1
|
Krax R, Schulte L, Fischer A, Hellwig M. Release of protein-bound adducts of cysteine residues with caffeic acid by a modified enzymatic hydrolysis method using Pronase E. Food Chem 2025; 476:143379. [PMID: 39983474 DOI: 10.1016/j.foodchem.2025.143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Polyphenols can be widely found in plants and plant-based food. Polyphenols with an ortho-dihydroxy structure, such as caffeic acid (CA), can easily be oxidized to their ortho-quinones. These quinones can react with nucleophilic side chains of proteins, such as the thiol group in cysteine (Cys), and form adducts that can affect the structure and function of these proteins. Individual adducts have been described qualitatively, but quantitative analysis has been hampered by the poor stability of the adducts during sample preparation. In this study, 2-S-cysteinyl caffeic acid was synthesized either in a free or protein-bound form. A one-enzyme hydrolysis was developed using Pronase E. It yielded a hydrolysis rate of 97 % calculated via phenylalanine release. A recovery rate of 2-S-cysteinyl caffeic acid (2-CCA) of 64 % after hydrolysis was achieved when buffer systems containing borate anions were used. The formation of 2-CCA in bovine serum albumin (BSA) incubated with CA was shown.
Collapse
Affiliation(s)
- Raphaela Krax
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
| | - Leon Schulte
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Annik Fischer
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
| | - Michael Hellwig
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; Chair of Special Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany.
| |
Collapse
|
2
|
Huang J, Xu J, Gu Y, Sun H, Liu H, He Y, Li M, Gao X, Tang Z, Wang H. Tea consumption and cognitive health in Chinese older adults: A propensity score matching and weighting analysis. Arch Gerontol Geriatr 2025; 131:105735. [PMID: 39752841 DOI: 10.1016/j.archger.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND The association between tea consumption, especially different types, and cognitive function has not been adequately explored. This study aimed to investigate the associations of tea consumption, including status, frequency, and type, with cognitive function, considering selection bias. METHODS We used data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in 2018(N = 8498). Cognitive function was measured by Mini-Mental State Examination (MMSE). Logistic and linear regression were applied to assess the associations of tea consumption with cognitive impairment and cognitive scores, respectively. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were used to balance characteristic differences between groups. RESULTS The characteristics of tea consumption status, frequency and type were well balanced between groups after using PSM and IPTW. Drinking tea was associated with less cognitive impairment (ORadjusted:0.84, ORPSM:0.84, ORIPTW:0.87) and higher cognitive scores (Coefficientadjusted:0.29, CoefficientPSM:0.33, CoefficientIPTW:0.29). Regular tea drinkers may have better cognitive function than those who never or rarely consumed (Ptrend < 0.05 for both methods). Green tea drinkers had lower prevalence of cognitive impairment (ORadjusted:0.71, ORIPTW:0.75) and higher cognitive scores (Coefficientadjusted:0.45, CoefficientIPTW:0.54). Men, uneducated, and those with annual income>10,000 RMB were more likely to benefit from flower tea. Significant interactions of tea consumption with age, education and income were observed. CONCLUSIONS Tea consumption, especially regular and green tea consumption, was associated with less cognitive impairment and higher cognitive scores, even after PSM and IPTW adjustments. Flower teas may have potential protective effect that is worth further study. Age, education and income have synergistic effects with tea consumption on cognitive function.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiaqi Xu
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yiqing Gu
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hao Sun
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Huan Liu
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yan He
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengjie Li
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xin Gao
- Centre for Psychological Health Education, Changzhou Vocational Institute of Engineering, Changzhou 213164, PR China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Hongfen Wang
- Department of Neurology, The First Center of the PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
3
|
Schmidt D, Wohlers A, Kuhnert N. Promiscuity in Polyphenol-Protein Interactions-Monitoring Protein Conformational Change upon Polyphenol-Protein Binding by Nano-Differential Fluorimetry (Nano-DSF). Molecules 2025; 30:965. [PMID: 40005276 PMCID: PMC11858516 DOI: 10.3390/molecules30040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In this article, we introduce nano-differential fluorimetry (nano-DSF) as an analytical technique that is suitable for investigating polyphenol-protein interactions in solution. Nano-DSF monitors conformational changes in proteins induced by external agents upon interaction at the molecular level. We demonstrate the suitability of this technique to qualitatively monitor an interaction between selected dietary polyphenols and selected proteins including BSA, ovalbumin, amylase, pepsin, trypsin, mucin and ACE-1. Protein conformational changes induced by dietary polyphenols can be investigated. As a major advantage, measurements are carried out at a high dilution, avoiding the precipitation of polyphenol-protein complexes, allowing the rapid and efficient acquisition of quantitative and qualitative binding data. From this concentration, quantitative binding data could be obtained from the fluorescence response curve in line with published values for the association constants. We demonstrate that qualitative interactions can also be established for real food extracts such as cocoa, tea or coffee containing mixtures of dietary polyphenols. Most importantly, we demonstrate that polyphenols of very different structural classes interact with the same protein target. Conversely, multiple protein targets show an affinity to a series of structurally diverse polyphenols, therefore suggesting a dual level of promiscuity with respect to the protein target and polyphenol structure.
