1
|
Santos F, Soares C, Morais SL, Neves C, Grosso C, Ramalhosa MJ, Vieira M, Delerue-Matos C, Domingues VF. Optimized Extraction Protocols for Bioactive Antioxidants from Commercial Seaweeds in Portugal: A Comparative Study of Techniques. Foods 2025; 14:453. [PMID: 39942046 PMCID: PMC11816920 DOI: 10.3390/foods14030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to optimize the extraction conditions for a valuable source of antioxidants: seaweed. Therefore, ten seaweed samples were subjected to a solid-liquid extraction (SLE), where the extraction conditions (biomass (g): solvent (mL) ratio, temperature, and time) were optimized using response surface methodology (RSM). The seaweeds were also subjected to subcritical water extraction (SWE) (140 and 190 °C) and ultrasound-assisted extraction (UAE) (10 and 20 min). The antioxidant capacity of the extracts was determined through the ferric-reducing antioxidant power and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). The total phenolic content revealed the significance of temperature and biomass; solvent ratio parameters in the extraction process with higher conditions generally promoting the release of phenolic compounds. Furthermore, applying RSM allowed for the identification of optimal conditions and the establishment of predictive models that can be valuable in industrial-scale extraction processes. The antioxidant potency composite index (APCI) shows that SWE at 190 °C stands out, with E. bicyclis reaching an APCI score of 46.27%. The AGREEprep evaluation showed that UAE is the most sustainable method, achieving the highest score (0.69). The results of this study contribute to the development of efficient and standardized extraction protocols for each seaweed species, allowing for the maximum yield of antioxidants.
Collapse
Affiliation(s)
- Francisca Santos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| | - Stephanie L. Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| | - Cátia Neves
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| | - Maria João Ramalhosa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| | - Mónica Vieira
- RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), CQB, ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (F.S.); (S.L.M.); (C.N.); (C.G.); (M.J.R.); (C.D.-M.)
| |
Collapse
|
2
|
McDonnell A, Luck T, Nash R, Touzet N. Biochemical profiling and antioxidant activity analysis of commercially relevant seaweeds from northwest Europe. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6746-6755. [PMID: 38551463 DOI: 10.1002/jsfa.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The drive towards ensuring the sustainability of bioresources has been linked with better valorising primary materials and developing biorefinery pipelines. Seaweeds constitute valuable coastal resources with applications in the bioenergy, biofertiliser, nutrition, pharmaceutical and cosmetic sectors. Owing to the various sought-after metabolites they possess, several seaweed species are commercially exploited throughout Western Europe, including Ireland. Here, four commercially relevant brown (Fucus serratus and Fucus vesiculosus) and red (Chondrus crispus and Mastocarpus stellatus) seaweed species were sampled during a spring tide in July 2021 on moderately exposed shores across three coastal regions in the west of Ireland. RESULTS Significant regional differences were identified when specimens were analysed for carbohydrates (max. 80.3 μg glucose eq mg-1 DW), proteins (max. 431.3 μg BSA eq. mg-1 DW), lipids (max. 158.6 mg g-1 DW), pigment signature and antioxidant potential. Protein content for F. serratus recorded a twofold difference between northern and southern specimens. The antioxidant potential of F. vesiculosus and M. stellatus returned greater activity compared to F. serratus and C. crispus, respectively. Multivariate analysis showed a clear latitudinal pattern across the three western coastal regions (north, west and south) for both F. vesiculosus and F. serratus. CONCLUSION F. vesiculosus thalli from the northwest were richer in pigment content while the F. serratus thalli from the northwest were richer in antioxidants. Such biogeographic patterns in the biochemical make-up of seaweeds need consideration for the development of regional integrated aquaculture systems and the optimisation of the biomass content for targeted downstream applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adam McDonnell
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability, and Innovation, Atlantic Technological University Sligo, Sligo, Ireland
| | - Tobias Luck
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability, and Innovation, Atlantic Technological University Sligo, Sligo, Ireland
| | - Róisín Nash
- Marine and Freshwater Research Centre, Department of Natural Resources and the Environment, Atlantic Technological University Galway, Galway, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability, and Innovation, Atlantic Technological University Sligo, Sligo, Ireland
| |
Collapse
|
3
|
Chen X, Xu Y, Du X, Li Z, Yang Y, Jiang Z, Ni H, Li Q. Effect of Porphyra haitanensis polyphenols from different harvest periods on hypoglycaemic activity based on in vitro digestion and widely targeted metabolomic analysis. Food Chem 2024; 437:137793. [PMID: 37866341 DOI: 10.1016/j.foodchem.2023.137793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The hypoglycemic effect of Porphyra is well known. Based on in vitro digestion and metabolomics, the bioaccessibility, antidiabetic activity and phenolic conversion of P. haitanensis were investigated at different harvests. Total polyphenol content (TPC), α-glucosidase inhibition and oxygen radical absorbance capacity (ORAC) increased with harvesting and digestion stages, reaching maximum at the fourth harvest. TPC and α-glucosidase inhibition after digestion reached 130-150 mg/g and 50-90 %, ORAC was 8.7-13.5 times higher than the undigestion. However, bioaccessibility in the first and second harvests was 10-80 % higher than other harvests. The phenolic content in the fourth harvest was up-regulated to 2-30 times than the first and mostly were citrus flavonoids. Redundancy analysis indicated significant correlation between phenolic metabolites and bioactivities in different harvests of P. haitanensis during digestion, with the strongest correlation coefficients were apigenin and genistein. This study provides reference for the application of P. haitanensis in treating type 2 diabetes.
