricity source and replacing traditional fuels with cleaner ones will do bring benefits to the sustainable development of the industry.
Collapse
Affiliation(s)
- Li-Hui Sun
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, People's Republic of China.
| | - Yu-Ying Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, People's Republic of China
| | - Yu-Qing Gong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, 124221, People's Republic of China
| |
Collapse
|
38
|
A Comparative Assessment on the Recovery of Pectin and Phenolic Fractions from Aqueous and DES Extracts Obtained from Melon Peels. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThis work evaluates the purification of melon peel extracts obtained by two eco-friendly methods: autohydrolysis and sodium acetate/urea/water extraction (1:3:1.6), an alkaline deep eutectic solvent (DES). For that, sequential ethanol precipitation and resin adsorption/desorption stages were proposed for the separate recovery of the pectic and phenolic fractions. In order to screen the optimal purification conditions, in a first step, the effect of ethanol concentrations (from 70 to 85%) on the precipitation of pectic oligosaccharides was assayed. Subsequently, the influence of the selected resin (Amberlite XAD4, XAD16HP and XAD7HP), liquid/resin ratios, and desorption sequences (varying ethanol concentrations and pH) on the phenolic compounds was also studied. The highest pectin yields were achieved with 85% ethanol: 16.11 and 18.05 g pectin/100 g water-insoluble solids (WIS) for autohydrolysis and DES extracts, respectively. All pectins presented a galacturonic acid content of about 45%, while autohydrolysis pectin presented a higher amount of neutral sugar side chains. The presence of low methoxyl GalA and both linear and branched OGalA with DP from 2 to 20 was also confirmed by FTIR and HPAEC-PAD analysis, respectively. Concerning the phenolic fraction, the resin adsorption and desorption steps at the selected conditions (XAD4 resin, liquid/resin ratio of 2 mL/g, eluted with 50% ethanol thrice) resulted in 79.55 and 4.08 mg GAE/g non-volatile content (NVC) for autohydrolysis and DES extracts, respectively, with improved antioxidant capacity. Moreover, some phenolic acids (protocatechuic and ferulic acids) and flavonoids (orientin, vitexin and naringenin) were quantified in the extracts by HPLC–PDA-MS/MS.
Collapse
|
39
|
Sarangi PK, Anand Singh T, Joykumar Singh N, Prasad Shadangi K, Srivastava RK, Singh AK, Chandel AK, Pareek N, Vivekanand V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 351:127085. [PMID: 35358673 DOI: 10.1016/j.biortech.2022.127085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
Agricultural residues play a pivotal role in meeting the growing energy and bulk chemicals demand and food security of society. There is global concern about the utilization of fossil-based fuels and chemicals which create serious environmental problems. Biobased sustainable fuels can afford energy and fuels for future generations. Agro-industrial waste materials can act as the alternative way for generating bioenergy and biochemicals strengthening low carbon economy. Processing of pineapple generates about 60% of the weight of the original pineapple fruit in the form of peel, core, crown end, and pomace that can be converted into bioenergy sources like bioethanol, biobutanol, biohydrogen, and biomethane along with animal feed and vermicompost as described in this paper. This paper also explains about bioconversion process towards the production of various value-added products such as phenolic anti-oxidants, bromelain enzyme, phenolic flavour compounds, organic acids, and animal feed towards bioeconomy.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Thangjam Anand Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Ng Joykumar Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University) Visakhapatnam, 530 045 Andhra Pradesh, India
| | - Akhilesh K Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845 401 Bihar, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, São Paulo, Brazil
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017 Rajasthan, India.
| |
Collapse
|
40
|
Mnisi CM, Mhlongo G, Manyeula F. Fruit Pomaces as Functional Ingredients in Poultry Nutrition: A Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.883988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sustainable poultry intensification is economically constrained by several factors including high feed costs, which constitute more than 70% of total production costs. Functional feed ingredients such as fruit pomaces can be incorporated into poultry diets as natural sources of nutrients and biologically active substances to deliver sustainable production. Fruit pomaces are agro-industrial waste by-products that have no direct food value for humans. Their utilization as feed ingredients would reduce feed-food competitions, optimize poultry production systems, and promote environmental, economic, and social sustainability. Large quantities of fruit pomaces are generated and disposed in landfills or through incineration with little regard to the environment. Thus, their inclusion in poultry feeds could offer a long-term strategy to protect the environment. Valorising fruit pomaces to enhance poultry production would also contribute toward sustainable development goals and food security through the provision of affordable high-quality protein to the rapidly growing human population. Moreover, the use of fruit pomaces complements food production systems by ensuring that food animals are reared on human inedible feedstuffs. Thus, this review explores the nutritional composition and subsequent feeding values of various fruit pomaces, while examining their environmental benefits when used as feed ingredients in poultry nutrition. Furthermore, strategies that can be employed to negate the effect of anti-nutritional factors in the pomaces are presented. We postulate that the use of fresh or valorised fruit pomaces would improve poultry production and significantly reduce the amounts of waste destined for incineration and/or direct deposition in landfills.