Collapse
Affiliation(s)
| | | | - Nikolai Kuhnert
- School of Science, Constructor University, 28759 Bremen, Germany; (D.S.); (A.W.)
| |
Collapse
|
4
|
Qiao K, Zhao M, Huang Y, Liang L, Zhang Y. Bitter Perception and Effects of Foods Rich in Bitter Compounds on Human Health: A Comprehensive Review. Foods 2024; 13:3747. [PMID: 39682819 DOI: 10.3390/foods13233747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors. The bitter compounds in foods mainly include alkaloids, polyphenols, terpenoids, amino acids, etc. Foods rich in bitter taste are mostly natural such as beans, nuts, and coffee, etc. Studies have proven that bitter foods have biological activities such as preventing hyperlipidemia, hypertension, hyperglycemia, anti-inflammatory, antitumor, antibacterial, antioxidant, and exhibit neuroprotective effects and other biological activities. The purpose of this review is to explore the bitter perception and the biological activity of bitter compounds, clarify the mechanism of their action on human health, and provide theoretical guidance for the development and application of functional foods.
Collapse
Affiliation(s)
- Kaina Qiao
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxia Zhao
- Food Laboratory of Zhongyuan · Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yan Huang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan · Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Lin S, Liu X, Yan Q, Liang G, Wang D. Research on heavy metal enrichment and transportation in tea plant-soil systems of different varieties. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:514. [PMID: 39541029 DOI: 10.1007/s10653-024-02289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to investigate heavy metal enrichment in different tea plant varieties and their distribution within different plant parts and to clarify the behavioral characteristics of heavy metals in the tea tree-soil system and their influencing factors. In this study, soil samples were collected from the root zones of 13 tea tree varieties in Guizhou, which had been planted for 10 years. The aim was to compare the physicochemical properties of tea plantation soils under soil-forming matrixes and consistent management. Additionally, the study investigated the enrichment and transportation patterns of Cd, Cr, Cu, Pb, Zn, and Ni in the tea tree-soil systems of different tea tree varieties. The results showed that the planting of tea trees decreased the soil pH by 0.5; soil nutrients decreased; soil Pb, Cr, Ni, Cu, and Zn contents in the root zone increased; and Cd content decreased. Heavy metals were mainly enriched in the roots, and Zn, Cu, Ni, and other elements related to the protein and enzyme synthesis of tea trees could be mostly transported to the stems and leaves. There were significant differences in the enrichment and transportation of heavy metals among the different tea tree varieties. Under consistent soil-forming parent material, soil pH, organic matter, nutrients, and other indices only had a significant effect on heavy metal enrichment in the tea tree roots. Therefore, in areas with high background soil heavy metal contents, the construction of tea plantations should be based on regional soil environmental conditions to choose tea tree varieties with low heavy metal enrichment capacities to avoid the risk of high background soil heavy metals on the safe production of tea for consumers.
Collapse
Affiliation(s)
- Shaoxia Lin
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| | - Xiaolan Liu
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Qiuxiao Yan
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Guangyan Liang
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Daoping Wang
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| |
Collapse
|
6
|
Guo Z, Li C, Li X, Shao S, Rogers KM, Li Q, Li D, Guo H, Huang T, Yuan Y. Fertilizer Effects on the Nitrogen Isotope Composition of Soil and Different Leaf Locations of Potted Camellia sinensis over a Growing Season. PLANTS (BASEL, SWITZERLAND) 2024; 13:1628. [PMID: 38931060 PMCID: PMC11207308 DOI: 10.3390/plants13121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The nitrogen-stable isotopes of plants can be used to verify the source of fertilizers, but the fertilizer uptake patterns in tea (Camellia sinensis) plants are unclear. In this study, potted tea plants were treated with three types of organic fertilizers (OFs), urea, and a control. The tea leaves were sampled over seven months from the top, middle, and base of the plants and analyzed for the δ15N and nitrogen content, along with the corresponding soil samples. The top tea leaves treated with the rapeseed cake OF had the highest δ15N values (up to 6.6‱), followed by the chicken manure, the cow manure, the control, and the urea fertilizer (6.5‱, 4.1‱, 2.2‱, and 0.6‱, respectively). The soil treated with cow manure had the highest δ15N values (6.0‱), followed by the chicken manure, rapeseed cake, control, and urea fertilizer (4.8‱, 4.0‱, 2.5‱, and 1.9‱, respectively). The tea leaves fertilized with rapeseed cake showed only slight δ15N value changes in autumn but increased significantly in early spring and then decreased in late spring, consistent with the delivery of a slow-release fertilizer. Meanwhile, the δ15N values of the top, middle, and basal leaves from the tea plants treated with the rapeseed cake treatment were consistently higher in early spring and lower in autumn and late spring, respectively. The urea and control samples had lower tea leaf δ15N values than the rapeseed cake-treated tea and showed a generalized decrease in the tea leaf δ15N values over time. The results clarify the temporal nitrogen patterns and isotope compositions of tea leaves treated with different fertilizer types and ensure that the δ15N tea leaf values can be used to authenticate the organic fertilizer methods across different harvest periods and leaf locations. The present results based on a pot experiment require further exploration in open agricultural soils in terms of the various potential fertilizer effects on the different variations of nitrogen isotope ratios in tea plants.