Collapse
Affiliation(s)
- Xiaochen Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yating Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, Fujian 361021, China.
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, Fujian 361021, China.
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, Fujian 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen 361021, Fujian, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, Fujian 361021, China
| |
Collapse
|
4
|
Cebrián-Lloret V, Martínez-Abad A, Recio I, López-Rubio A, Martínez-Sanz M. In vitro digestibility of proteins from red seaweeds: Impact of cell wall structure and processing methods. Food Res Int 2024; 178:113990. [PMID: 38309924 DOI: 10.1016/j.foodres.2024.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to assess the nutritional quality and digestibility of proteins in two red seaweed species, Gelidium corneum and Gracilaropsis longissima, through the application of in vitro gastrointestinal digestions, and evaluate the impact of two consecutive processing steps, extrusion and compression moulding, to produce food snacks. The protein content in both seaweeds was approximately 16 %, being primarily located within the cell walls. Both species exhibited similar amino acid profiles, with aspartic and glutamic acid being most abundant. However, processing impacted their amino acid profiles, leading to a significant decrease in labile amino acids like lysine. Nevertheless, essential amino acids constituted 35-36 % of the total in the native seaweeds and their processed products. Although the protein digestibility in both seaweed species was relatively low (<60 %), processing, particularly extrusion, enhanced it by approximately 10 %. Interestingly, the effect of the different processing steps on the digestibility varied between the two species. This difference was mainly attributed to compositional and structural differences. G. corneum exhibited increased digestibility with each processing step, while G. longissima reached maximum digestibility after extrusion. Notably, changes in the amino acid profiles of the processed products affected adversely the protein nutritional quality, with lysine becoming the limiting amino acid. These findings provide the basis for developing strategies to enhance protein quality in these seaweed species, thereby facilitating high-quality food production with potential applications in the food industry.
Collapse
Affiliation(s)
- Vera Cebrián-Lloret
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Effect of Milk Origin and Seasonality of Yogurt Acid Whey on Antioxidant Activity before and after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:2130. [PMID: 38136249 PMCID: PMC10740864 DOI: 10.3390/antiox12122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well as those resulting from further hydrolysis during the digestion process, have been linked to enhanced biological activities. In this study, the antioxidant capacity of 33 samples of YAW obtained from Greek dairy companies of bovine, ovine or caprine origin was investigated using both cell-free and cell-based assays. The YAW samples, their in vitro digestion products (YAW-Ds) and a fraction of the digests (less than 3 kDa; YAW-D-P3) were assessed using four biochemical assays, namely ORAC, ABTS, FRAP and P-FRAP. Our data revealed a higher antioxidant capacity for digested samples compared with undigested samples, with all four methods. ORAC values after in vitro digestion were higher for the ovine samples compared to their bovine (YAW-D and YAW-D-P3) and caprine (YAW-D-P3) counterparts. Furthermore, the YAW-D-P3 fraction derived from samples collected in the summer months exhibited higher ORAC values when compared to the respective fraction from the winter months' samples. The cellular antioxidant activity of ovine YAW-D-P3 was improved in H2O2-treated HT29 cells compared to the control H2O2-treated cells. However, YAW-D-P3 could not trigger either the pathways involving the transcription factors NF-κB or NFE2L2 or the gene expression of SOD1, CAT and HMOX1 in LPS-challenged THP-1-derived macrophages. These results suggest that YAW, and particularly YAW from ovine origin, could be used as a natural source for its antioxidant potential in human and animal nutrition.