Collapse
|
41
|
Du X, Davila M, Ramirez J, Williams C. Free Amino Acids and Volatile Aroma Compounds in Watermelon Rind, Flesh, and Three Rind-Flesh Juices. Molecules 2022; 27:2536. [PMID: 35458735 PMCID: PMC9027972 DOI: 10.3390/molecules27082536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Watermelon rind is treated as agricultural waste, causing biomass loss and environmental issues. This study aimed to identify free amino acids and volatiles in watermelon rind, flesh, and rind-flesh juice blends with ratios of 10%, 20%, and 30%. Among the 16 free amino acids quantified, watermelon rind alone contained higher total amino acids (165 mg/100 g fresh weight) compared to flesh alone (146 mg/100 g). The rind had significantly higher (1.5×) and dominant amounts of citrulline and arginine (61.4 and 53.8 mg/100 g, respectively) than flesh. The rind, however, contained significantly lower amounts of essential amino acids. Volatile analysis showed that watermelon rind total volatiles (peak area) comprised only 15% of the flesh volatiles. Of the 126 volatiles identified, the rind alone contained 77 compounds; 56 of these presented in all five samples. Aldehydes and alcohols were most prevalent, accounting for >80% of the total volatiles in all samples. Nine-carbon aldehyde and alcohol compounds dominated both the flesh and rind, though the rind lacked the diversity of other aldehydes, alcohols, ketones, terpenes, terpenoids, esters and lactones that were more abundant in the watermelon flesh. Watermelon rind was characterized by the major aroma compounds above their thresholds, including 17 aldehydes and six unsaturated nine-carbon alcohols. This study demonstrated the potential for rind as a food or beverage supplement due to its key features such as concentrated citrulline and arginine, relatively low odor intensity, and valuable volatiles associated with fresh, green, cucumber-like aromas.
Collapse
Affiliation(s)
- Xiaofen Du
- Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA; (M.D.); (J.R.); (C.W.)
| | | | | | | |
Collapse
|
42
|
|
43
|
Mashilo J, Shimelis H, Ngwepe RM, Thungo Z. Genetic Analysis of Fruit Quality Traits in Sweet Watermelon ( Citrullus lanatus var. lanatus): A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:834696. [PMID: 35392511 PMCID: PMC8981301 DOI: 10.3389/fpls.2022.834696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Fruit quality traits of sweet watermelon (Citrullus lanatus var. lanatus) are crucial for new product development and commercialization. Sweet watermelon fruit quality traits are affected by the compositions of phytochemical compounds, phytohormones, and fruit flesh firmness which are affected by genes, the growing environment and their interaction. These compositions determine fruit ripening, eating quality, and postharvest shelf-life. Knowledge of the genetic profile and analyses of quality traits in watermelon is vital to develop improved cultivars with enhanced nutritional compositions, consumer-preferred traits, and extended storage life. This review aims to present the opportunities and progress made on the genetic analysis of fruit quality traits in watermelon as a guide for quality breeding based on economic and end-user attributes. The first section of the review highlights the genetic mechanisms involved in the biosynthesis of phytochemical compounds (i.e., sugars, carotenoids, amino acids, organic acids, and volatile compounds), phytohormones (i.e., ethylene and abscisic acid) and fruit flesh structural components (i.e., cellulose, hemicellulose, and pectin) elicited during watermelon fruit development and ripening. The second section pinpoints the progress on the development of molecular markers and quantitative trait loci (QTL) analysis for phytochemical compounds, phytohormones and fruit quality attributes. The review presents gene-editing technology and innovations associated with fruit quality traits for selection and accelerated cultivar development. Finally, the paper discussed gene actions conditioning fruit ripening in citron watermelon (C. lanatus var. citroides [L. H. Bailey] Mansf. ex Greb.) as reference genetic resources to guide current and future breeding. Information presented in this review is useful for watermelon variety design, product profiling and development to serve the diverse value chains of the crop.