Collapse
Affiliation(s)
- Zuchuang Guo
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Karyne M. Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Haowei Guo
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| |
Collapse
|
7
|
Zheng P, Solomon Adade SYS, Rong Y, Zhao S, Han Z, Gong Y, Chen X, Yu J, Huang C, Lin H. Online System for Monitoring the Degree of Fermentation of Oolong Tea Using Integrated Visible-Near-Infrared Spectroscopy and Image-Processing Technologies. Foods 2024; 13:1708. [PMID: 38890936 PMCID: PMC11171755 DOI: 10.3390/foods13111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
During the fermentation process of Oolong tea, significant changes occur in both its external characteristics and its internal components. This study aims to determine the fermentation degree of Oolong tea using visible-near-infrared spectroscopy (vis-VIS-NIR) and image processing. The preprocessed vis-VIS-NIR spectral data are fused with image features after sequential projection algorithm (SPA) feature selection. Subsequently, traditional machine learning and deep learning classification models are compared, with the support vector machine (SVM) and convolutional neural network (CNN) models yielding the highest prediction rates among traditional machine learning models and deep learning models with 97.14% and 95.15% in the prediction set, respectively. The results indicate that VIS-NIR combined with image processing possesses the capability for rapid non-destructive online determination of the fermentation degree of Oolong tea. Additionally, the predictive rate of traditional machine learning models exceeds that of deep learning models in this study. This study provides a theoretical basis for the fermentation of Oolong tea.
Collapse
Affiliation(s)
- Pengfei Zheng
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| | - Selorm Yao-Say Solomon Adade
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| | - Yanna Rong
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| | - Songguang Zhao
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| | - Zhang Han
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
- Chichun Machinery (Xiamen) Co., Ltd., Xiamen 361100, China; (Y.G.); (C.H.)
| | - Yuting Gong
- Chichun Machinery (Xiamen) Co., Ltd., Xiamen 361100, China; (Y.G.); (C.H.)
| | - Xuanyu Chen
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| | - Jinghao Yu
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| | - Chunchi Huang
- Chichun Machinery (Xiamen) Co., Ltd., Xiamen 361100, China; (Y.G.); (C.H.)
| | - Hao Lin
- School of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; (P.Z.); (S.Y.-S.S.A.); (Y.R.); (S.Z.); (Z.H.); (X.C.); (J.Y.)
| |
Collapse
|
8
|
Wen X, Han S, Wang J, Zhang Y, Tan L, Chen C, Han B, Wang M. The Flavor Characteristics, Antioxidant Capability, and Storage Year Discrimination Based on Backpropagation Neural Network of Organic Green Tea ( Camellia sinensis) during Long-Term Storage. Foods 2024; 13:753. [PMID: 38472869 DOI: 10.3390/foods13050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The storage period of tea is a major factor affecting tea quality. However, the effect of storage years on the non-volatile major functional components and quality of green tea remains largely unknown. In this study, a comparative analysis of organic green teas with varying storage years (1-16 years) was conducted by quantifying 47 functional components, using electronic tongue and chromatic aberration technology, alongside an evaluation of antioxidative capacity. The results indicated a significant negative correlation between the storage years and levels of tea polyphenols, total amino acids, soluble sugars, two phenolic acids, four flavonols, three tea pigments, umami amino acids, and sweet amino acids. The multivariate statistical analysis revealed that 10 functional components were identified as effective in distinguishing organic green teas with different storage years. Electronic tongue technology categorized organic green teas with different storage years into three classes. The backpropagation neural network (BPNN) analysis demonstrated that the classification predictive ability of the model based on the electronic tongue was superior to the one based on color difference values and 10 functional components. The combined analysis of antioxidative activity and functional components suggested that organic green teas with shorter storage periods exhibited stronger abilities to suppress superoxide anion radicals and hydroxyl radicals and reduce iron ions due to the higher content of eight components. Long-term-stored organic green teas, with a higher content of substances like L-serine and theabrownins, demonstrated stronger antioxidative capabilities in clearing both lipid-soluble and water-soluble free radicals. Therefore, this study provided a theoretical basis for the quality assessment of green tea and prediction of green tea storage periods.
Collapse
Affiliation(s)
- Xiaomei Wen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Hangzhou Tea & Chrysanthemum Technology, Co., Ltd., Hangzhou 310018, China
| | - Jiahui Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanxia Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lining Tan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chen Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Xie X, Fu J, Gou W, Qin Y, Wang D, Huang Z, Wang L, Li X. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1289777. [PMID: 38420363 PMCID: PMC10899483 DOI: 10.3389/fmed.2024.1289777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoporosis (OP), osteoarthritis (OA), and rheumatoid arthritis (RA) are common bone and joint diseases with a high incidence and long duration. Thus, these conditions can affect the lives of middle-aged and elderly people. Tea drinking is a traditional lifestyle in China, and the long-term intake of tea and its active ingredients is beneficial to human health. However, the mechanisms of action of tea and its active ingredients against OP, OA, and RA are not completely elucidated. This study aimed to assess the therapeutic role and related mechanisms of tea and its active ingredients in OP, OA, and RA. Moreover, it expanded the potential mechanisms of tea efficacy based on network pharmacology and molecular docking. Results showed that tea has potential anti-COX properties and hormone-like effects. Compared with a single component, different tea components synergize or antagonize each other, thereby resulting in a more evident dual effect. In conclusion, tea has great potential in the medical and healthcare fields. Nevertheless, further research on the composition, proportion, and synergistic mechanism of several tea components should be performed.