Collapse
Affiliation(s)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
6
|
Kim TH, Heo SY, Han JS, Jung WK. Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.) (Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN. Cell Biochem Funct 2023; 41:889-897. [PMID: 37589166 DOI: 10.1002/cbf.3840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Polydeoxyribonucleotide (PDRN) is a DNA-derived drug extracted from the sperm cells of Oncorhynchus mykiss or O. keta. PDRN exhibits wound healing and anti-inflammatory activities by activating adenosine A2A receptor and salvage pathways. However, commercial PDRN products (e.g., Placentex, Rejuvenex, and HiDr) have limitations as they are exclusively extracted O. mykiss and O. keta, which are expensive and can only be used as extraction sources during a specific period when their sperm cells are activated. Therefore, this study aimed to extract PDRN from Porphyra sp. (Ps-PDRN) and investigate whether it has anti-inflammatory activity through a comparative study with commercial product. The results indicated that Ps-PDRN had an anti-inflammatory effect on Escherichia coli lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. It inhibited nitric oxide production and inducible nitric oxygen synthase protein expression by suppressing phosphorylation of p38 and ERK, without cytotoxicity. Furthermore, Ps-PDRN promoted cell proliferation and collagen production in human dermal fibroblast. In conclusion, our study confirms that Ps-PDRN exhibits both anti-inflammatory and cell proliferative effects. These results indicated that Ps-PDRN has the potential as a bioactive drug for tissue engineering.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Ji Sung Han
- All In One GENETECH, Busan, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Yousof SM, Alghamdi BS, Alqurashi T, Alam MZ, Tash R, Tanvir I, Kaddam LA. Modulation of Gut Microbiome Community Mitigates Multiple Sclerosis in a Mouse Model: The Promising Role of Palmaria palmata Alga as a Prebiotic. Pharmaceuticals (Basel) 2023; 16:1355. [PMID: 37895826 PMCID: PMC10610500 DOI: 10.3390/ph16101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Red marine algae have shown the potential to reduce inflammation, influence microbiota, and provide neuroprotection. OBJECTIVE To examine the prebiotic properties of Palmaria palmata aqueous extract (Palmaria p.) and its potential as a neuroprotective agent in multiple sclerosis (MS). METHODS eighty-eight adult Swiss mice were divided into four male and four female groups, including a control group (distilled water), Palmaria p.-treated group (600 mg/kg b.w.), cuprizone (CPZ)-treated group (mixed chow 0.2%), and a group treated with both CPZ and Palmaria p. The experiment continued for seven weeks. CPZ treatment terminated at the end of the 5th week, with half of the mice sacrificed to assess the demyelination stage. To examine the spontaneous recovery, the rest of the mice continued until the end of week seven. Behavioral (grip strength (GS) and open field tests (OFT)), microbiome, and histological assessments for general morphology of corpus callous (CC) were all conducted at the end of week five and week 7. RESULTS Palmaria p. can potentially protect against CPZ-induced MS with variable degrees in male and female Swiss mice. This protection was demonstrated through three key findings: (1) increased F/B ratio and expansion of the beneficial Lactobacillus, Proteobacteria, and Bactriodia communities. (2) Protection against the decline in GS induced by CPZ and prevented CPZ-induced anxiety in OFT. (3) Preservation of structural integrity. CONCLUSIONS Because of its propensity to promote microbiota alterations, its antioxidant activity, and its content of -3 fatty acids, Palmaria p. could be a promising option for MS patients and could be beneficial as a potential probiotic for the at-risk groups as a preventive measure against MS.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Preclinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer Alqurashi
- Faculty of Medicine in Rabigh, Pharmacology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reham Tash
- Department of Anatomy, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 3753450, Egypt
| | - Imrana Tanvir
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Lamis AbdelGadir Kaddam
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Physiology Department Faculty of Medicine, Alneelain University, Khartoum 11211, Sudan
| |
Collapse
|
8
|
Liu C, Cheng S, Wang H, Tan M. Pickering emulsion stabilized by Haematococcus pluvialis protein particles and its application in dumpling stuffing. Food Res Int 2023; 170:112957. [PMID: 37316005 DOI: 10.1016/j.foodres.2023.112957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
In this study, the oil-in-water Pickering emulsions were prepared using Haematococcus Pluvialis protein (HPP) particles as an emulsifier by a simple one-step emulsification method. The internal oil phase was as high as 70 % due to the excellent emulsifying properties of HPP, and the average size of oil droplets in the emulsion was around 20 μm. The emulsion prepared by 2.5 % HPP with the oil phase ratio of 70 % showed the best stability after 14 days of storage, and the emulsion could maintain stability at acidic condition, high ionic strength, low and high temperatures. However, all emulsion samples exhibited shear thinning phenomenon, and the higher HPP concentration and oil phase ratio led to greater G' and G″ modulus. NMR relaxation results showed that high concentration HPP could limit the mobility of free water in the emulsion and improve the emulsion stability. The HPP-stabilized emulsion could inhibit the oxidation of oil phase during storage due to the DPPH and ABTS radical scavenging activity of astaxanthin (AST) in HPP. Finally, the nutritional microspheres based on HPP-stabilized emulsion showed good stability in traditional dumplings and could reduce the loss of AST and DHA in algae oil during the boiling of dumplings.
Collapse
Affiliation(s)
- Chenyue Liu
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shasha Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Haitao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
9
|
Xu H, Fu X, Kong H, Chen F, Chang X, Ding Z, Wang R, Shan Y, Ding S. Ultrasonication significantly enhances grafting efficiency of chitosan-ferulic acid conjugate and improves its film properties under Fenton system. Food Res Int 2023; 164:112327. [PMID: 36737920 DOI: 10.1016/j.foodres.2022.112327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ultrasonication (US)-assisted Fenton-system (US-Fenton) with different US time was developed for synthesizing chitosan (CS)-ferulic acid (FA) conjugates. The optimal US-Fenton for a suitable time was selected for preparing a film with CS-FA conjugate and its structural, functional, rheological, and physical properties were also investigated. Compared with Fenton-system, US-Fenton enhanced the grafting ratio of the conjugates, which increased firstly and then decreased as US time. The conjugate obtained by US-Fenton for 1 min (FUS1) possessed the highest grafting ratio (121.28 mg FA/g) and its grafting time was also shortened from 12 h to 1 min contrasted with Fenton grafted method. Structural characterization results showed that FA was conjugated on CS via ester and amide bonds with decreased crystallinity. Scanning electron microscopy and molecular weight analysis indicated that the degradation degree of CS-FA conjugates increased with US time. The DPPH and ABTS radical-scavenging activities of FUS1 were the closest to ascorbic acid, and it also showed the best antibacterial effect among the test conjugates. Accordingly, FUS1 was selected to obtain the film for contrasting with CS film. FUS1 film solution exhibited a decreased viscosity. In comparison to CS film, UV transmittance of FUS1 film approached zero, and its moisture, oxygen, and carbon dioxide permeabilities significantly decreased (P < 0.05). Moreover, its water solubility and tensile strength increased by 58.09% and 25.72% than those of CS film, respectively. Therefore, US-Fenton for 1 min could be a promising method for efficiently preparing active food package materials and FUS1 film possessed broad application prospects.