Collapse
Affiliation(s)
- Jacob Mashilo
- Limpopo Department of Agriculture and Rural Development, Agriculture Regulatory and Technology Development Directorate, Crop Science Division, Towoomba Research Station, Bela-Bela, South Africa
- African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Richard Mantlo Ngwepe
- Limpopo Department of Agriculture and Rural Development, Agriculture Regulatory and Technology Development Directorate, Crop Science Division, Towoomba Research Station, Bela-Bela, South Africa
- African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Zamalotshwa Thungo
- African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Vegetable, Industrial and Medicinal Plants, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
44
|
Suhag R, Kumar R, Dhiman A, Sharma A, Prabhakar PK, Gopalakrishnan K, Kumar R, Singh A. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Crit Rev Food Sci Nutr 2022; 63:6757-6776. [PMID: 35196934 DOI: 10.1080/10408398.2022.2043237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Rohit Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Atul Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Arun Sharma
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Krishna Gopalakrishnan
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| |
Collapse
|
45
|
Abstract
Watermelon rind is treated as agricultural waste and commonly discarded, causing environmental issues and biomass loss. This study aimed to identify volatile profiles of watermelon rind and flesh and their cultivar difference. Volatiles were analyzed using solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS). A total of 132 volatiles were identified, including aldehydes, alcohols, ketones, terpenes/terpenoids, esters, lactones, acids, and sulfides. In both rind and flesh, the most dominant compounds in numbers and abundance (peak area) were aldehydes and alcohols, which accounted 94–96% of the total volatile abundance in the rind and 85–87% in the flesh. Total volatile in watermelon rind was only 28–58% of the corresponding flesh samples. Both rind and flesh shared nine-carbon aldehydes and alcohols, though the rind lacked additional diversity. Volatile difference between rind and flesh was greater than the difference among cultivars, although volatiles in the rind could be two times difference between Fascination and other three watermelons (Captivation, Exclamation, and Excursion). This study provides the first-hand knowledge regarding watermelon rind volatile profiles and cultivar difference and shows the potential use of rind in food or beverages due to its naturally contained nine-carbon compounds.
Collapse
|
46
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
47
|
Kaur S, Dhurve P, Arora VK. Statistical approach to investigate the effect of vibro‐fluidized bed drying on bioactive compounds of muskmelon (
Cucumis melo
) seeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Samandeep Kaur
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Vinkel Kumar Arora
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| |
Collapse
|
48
|
Pérez J, Gómez K, Vega L. Optimization and Preliminary Physicochemical Characterization of Pectin Extraction from Watermelon Rind ( Citrullus lanatus) with Citric Acid. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:3068829. [PMID: 35036425 PMCID: PMC8758315 DOI: 10.1155/2022/3068829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
Watermelon rind was used for the pectin extraction with citric acid as the extractant solvent. The effects of pH (2.0-3.0), extraction time (45-75 min), and liquid-solid ratio (10 : 1 to 40 : 1 mL/g) on the pectin yield, degree of esterification, methoxyl content, and anhydrouronic acid content were investigated using Box-Behnken surface response experimental design. The pH was the most significant variable for the pectin yield and properties. The responses optimized separately showed different optimal conditions for each one of the variables studied in this work. Therefore, the desirability function was used to determine the sole theoretical optimum for the highest pectin yield and highest anhydrouronic acid content, which was found to be pH of 2.0, extraction time of 62.31 min, and liquid-solid ratio of 35.07 mL/g. Under this optimal condition, the pectin yield, degree of esterification, methoxyl content, and anhydrouronic acid content were 24.30%, 73.30%, 10.45%, and 81.33%, respectively. At optimal conditions, watermelon rind pectin can be classified as high methoxyl and rapid-set pectin with high quality and high purity. Practical Applications. This study evaluated the pectin extraction from watermelon rind and carried out an optimization of multiple responses as a function of pH, time, and liquid-solid ratio to obtain the best preliminary quality parameters (pectin yield and anhydrouronic acid content). The results revealed that watermelon rind waste can be an inexpensive source to obtain good pectin quality and high purity. According to the chemical characterization and physicochemical properties studied, the extracted pectin from watermelon rind would have a high potential to be used in food industry.
Collapse
Affiliation(s)
- José Pérez
- Department of Chemical Engineering, Bioprocess Research Group, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Karina Gómez
- Department of Chemical Engineering, Bioprocess Research Group, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Lorena Vega
- Department of Chemical Engineering, Bioprocess Research Group, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| |
Collapse
|
49
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
50
|
Ribeiro TB, Voss GB, Coelho MC, Pintado ME. Food waste and by-product valorization as an integrated approach with zero waste: Future challenges. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|