Collapse
Affiliation(s)
- Xinyu Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiehui Fu
- Department of Sports Medicine (Orthopedics), Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Weiying Gou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yifei Qin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingzhen Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuer Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
10
|
Liu H, Wu Y, Zhao Z, Liu Z, Liu R, Pang Y, Yang C, Zhang Y, Nie J. Varietal Authenticity Assessment of QTMJ Tea Using Non-Targeted Metabolomics and Multi-Elemental Analysis with Chemometrics. Foods 2023; 12:4114. [PMID: 38002172 PMCID: PMC10670169 DOI: 10.3390/foods12224114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
In this paper, a combination of non-targeted metabolomics and multi-element analysis was used to investigate the impact of five different cultivars on the sensory quality of QTMJ tea and identify candidate markers for varietal authenticity assessment. With chemometric analysis, a total of 54 differential metabolites were screened, with the abundances significantly varied in the tea cultivars. By contrast, the QTMJ tea from the Yaoshan Xiulv (XL) monovariety presents a much better sensory quality as result of the relatively more abundant anthocyanin glycosides and the lower levels of 2'-o-methyladenosine, denudatine, kynurenic acid and L-pipecolic acid. In addition, multi-elemental analysis found 14 significantly differential elements among the cultivars (VIP > 1 and p < 0.05). The differences and correlations of metabolites and elemental signatures of QTMJ tea between five cultivars were discussed using a Pearson correlation analysis. Element characteristics can be used as the best discriminant index for different cultivars of QTMJT, with a predictive accuracy of 100%.
Collapse
Affiliation(s)
- Huahong Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuxin Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ziwei Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhi Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Renjun Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
11
|
Li ZQ, Yin XL, Gu HW, Zou D, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis. Food Res Int 2023; 173:113238. [PMID: 37803551 DOI: 10.1016/j.foodres.2023.113238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
It's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Minné D, Stromin J, Docrat T, Engel-Hills P, Marnewick JL. The effects of tea polyphenols on emotional homeostasis: Understanding dementia risk through stress, mood, attention & sleep. Clin Nutr ESPEN 2023; 57:77-88. [PMID: 37739736 DOI: 10.1016/j.clnesp.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 09/24/2023]
Abstract
Decades of research provide evidence that certain phytochemicals in tea (Camellia sinensis) and other herbal beverages are protective against the development of sporadic types of dementia in later life. Since tea drinking is an economical and widely adopted social-cultural practice across all age groups, it is an ideal product to target in designing low-cost dietary interventions for Alzheimer's Disease (AD), the most prevalent form of dementia. In this review, we focus on the protective roles of tea-derived polyphenols and other phytochemicals on mood, the stress response, attention, and sleep, in keeping with the perspective that many early neuropathological events in AD may stem, in part, from allostatic overload. This approach aligns with the perspective that many forms of dementia, including AD, begin to take root in the brain decades prior to symptom onset, underscoring the need for early uptake of accessible and viable lifestyle interventions. The findings reviewed here suggest that consuming green and oolong tea can improve mood and reduce overall stress. However, given the caffeine content in tea and its association with stress reactivity, the effects of daily whole tea consumption on the emotional state are likely dose-dependent with an inverted-U relationship to wellbeing. Plant-based beverages that are to be consumed in high daily quantities for health purposes and which are naturally free of caffeine, such as Rooibos, may be more appropriate as a dietary supplement for managing emotional regulation over the lifetime.
Collapse
Affiliation(s)
- Donné Minné
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa; Health and Wellness Sciences Faculty, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| | - Juliet Stromin
- Psychology Department, University of Cape Town, Lover's Walk, Rondebosch, Cape Town, 7700, South Africa.
| | - Taskeen Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| | - Penelope Engel-Hills
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa; Health and Wellness Sciences Faculty, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
13
|
Phuah YQ, Chang SK, Ng WJ, Lam MQ, Ee KY. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int 2023; 170:113007. [PMID: 37316075 DOI: 10.1016/j.foodres.2023.113007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
This review discussed the origin, manufacturing process, chemical composition, factors affecting quality and health benefits of matcha (Camellia sinensis), and the application of chemometrics and multi-omics in the science of matcha. The discussion primarily distinguishes between matcha and regular green tea with processing and compositional factors, and demonstrates beneficial health effects of consuming matcha. Preferred Reporting Items for Systematic Reviews and Meta-Analyses was adopted to search for relevant information in this review. Boolean operators were incorporated to explore related sources in various databases. Notably, climate, cultivar, maturity of tea leaves, grinding process and brewing temperature impact on the overall quality of matcha. Besides, sufficient shading prior to harvesting significantly increases the contents of theanine and chlorophyll in the tea leaves. Furthermore, the ground whole tea leaf powder delivers matcha with the greatest benefits to the consumers. The health promoting benefits of matcha are mainly contributed by its micro-nutrients and the antioxidative phytochemicals, specifically epigallocatechin-gallate, theanine and caffeine. Collectively, the chemical composition of matcha affected its quality and health benefits significantly. To this end, more studies are required to elucidate the biological mechanisms of these compounds for human health. Chemometrics and multi-omics technologies are useful to fill up the research gaps identified in this review.