Collapse
Affiliation(s)
- Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zemin Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
10
|
Lee H, Park DH, Kim EJ, Choi MJ. Freshness Analysis of Raw Laver ( Pyropia yenzoensis) Conserved under Supercooling Conditions. Foods 2023; 12:foods12030510. [PMID: 36766039 PMCID: PMC9913910 DOI: 10.3390/foods12030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Freezing raw laver is unsuitable for the laver industry due to process characteristics and economic problems. Therefore, this study attempted to investigate supercooled storage to extend the storage period without freezing, rather than refrigeration. To compare and analyze the storage ability of supercooling, the experiment was performed under refrigeration (5 °C), constant supercooling (CS, -2 °C), stepwise supercooling (SS, -2 °C), and freezing (-18 °C) conditions for 15 days, and the physicochemical changes according to the treatment and period were investigated. All SS samples, which were designed for stable supercooling, were kept in a supercooled state for 15 days. Two samples among the twelve total subjected to CS were frozen. At 9 days, the drip losses of the CS and SS samples were 6.32% and 6.48%, respectively, which was two times lower than that of refrigeration and three times lower than that of the frozen samples. The VBN of the refrigerated samples was 108.33 mg/100 g at 6 days, which exceeded the decomposition criterion. Simultaneously, the VBN of the other treatments was under the decomposition criterion of 30 mg/100 g. However, the VBN of both supercooling samples at 15 days increased to higher than the decomposition criterion. Regarding appearance, the refrigerated samples showed tissue destruction at 9 days, but tissue destruction of the CS and CC samples was observed at 15 days, and tissue destruction of the frozen samples was not observed until 15 days. Consequently, supercooling did not maintain quality for longer periods than freezing, but it did extend the shelf life more than refrigeration, and effectively preserved the quality for a short period.
Collapse
Affiliation(s)
- Hyeonbo Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyeon Park
- Kimchi Industry Promotion Division, Practical Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Eun Jeong Kim
- Refrigerator Research of Engineering Division, Home Appliance and Air Solution Company, LG Electronics, Changwon 51533, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-3048
| |
Collapse
|
11
|
Jiang Y, Liao Y, Si C, Du J, Xia C, Wang YN, Liu G, Li Q, Zhao J. Oral administration of Bacillus cereus GW-01 alleviates the accumulation and detrimental effects of β-cypermethrin in mice. CHEMOSPHERE 2023; 312:137333. [PMID: 36410514 DOI: 10.1016/j.chemosphere.2022.137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroid insecticides negatively affect feed conversion, reproductive fitness, and food safety in exposed animals. Although probiotics have previously been widely studied for their effect on gut health, comparatively little is known regarding the efficacy of probiotic administration in specifically reducing pesticide toxicity in mice. We demonstrated that oral administration of a β-cypermethrin (β-CY)-degrading bacterial strain (Bacillus cereus GW-01) to β-CY-exposed mice reduced β-CY levels in the liver, kidney, brain, blood, lipid, and feces (18%-53%). Additionally, co-administration of strain GW-01 to β-CY-exposed mice reduced weight loss (22%-31%) and improved liver function (15%-19%) in mice. Additionally, mice receiving GW-01 had near-control levels of numerous β-CY-affected gut microbial taxa, including Muribaculaceae, Alloprevotella, Bacteroides, Dubosiella, and Alistipes. The survival and β-CY biosorption of GW-01 in simulated gastrointestinal fluid conditions were significantly higher than E. coli. These results suggested that GW-01 can reduce β-CY accumulation and alleviate the damage in mice. This study is the first to demonstrate that a probiotic strain can reduce the toxicity of β-CY in mice.