Collapse
Affiliation(s)
- Yi Qian Phuah
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wen Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ming Quan Lam
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
14
|
Geng Y, Liu X, Yu Y, Li W, Mou Y, Chen F, Hu X, Ji J, Ma L. From polyphenol to o-quinone: Occurrence, significance, and intervention strategies in foods and health implications. Compr Rev Food Sci Food Saf 2023; 22:3254-3291. [PMID: 37219415 DOI: 10.1111/1541-4337.13182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Polyphenol oxidation is a chemical process impairing food freshness and other desirable qualities, which has become a serious problem in fruit and vegetable processing industry. It is crucial to understand the mechanisms involved in these detrimental alterations. o-Quinones are primarily generated by polyphenols with di/tri-phenolic groups through enzymatic oxidation and/or auto-oxidation. They are highly reactive species, which not only readily suffer the attack by nucleophiles but also powerfully oxidize other molecules presenting lower redox potentials via electron transfer reactions. These reactions and subsequent complicated reactions are capable of initiating quality losses in foods, such as browning, aroma loss, and nutritional decline. To attenuate these adverse influences, a variety of technologies have emerged to restrain polyphenol oxidation via governing different factors, especially polyphenol oxidases and oxygen. Despite tremendous efforts devoted, to date, the loss of food quality caused by quinones has remained a great challenge in the food processing industry. Furthermore, o-quinones are responsible for the chemopreventive effects and/or toxicity of the parent catechols on human health, the mechanisms by which are quite complex. Herein, this review focuses on the generation and reactivity of o-quinones, attempting to clarify mechanisms involved in the quality deterioration of foods and health implications for humans. Potential innovative inhibitors and technologies are also presented to intervene in o-quinone formation and subsequent reactions. In future, the feasibility of these inhibitory strategies should be evaluated, and further exploration on biological targets of o-quinones is of great necessity.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xinyu Liu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yiran Yu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Liu L, Zareef M, Wang Z, Li H, Chen Q, Ouyang Q. Monitoring chlorophyll changes during Tencha processing using portable near-infrared spectroscopy. Food Chem 2023; 412:135505. [PMID: 36716622 DOI: 10.1016/j.foodchem.2023.135505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Monitoring chlorophyll during Tencha (the raw ingredient for matcha) processing is critical for determining the matcha's color and quality. The purpose of this study is to explore the mechanism of chlorophyll changes during Tencha processing and evaluate the viability of predicting its content by a portable near-infrared (NIR) spectrometer. The Tencha samples' spectral data were first preprocessed using various preprocessing techniques. Subsequently, iteratively variable subset optimization (IVSO), bootstrapping soft shrinkage (BOSS), and competitive adaptive reweighted sampling (CARS) were used to optimize and build partial least square (PLS) models. The CARS-PLS models achieved the best predictive accuracy, with correlation coefficients of prediction (Rp) = 0.9204 for chlorophyll a, Rp = 0.9282 for chlorophyll b, and Rp = 0.9385 for total chlorophyll. These findings suggest that NIR spectroscopy could be used as a surrogate for immediate quantification and monitoring of chlorophyll during Tencha processing.
Collapse
Affiliation(s)
- Lihua Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhen Wang
- National Research and Development Center for Matcha Processing Technology, Jiangsu Xinpin Tea Co., Ltd, Changzhou, 213254, PR China; Tea Industry Research Institute, Changzhou Academy of Modern Agricultural Sciences, Changzhou, 213254, PR China
| | - Haoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
16
|
Yu XL, Li J, Yang Y, Zhu J, Yuan H, Jiang Y. Comprehensive investigation on flavonoids metabolites of Longjing tea in different cultivars, geographical origins, and storage time. Heliyon 2023; 9:e17305. [PMID: 37426805 PMCID: PMC10329133 DOI: 10.1016/j.heliyon.2023.e17305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
In this study, four kinds of Longjing tea, the famous flat green tea and the protected geographical indication product in China, were used to explore the quality difference of the same green tea due to the cultivar, geographic origin, and storage time under the premise of consistent picking conditions and processing technology using the widely targeted metabolomics. Results showed that 483 flavonoid metabolites with 10 subgroups of flavonoids were screened and 118 differential flavonoid metabolites were identified. The number and subgroups of differential flavonoid metabolites produced by different cultivars of Longjing tea were the largest, followed by storage time, and third by the geographic origin. Glycosidification and methylation or methoxylation were the main structural modifications of differential flavonoid metabolites. This study has enriched the understanding of the effects of the cultivar, the geographic origin, and the storage time on the flavonoid metabolic profiles of Longjing tea, and provided worthy information for the traceability of green tea.