Collapse
Affiliation(s)
- Yangdan Jiang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chaojin Si
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Juan Du
- Faculty of Geography Resource Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Ya-Nan Wang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Gang Liu
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Qi Li
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China.
| |
Collapse
|
12
|
Ulagesan S, Eom T, Nam TJ, Choi YH. Antioxidant and chemoprotective peptides from simulated gastrointestinal digested (SGID) protein hydrolysate of Pyropia yezoensis against acetaminophen-induced HepG2 cells. Bioprocess Biosyst Eng 2022; 45:1645-1660. [PMID: 35976436 PMCID: PMC9381401 DOI: 10.1007/s00449-022-02770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Excessive production of reactive oxygen and nitrogen species may result in oxidative damage to tissues and organs. Oxidative stress is a pathological mechanism that contributes to the initiation and progression of liver injury. In the present study, antioxidative peptides purified from simulated gastrointestinal-digested (SGID) protein hydrolysate of Pyropia yezoensis, showed significant antioxidant activity and also showed a protective effect against acetaminophen (N-acetyl-p-aminophenol, APAP) -induced injury in HepG2 (human liver cancer cells) cells. The antioxidant activity was increased in a dose-dependent manner. Higher cell viability (73.26 ± 0.9%) and decreasing NO levels (107.6 ± 8.9%) were observed in 15 mM APAP-induced cells when treated with the concentration of (100 μg ml-1) Pyropia peptide. Py. (pep). The sequences of the eight identified peptides present in the active fractions of the protein hydrolysate included hydrophobic and aromatic amino acids, which may have been responsible for their chemoprotective and antioxidant activities. Results indicated that the treatment with the Pyropia-peptides significantly promoted the proliferation of HepG2 cells, protecting them against APAP-mediated injury, and showed a significant antioxidant capacity. This study revealed that the Py. (pep) will be beneficial in treating drug-induced oxidative stress and liver damage conditions. Py. (pep) can also serve as a better alternative for synthetic antioxidant drugs.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Taekil Eom
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan, 46041, Republic of Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea.
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan, 46041, Republic of Korea.
| |
Collapse
|
13
|
Kumar Y, Tarafdar A, Kumar D, Saravanan C, Badgujar PC, Pharande A, Pareek S, Fawole OA. Polyphenols of Edible Macroalgae: Estimation of In Vitro Bio-Accessibility and Cytotoxicity, Quantification by LC-MS/MS and Potential Utilization as an Antimicrobial and Functional Food Ingredient. Antioxidants (Basel) 2022; 11:antiox11050993. [PMID: 35624857 PMCID: PMC9137927 DOI: 10.3390/antiox11050993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Macroalgae are a rich source of polyphenols, and their ingestion promotes various health benefits. However, information on factors contributing to health benefits such as antioxidants, antimicrobial properties, bioaccessibility, and cytotoxicity is less explored and often unavailable. Therefore, this study aims to investigate the above-mentioned parameters for the brown and green macroalgae Sargassum wightii and Ulva rigida, respectively, collected from the southeast coast of India. S. wightii exhibited higher antioxidant activity and moderate antimicrobial activity against major food pathogens in an agar well diffusion assay and in the broth microdilution method (MIC50 being <0.5 mg/mL for all microorganisms tested). Both macroalgae extracts exhibited significantly high bioaccessibility of polyphenols. To evaluate the safety of the extracts, in vitro cytotoxicity by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was carried out on the primary cells: mouse splenic lymphocytes. An almost complete decline in the cell viability was seen at considerably high concentration (50 mg/mL), expressing the reasonably high safety of the extracts. The extracts of both macroalgae were quantified for polyphenols, wherein fucoxanthin (9.27 ± 2.28 mg/kg DW) and phloroglucinol (17.96 ± 2.80 mg/kg DW) were found to be greater in the S. wightii apart from other phenolics, like gallic acid, quercetin, vanillin, and ferulic acid. The results signify the tremendous scope for the value addition of S. wightii through extraction and purification of polyphenols for its potential exploitation in functional foods and nutraceuticals or as an antimicrobial ingredient in active or smart packaging.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (Y.K.); (D.K.)
| | - Ayon Tarafdar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India;
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (Y.K.); (D.K.)
| | - Chakkaravarthi Saravanan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India;
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (Y.K.); (D.K.)
- Correspondence: (P.C.B.); (S.P.); (O.A.F.)
| | - Aparna Pharande
- Laboratory Services Division, Ashwamedh Engineers & Consultants, Nashik 422009, Maharashtra, India;
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India
- Correspondence: (P.C.B.); (S.P.); (O.A.F.)
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
- Correspondence: (P.C.B.); (S.P.); (O.A.F.)