Collapse
|
17
|
Zhang JY, Cui HC, Feng ZH, Wang WW, Zhao Y, Deng YL, Jiang HY, Yin JF, Engelhardt UH. Bitterness quantification and simulated taste mechanism of theasinensin A from tea. Front Nutr 2023; 10:1138023. [PMID: 37229471 PMCID: PMC10203438 DOI: 10.3389/fnut.2023.1138023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
Theasinensin A is an important quality chemical component in tea, but its taste characteristics and the related mechanism are still unclear. The bitterness quantification and simulated taste mechanism of theasinensin A were researched. The results showed that theasinensin A was significantly correlated with the bitterness of tea. The bitterness threshold of theasinensin A was identified as 65 μmol/L for the first time. The dose-over-threshold (DOT) value of theasinensin A was significantly higher than that of caffeine in black tea soup. The concentration-bitterness curve and time-intensity curve of theasinensin A were constructed. The bitterness contribution of theasinensin A in black tea was higher than in oolong and green tea. Theasinensin A had the highest affinity with bitterness receptor protein TAS2R16, which was compared to TAS2R13 and TAS2R14. Theasinensin A was mainly bound to a half-open cavity at the N-terminal of TAS2R13, TAS2R14, and TAS2R16. The different binding capacity, hydrogen bond, and hydrophobic accumulation effect of theasinensin A and bitterness receptor proteins might be the reason why theasinensin A presented different bitterness senses in human oral cavity.
Collapse
Affiliation(s)
- Jian-yong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hong-chun Cui
- Tea Research Institute of Hangzhou Academy of Agricultural Science, Hangzhou, China
| | - Zhi-hui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-wei Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Zhao
- Tea Research Institute of Hangzhou Academy of Agricultural Science, Hangzhou, China
| | - Yu-liang Deng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - He-yuan Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jun-feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ulrich H. Engelhardt
- Institute of Food Chemistry, Brunswick University of Technology, Braunschweig, Germany
| |
Collapse
|
18
|
Wang Y, Ren Z, Chen Y, Lu C, Deng WW, Zhang Z, Ning J. Visualizing chemical indicators: Spatial and temporal quality formation and distribution during black tea fermentation. Food Chem 2023; 401:134090. [DOI: 10.1016/j.foodchem.2022.134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
|
19
|
Yin XL, Fu WJ, Chen Y, Zhou RF, Sun W, Ding B, Peng XT, Gu HW. GC-MS-based untargeted metabolomics reveals the key volatile organic compounds for discriminating grades of Yichang big-leaf green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Winiarska-Mieczan A, Kwiecień M, Bąkowski M, Krusiński R, Jachimowicz-Rogowska K, Demkowska-Kutrzepa M, Kiczorowska B, Krupa W. Tannic Acid and Tea Prevents the Accumulation of Lead and Cadmium in the Lungs, Heart and Brain of Adolescent Male Wistar Rats—Possible Therapeutic Option. Animals (Basel) 2022; 12:ani12202838. [PMID: 36290224 PMCID: PMC9597774 DOI: 10.3390/ani12202838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The protective effect of tannic acid and tea solutions on the lungs, hearts and brains of adolescent Wistar rats exposed to Pb and Cd was studied. Metals were administered with feed (7 mg Cd and 50 mg Pb/kg). Two experiments were carried. Experiment 1 aimed to determine the level of tannic acid (TA), most effectively reducing the adverse impact of Pb and Cd on the organs of adolescent rats (aged 5 weeks, weighing 169.3 ± 14.7 g) during combined exposure. TA was administered with drink (0, 0.5, 1, 1.5, 2 or 2.5% solutions). In Experiment 2, adolescent rats (aged 6 weeks, weighing 210.6 ± 12.1 g) received an aqueous solutions of black, green, red or white teas. TA and teas had a positive effect on reducing the accumulation of Cd in the organs. The results obtained suggest that long-term continuing administration of TA increases its effectiveness as a chelator for Pb. A 2% TA and white tea solution proved to be the most effective. In the analyzed tissues, increased activity of SOD and CAT was recorded as a result of the use of the TA and teas; thus, they can efficiently prevent the prooxidant effect of toxic metals.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Correspondence:
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Maciej Bąkowski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Robert Krusiński
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marta Demkowska-Kutrzepa
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Bożena Kiczorowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Wanda Krupa
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
| |
Collapse
|
21
|
Mailart MC, Berli PC, Borges AB, Yilmaz B, Baumann T, Carvalho TS. Pellicle modification with natural bioproducts: Influence on tooth color under erosive conditions. Eur J Oral Sci 2022; 130:e12886. [PMID: 35839337 PMCID: PMC9796534 DOI: 10.1111/eos.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
Salivary pellicle was modified with bioproducts and we assessed the change in tooth color and the protection of enamel to erosion. Human enamel specimens were assigned to one of three solutions: grape seed extract or black tea (bioproducts), or deionized water (negative control); after which one half the specimens underwent erosive challenges. The specimens underwent 15 cycles involving salivary pellicle formation (10 min, 37°C), incubation in solution (2 min, 25°C), subsequent pellicle formation (90 min, 37°C). Half of the specimens was kept in a humid chamber and the other half was submitted to erosion (2 min, 1% citric acid). After 15 such cycles, the pellicle was removed. Tooth color and the surface reflection intensity were assessed after every five cycles and after pellicle removal. For non-eroded specimens, the exposure to bioproducts promoted significantly greater color change than the deionized water, with increases in yellow appearance. After pellicle removal, the color was similar in all non-eroded specimens. The bioproducts increased the surface reflection intensity over cycles. For the erosion-exposed specimens, erosion itself resulted in color change. Black tea and deionized water resulted in increased yellow appearance. Exposure to the bioproducts resulted in higher relative surface reflection intensity values over time, but only grape seed extract resulted in higher relative surface reflection intensity value at the time of pellicle removal. The bioproducts caused transient staining effect, which was reduced after pellicle removal. For enamel submitted to erosion, grape seed extract resulted in less color change and better protection of enamel against erosion than black tea or water.