| |
Collapse
|
14
|
Red seaweed: A promising alternative protein source for global food sustainability. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Soleimani S, Mashjoor S, Mitra S, Yousefzadi M, Rezadoost H. Coelomic fluid of Echinometra mathaei: The new prospects for medicinal antioxidants. FISH & SHELLFISH IMMUNOLOGY 2021; 117:311-319. [PMID: 34418558 DOI: 10.1016/j.fsi.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Echinoid pigments have various biological properties such as antioxidant, cytotoxic, and antibacterial activities. We aimed to evaluate the extraction of cell-free coelomic fluid (CFCF) and coelomocyte lysate (CL) as well as qualitatively and quantitatively identify the coelomic fluid of Echinometra mathaei as a new source of polyhydroxylatednaphthoquinone (PHNQ) antioxidant pigments. Based on the High Performance liquid chromatography-electrospray mass spectrometry (HPLC-MS) analysis in negative mode, the main quinonoid (PHNQ) pigments were identified and quantified. This study also illustrated the total ion current chromatograms and related mass spectra of Spinochrome A, Spinochrome B, Spinochrome C, and Echinochrome A in CL and SpinochromeC in CFCF samples. The ions at 221, 279, 265 and 263 m/z correspond to the pseudo-molecular [M - H] ions of Spinochrome B, Spinochrome C, Echinochrome A, and Spinochrome A, respectively. These components have previously been noted from the shells and spines of sea urchins but identification of PHNQs pigments in CL and CFCF of E. mathaei using LC-MS was introduced for the first time. The results also showed that, the highest DPPH radical scavenging activity of CFCF (88.12 DPPH% scavenging at 70 μg/mL, IC50 = <10 μg/mL). The findings clearly suggest that the coelomic fluid of E. mathaei could be served as the promising as well as potential natural antioxidants in the medical and pharmaceutical industries and could replace the increasing prices of the commercial antioxidants products.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Sakineh Mashjoor
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Soumita Mitra
- Department of Marine Science, University of Calcutta, Calcutta, India
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Department of Biology, Faculty of Science, University of Qom, Qom, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, ShahidBeheshti University, GC, Tehran, Iran
| |
Collapse
|
16
|
Guo Y, Chen X, Gong P, Chen F, Cui D, Wang M. Advances in the
in vitro
digestion and fermentation of polysaccharides. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| | - Xuefeng Chen
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
- Shaanxi Research Institute of Agricultural Product Processing Technology Xi'an 710021 China
| | - Pin Gong
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering Xi’an University of Science and Technology Xi’an 710054 China
| | - Dandan Cui
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| | - Mengrao Wang
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an 710021 China
| |
Collapse
|
17
|
Alboofetileh M, Hamzeh A, Abdollahi M. Seaweed Proteins as a Source of Bioactive Peptides. Curr Pharm Des 2021; 27:1342-1352. [PMID: 33557731 DOI: 10.2174/1381612827666210208153249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Seaweeds have received great attention as a vegetarian and sustainable marine source of protein, which does not need irrigation, arable land, and fertilization. Besides, seaweeds are considered as an untapped resource for discovering bioactive compounds with health benefits where bioactive peptides have shown outstanding potential. This review provides a detailed overview of available scientific knowledge on production methods, bioactivity and application of peptides from seaweed proteins. The emphasis is on the effects from seaweed varieties and peptide production conditions on the bioactivity of the peptides and their potential health benefits. Bioactive properties of seaweed peptides, including antioxidant, antihypertensive, antidiabetic, anti-inflammatory, anticancer activities and other potential health benefits, have been discussed. It also covers current challenges and required future research and innovations for the successful application of seaweeds proteins as a sustainable source of bioactive peptides. Effects from seasonal variation of seaweed composition on the bioactivity of their peptides, difficulties in the extraction of proteins from seaweed complex structure, scalability and reproducibility of the developed methods for the production of bioactive peptides, the safety of the peptides are examples of highlighted challenges. Further studies on the bioavailability of the seaweed bioactive peptides and validation of the results in animal models and human trials are needed before their application as functional foods or pharmaceutical ingredients.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Iran Fish Processing Technology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
18
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
19
|
Zhan Q, Wang Q, Liu Q, Guo Y, Gong F, Hao L, Wu H, Dong Z. The antioxidant activity of protein fractions from Sacha inchi seeds after a simulated gastrointestinal digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Liao X, Zhu Z, Wu S, Chen M, Huang R, Wang J, Wu Q, Ding Y. Preparation of Antioxidant Protein Hydrolysates from Pleurotus geesteranus and Their Protective Effects on H 2O 2 Oxidative Damaged PC12 Cells. Molecules 2020; 25:E5408. [PMID: 33227951 PMCID: PMC7699252 DOI: 10.3390/molecules25225408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pleurotus geesteranus is a promising source of bioactive compounds. However, knowledge of the antioxidant behaviors of P. geesteranus protein hydrolysates (PGPHs) is limited. In this study, PGPHs were prepared with papain, alcalase, flavourzyme, pepsin, and pancreatin, respectively. The antioxidant properties and cytoprotective effects against oxidative stress of PGPHs were investigated using different chemical assays and H2O2 damaged PC12 cells, respectively. The results showed that PGPHs exhibited superior antioxidant activity. Especially, hydrolysate generated by alcalase displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (91.62%), 2,2-azino-bis (3-ethylbenzothia zoline-6-sulfonic acid) (ABTS) radical scavenging activity (90.53%), ferric reducing antioxidant power, and metal ion-chelating activity (82.16%). Analysis of amino acid composition revealed that this hydrolysate was rich in hydrophobic, negatively charged, and aromatic amino acids, contributing to its superior antioxidant properties. Additionally, alcalase hydrolysate showed cytoprotective effects on H2O2-induced oxidative stress in PC12 cells via diminishing intracellular reactive oxygen species (ROS) accumulation by stimulating antioxidant enzyme activities. Taken together, alcalase hydrolysate of P. geesteranus protein can be used as beneficial ingredients with antioxidant properties and protective effects against ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
| | - Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (S.W.); (M.C.); (R.H.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
21
|
Caetano-Silva ME, Simabuco FM, Bezerra RMN, da Silva DC, Barbosa EA, Moreira DC, Brand GD, Leite JRDSDA, Pacheco MTB. Isolation and Sequencing of Cu-, Fe-, and Zn-Binding Whey Peptides for Potential Neuroprotective Applications as Multitargeted Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12433-12443. [PMID: 33095576 DOI: 10.1021/acs.jafc.0c03647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aims to isolate metal-binding peptides and synthesize promising amino acid sequences to potentially act as neuroprotective compounds in the future, targeting different mechanisms. Fractions of whey metal-binding peptides (Cu, Fe, and Zn) isolated by immobilized metal affinity chromatography showed different amino acid profiles according to the metal. The Cu-binding peptides presented roughly twofold increase in the in vitro antioxidant, as assessed by oxygen radical absorbance capacity and anticholinesterase activities over the hydrolysate. This is probably because of the higher concentration of aromatic and basic residues, the latter being crucial for binding to the anionic sites of acetylcholinesterase. Six peptide sequences were synthesized based on the metal-binding sites, molecular mass, hydrophobicity, and bioactivity probability. Among the synthetic peptides, the VF dipeptide stood out both for its in vitro antioxidant and anticholinesterase activities. This peptide, as well as the fraction of Cu-binding peptides, should be further studied because it may act through different mechanisms related to neurodegenerative diseases, in addition to the chelation of the excess of metals in the central nervous system.
Collapse
Affiliation(s)
- Maria Elisa Caetano-Silva
- Center of Food Science and Quality, CCQA, Institute of Food Technology, ITAL, Campinas, 13070-178 Campinas, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, LABMAS, School of Applied Sciences, FCA, University of Campinas, UNICAMP, Limeira, 13484-350 Limeira, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health, LABMAS, School of Applied Sciences, FCA, University of Campinas, UNICAMP, Limeira, 13484-350 Limeira, Brazil
| | - Daniele Cristina da Silva
- Center of Food Science and Quality, CCQA, Institute of Food Technology, ITAL, Campinas, 13070-178 Campinas, Brazil
| | - Eder Alves Barbosa
- Laboratory for the Synthesis and Analysis of Biomolecules, Institute of Chemistry, IQ, University of Brasília, Brasília, 70910-900 Distrito Federal, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, 70910-900 Distrito Federal, Brazil
| | - Daniel Carneiro Moreira
- Research Center in Morphology and Applied Immunology, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, 70910-900 Distrito Federal, Brazil
| | - Guilherme Dotto Brand
- Laboratory for the Synthesis and Analysis of Biomolecules, Institute of Chemistry, IQ, University of Brasília, Brasília, 70910-900 Distrito Federal, Brazil
| | - José Roberto de Souza de Almeida Leite
- Research Center in Morphology and Applied Immunology, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, 70910-900 Distrito Federal, Brazil
| | | |
Collapse
|
22
|
Wen C, Zhang J, Zhang H, Duan Y, Ma H. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Mirzapour-Kouhdasht A, Moosavi-Nasab M, Kim YM, Eun JB. Antioxidant mechanism, antibacterial activity, and functional characterization of peptide fractions obtained from barred mackerel gelatin with a focus on application in carbonated beverages. Food Chem 2020; 342:128339. [PMID: 33069523 DOI: 10.1016/j.foodchem.2020.128339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
The present study aimed to use fish by-products to generate gelatin peptides with potential applications in carbonated beverages. After ultrafiltration, the F < 3 kDa (fraction < 3 kDa) showed the highest peptide concentration (227.22 mg/g) as well as antibacterial (MIC of ≤ 0.5 mg/mL) and antioxidant activities, including hydroxyl and superoxide radical scavenging, ferrous chelation, and ferric reduction (with IC50 values of 0.88, 1.04, 0.50 mg/mL, and 0.58, respectively). 2,2-diphenyl-1-picrylhydrazyl scavenging was the highest in the 3 < F < 10 kDa (IC50 of 0.64 mg/mL). In vitro gastrointestinal digestion significantly decreased all biological activities. Solubility, water holding capacity, and emulsifying activity of the F < 3 kDa were the highest while foaming properties and overfoaming were reversibly related to the molecular weight. All abovementioned properties, in addition to in vitro cytotoxicity analysis in different cell lines and better flavor characteristics, indicated that the F < 3 kDa could be safely and properly used as an ingredient for the fortification of carbonated beverages.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran; Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran; Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
24
|
Pimentel FB, Cermeño M, Kleekayai T, Machado S, Rego A, Fernandes E, Alves RC, Oliveira MBP, FitzGerald RJ. Contribution of in vitro simulated gastrointestinal digestion to the antioxidant activity of Porphyra dioica conchocelis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Cerrato A, Capriotti AL, Capuano F, Cavaliere C, Montone AMI, Montone CM, Piovesana S, Zenezini Chiozzi R, Laganà A. Identification and Antimicrobial Activity of Medium-Sized and Short Peptides from Yellowfin Tuna ( Thunnus albacares) Simulated Gastrointestinal Digestion. Foods 2020; 9:foods9091185. [PMID: 32867059 PMCID: PMC7555217 DOI: 10.3390/foods9091185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the rapidly increasing resistance to conventional antibiotics, antimicrobial peptides are emerging as promising novel drug candidates. In this study, peptide fragments were obtained from yellowfin tuna muscle by simulated gastrointestinal digestion, and their antimicrobial activity towards Gram-positive and Gram-negative bacteria was investigated. In particular, the antimicrobial activity of both medium- and short-sized peptides was investigated by using two dedicated approaches. Medium-sized peptides were purified by solid phase extraction on C18, while short peptides were purified thanks to a graphitized carbon black sorbent. For medium-sized peptide characterization, a peptidomic strategy based on shotgun proteomics analysis was employed, and identification was achieved by matching protein sequence database by homology, as yellowfin tuna is a non-model organism, leading to the identification of 403 peptides. As for short peptide sequences, an untargeted suspect screening approach was carried out by means of an inclusion list presenting the exact mass to charge ratios (m/z) values for all di-, tri- and tetrapeptides. In total, 572 short sequences were identified thanks to a customized workflow dedicated to short peptide analysis implemented on Compound Discoverer software.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (F.C.); (A.M.I.M.)