Collapse
Affiliation(s)
- Mariane Cintra Mailart
- Department of Restorative, Preventive and Pediatric DentistrySchool of Dental MedicineUniversity of BernBernSwitzerland,Department of Restorative DentistryInstitute of Science and TechnologySao Paulo State UniversitySao José dos CamposSão PauloBrazil
| | - Pavel Claudio Berli
- Department of Restorative, Preventive and Pediatric DentistrySchool of Dental MedicineUniversity of BernBernSwitzerland
| | - Alessandra Bühler Borges
- Department of Restorative DentistryInstitute of Science and TechnologySao Paulo State UniversitySao José dos CamposSão PauloBrazil
| | - Burak Yilmaz
- Department of Restorative, Preventive and Pediatric DentistrySchool of Dental MedicineUniversity of BernBernSwitzerland,Department of Reconstructive Dentistry and GerodontologySchool of Dental MedicineUniversity of BernBernSwitzerland
| | - Tommy Baumann
- Department of Restorative, Preventive and Pediatric DentistrySchool of Dental MedicineUniversity of BernBernSwitzerland
| | - Thiago Saads Carvalho
- Department of Restorative, Preventive and Pediatric DentistrySchool of Dental MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
22
|
Maleš I, Pedisić S, Zorić Z, Elez-Garofulić I, Repajić M, You L, Vladimir-Knežević S, Butorac D, Dragović-Uzelac V. The medicinal and aromatic plants as ingredients in functional beverage production. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
23
|
Hypoglycemic effects of black brick tea with fungal growth in hyperglycemic mice model. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Geographical origin identification and chemical markers screening of Chinese green tea using two-dimensional fingerprints technique coupled with multivariate chemometric methods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Rana A, Rana S, Kapoor S, Joshi R, Thakur A, Padwad Y, Kumar S. Unravelling the comparative metabolite fingerprints and therapeutic effects of diverse teas. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Functional mechanism on stem cells by tea (Camellia sinensis) bioactive compounds. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Li L, Wang Y, Cui Q, Liu Y, Ning J, Zhang Z. Qualitative and quantitative quality evaluation of black tea fermentation through noncontact chemical imaging. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34898343 DOI: 10.1080/10408398.2021.2007353] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Gaozhong Yang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiushuang You
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shili Sun
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Analysis of total phenolic compounds and caffeine in teas using variable selection approach with two-dimensional fluorescence and infrared spectroscopy. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Sobolev AP, Di Lorenzo A, Circi S, Santarcangelo C, Ingallina C, Daglia M, Mannina L. NMR, RP-HPLC-PDA-ESI-MS n, and RP-HPLC-FD Characterization of Green and Oolong Teas ( Camellia sinensis L.). Molecules 2021; 26:molecules26175125. [PMID: 34500554 PMCID: PMC8434197 DOI: 10.3390/molecules26175125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Untargeted (NMR) and targeted (RP-HPLC-PDA-ESI-MSn, RP-HPLC-FD) analytical methodologies were used to determine the bioactive components of 19 tea samples, characterized by different production processes (common tea and GABA tea), degrees of fermentation (green and oolong teas), and harvesting season (autumn and spring). The combination of NMR data and a multivariate statistical approach led to a statistical model able to discriminate between GABA and non-GABA teas and green and oolong teas. Targeted analyses showed that green and GABA green teas had similar polyphenol and caffeine contents, but the GABA level was higher in GABA green teas than in regular green tea samples. GABA oolong teas showed lower contents of polyphenols, caffeine, and amino acids, and a higher content of GABA, in comparison with non-GABA oolong teas. In conclusion, the results of this study suggest that the healthy properties of teas, especially GABA teas, have to be evaluated via comprehensive metabolic profiling rather than only the GABA content.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
| | - Arianna Di Lorenzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Simone Circi
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| | | | - Cinzia Ingallina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
- Correspondence: (C.I.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (C.I.); (M.D.)
| | - Luisa Mannina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| |
Collapse
|
31
|
Li T, Xu S, Wang Y, Wei Y, Shi L, Xiao Z, Liu Z, Deng WW, Ning J. Quality chemical analysis of crush-tear-curl (CTC) black tea from different geographical regions based on UHPLC-Orbitrap-MS. J Food Sci 2021; 86:3909-3925. [PMID: 34390261 DOI: 10.1111/1750-3841.15871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 01/20/2023]
Abstract
Crush-tear-curl (CTC) black tea is a popular beverage, owing to its unique taste characteristics and health benefits. However, differences in the taste quality and chemical profiles of CTC black tea from different geographical regions remain unclear. In this study, 28 CTC black tea samples were collected from six geographical regions and analyzed using electronic tongue and ultrahigh performance liquid chromatography-Orbitrap-mass spectroscopy. The e-tongue analysis indicated that each region's CTC black tea has its own relatively prominent taste characteristics: Sri Lanka (more umami and astringent), North India (more umami), China (more sweetness and astringent), South India (moderate umami and sweetness), and Kenya (moderate umami and astringent). Based on multivariate statistical analysis, 78 metabolites were tentatively identified and used as potential markers for CTC black tea of different origins, mainly including amino acids, flavone/flavonol glycosides, and pigments. Different metabolites, which contributed to the taste characteristics of CTC black tea, were clarified by partial least squares regression correlation analysis. Our findings may serve as useful references for future studies on origin traceability and quality characteristic determination of CTC black teas. PRACTICAL APPLICATION: This study provides useful references for future studies on the origin traceability and taste characteristic determination of CTC black teas from different geographical regions.