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Angela Michela Immacolata Montone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (F.C.); (A.M.I.M.)
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
- Correspondence: ; Tel.: +39-06-4991-3062
| | - Susy Piovesana
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Aldo Laganà
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
26
|
Cermeño M, Kleekayai T, Amigo‐Benavent M, Harnedy‐Rothwell P, FitzGerald RJ. Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 2020; 41:1694-1717. [DOI: 10.1002/elps.202000153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Cermeño
- Department of Biological Sciences University of Limerick Limerick Ireland
| | | | | | | | | |
Collapse
|
27
|
Pimentel FB, Cermeño M, Kleekayai T, Harnedy-Rothwell PA, Fernandes E, Alves RC, Oliveira MBP, FitzGerald RJ. Enzymatic Modification of Porphyra dioica-Derived Proteins to Improve their Antioxidant Potential. Molecules 2020; 25:E2838. [PMID: 32575491 PMCID: PMC7355851 DOI: 10.3390/molecules25122838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Enzymatic hydrolysis has been employed to modify protein functional properties and discover new sources of antioxidants. In this study, the effect of different enzymatic treatments on antioxidant activity of Porphyra dioica (blades and protein isolate (PI)) was investigated. Protein nitrogen content of P. dioica blades and PI were 23 and 50% (dry weight), respectively. Blades and PI were hydrolyzed with Prolyve® and Prolyve® plus Flavourzyme®. Peptide profiles and molecular mass distribution of the hydrolysates were investigated. The hydrolysis promoted generation of peptides and low molecular mass components <1 kDa. Antioxidant activity was assessed using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH·) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS·+) inhibition, and reactive oxygen species scavenging ability, i.e., oxygen radical absorbance capacity (ORAC) and hypochlorous acid (HOCl) scavenging assays. In general, enzymatic hydrolysis of P. dioica blades and PI enhanced the in vitro antioxidant activity. Direct hydrolysis of blades improved ORAC values up to 5-fold (from 610 to 3054 μmol Trolox eq./g freeze dried sample (FDS). The simultaneous release of phenolic compounds suggested a potential synergistic activity (ORAC and ABTS·+ assays). Such hydrolysates may be of value as functional food ingredients.
Collapse
Affiliation(s)
- Filipa B. Pimentel
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Maria Cermeño
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| | - Thanyaporn Kleekayai
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| | - Pádraigín A. Harnedy-Rothwell
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| | - Eduarda Fernandes
- REQUIMTE/LAQV, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - M. Beatriz P.P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Richard J. FitzGerald
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| |
Collapse
|
28
|
Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. SEPARATIONS 2020. [DOI: 10.3390/separations7020033] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Algae are a complex, polyphyletic group of organisms, affordable and naturally rich in nutrients, but also valuable sources of structurally diverse bioactive substances such as natural pigments. The aim of this work was to evaluate the polar and non-polar pigment contents of different commercial dried algae (brown: Himanthalia elongata, Undaria pinnatifida, Laminaria ochroleuca; red: Porphyra spp.; and a blue-green microalga: Spirulina spp.). The pigment extraction was carried out using different solvents (100% methanol, 100% methanol acid free, 100% ethanol, 90% acetone, N,N-dimethylformamide, dimethyl sulfoxide-water (4:1, v/v) and pH 6.8 phosphate buffer), selected according to their affinity for each class of pigments. Acetone proved to be an efficient solvent to extract chlorophylls from brown and red algae, but not from Spirulina spp. Porphyra spp. presented considerably higher levels of all pigments compared to brown algae, although Spirulina spp. presented significantly higher (p < 0.05) levels of chlorophylls, carotenoids and phycobiliproteins, compared to all macroalgae. The content of fucoxanthin extracted from the three brown algae was highly correlated to the carotenoid content. Within this group, Himanthalia elongata presented the highest fucoxanthin/total carotenoids ratio. Although the yield of extraction depended on the solvent used, the algae studied herein are an interesting source of pigments of great value for a wide range of applications.
Collapse
|