Collapse
Affiliation(s)
- Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Leyi Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhipeng Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
32
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
33
|
Yao Y, Chen H, Chen L, Ju SY, Yang H, Zeng Y, Gu D, Ng TP. Type of tea consumption and depressive symptoms in Chinese older adults. BMC Geriatr 2021; 21:331. [PMID: 34030654 PMCID: PMC8142291 DOI: 10.1186/s12877-021-02203-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background Existing research indicates that tea drinking may exert beneficiary effects on mental health. However, associations between different types of tea intake and mental health such as depression have not been fully examined. The purpose of this study was to examine the associations of green tea, fermented tea, and floral tea consumption with depressive symptoms. Methods We used data from the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey, a nationwide survey on older adults in mainland China. A total of 13,115 participants (mean age 83.7 years, 54.2% were women) with valid responses were included in the analysis. The type (green, fermented [black, Oolong, white, yellow, dark, and compressed teas], and floral) and the frequency of tea consumption were recorded, and depressive symptoms were assessed using 10-item of the Center for Epidemiologic Studies Depression Scale (CES-D-10). We examined the associations between the type and the frequency of tea intake and depression, controlling for a set of demographic, socioeconomic, psychosocial, behavioral, and health-related variables. Results Overall, intakes of green tea, fermented tea, and floral tea were all significantly associated with lower prevalence of depressive symptoms, independent of other risk factors. Compared with the group of no tea intake, the adjusted ORs of depressive symptoms for daily green tea, fermented tea, and floral tea intake were 0.85 (95% CI: 0.76–0.95), 0.87 (95% CI: 0.76–0.99), and 0.70 (95% CI: 0.59–0.82), respectively. Linear associations were observed between the frequencies of all three types of tea intake and depressive symptoms (P < 0.05 for trends for all three types). The associations of the type and the frequency of tea intake and depressive symptoms were robust in several sensitivity analyses. Conclusions Among Chinese older adults, regularly consumed any type of tea (green, fermented, or floral) were less likely to show depressive symptoms, the associations seemed more pronounced among floral tea and green tea drinkers. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02203-z.
Collapse
Affiliation(s)
- Yao Yao
- Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing, 100871, China.,Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27705, USA
| | - Huashuai Chen
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27705, USA
| | - Lele Chen
- School of Social and Behavioral Sciences, Nanjing University, Nanjing, 100191, China
| | - Sang-Yhun Ju
- Department of Family Medicine, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, 11765, Republic of Korea
| | - Huazhen Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing, 100871, China. .,Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27705, USA.
| | - Danan Gu
- Independent Researcher, New York, NY, 10017, USA.
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Effects of Polyphenols in Tea (Camellia sinensis sp.) on the Modulation of Gut Microbiota in Human Trials and Animal Studies. GASTROENTEROLOGY INSIGHTS 2021. [DOI: 10.3390/gastroent12020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.
Collapse
|
35
|
Zhang P, Ke JP, Chen CH, Yang Z, Zhou X, Liu XH, Hu FL, Bao GH. Discovery and Targeted Isolation of Phenylpropanoid-Substituted Ester-Catechins Using UPLC-Q/TOF-HRMS/MS-Based Molecular Networks: Implication of the Reaction Mechanism among Polyphenols during Green Tea Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4827-4839. [PMID: 33848156 DOI: 10.1021/acs.jafc.1c00964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tea is an important beverage source of dietary polyphenols and well known for containing phenolic structure diversity. A series of phenylpropanoid-substituted catechins, flavonols, flavan-3-hexoside, and proanthocyanidin are present in different herbs with various biological activities, inspiring our exploration of phenylpropanoid-substituted ester type of catechins (PSECs) due to the enrichment of galloylated catechins in tea. In this study, we used a guiding-screening-location-isolation integrated route including creating a hypothesized PSEC dataset, MS/MS data acquiring, construction of molecular networks, and traditional column chromatography and preliminarily identified 14 PSECs by MS/MS spectrum. Two of these PSECs were further purified and elucidated by NMR and CD spectra. Further MS detection in tea products and fresh leaves suggests that the production of the two new compounds was enhanced during tea processing. The synthesis mechanism was proposed to obtain these types of components for further investigation on their roles in human health protection. This study provides an example for the exploration of new functional ingredients from food sources guided by MS/MS data-based networking, and also new insights into the reaction mechanism to form new catechin conjugates among polyphenols in green tea.
Collapse
Affiliation(s)
- Peng Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Jia-Ping Ke
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Chen-Hui Chen
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Zi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Xue Zhou
- Research Center on Entomogenous Fungi, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Xiao-Huan Liu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Feng-Lin Hu
- Research Center on Entomogenous Fungi, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| |
Collapse
|