1
|
Soria-Melgarejo G, Raya-Pérez JC, Ramírez-Pimentel JG, Covarrubias-Prieto J, Gutiérrez-Benicio GM, Andrade-González I, Aguirre-Mancilla CL. Physicochemical, nutritional properties, and antioxidant potential of 'limilla' fruit ( Rhus aromatica var. schmidelioides (Schltdl.) Engl.). Heliyon 2024; 10:e34990. [PMID: 39144990 PMCID: PMC11320458 DOI: 10.1016/j.heliyon.2024.e34990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Rhus aromatica inhabits humid oak and oakpine forests in the State of Michoacán (Mexico). The fruit of R. aromatica is edible and is traditionally used in the preparation of soft drinks, ice pops, ice creams and 'atole'. The objective of the present investigation was to carry out a physical and chemical characterization and analysis of the antioxidant capacity of fruit. For the physical characterization, the equatorial and longitudinal diameter, weight and percentage of pulp were determined. In the chemical characterization, a proximal analysis was carried out, quantification of polyphenols and flavonoids was performed, and the antioxidant capacity was determined. The results showed that the fruit had a longitudinal diameter of 6.58 ± 1.02 mm, an equatorial diameter of 7.17 ± 0.66, a weight of 55.22 ± 5.47 mg, and a 40 % pulp proportion. The chemical characterization analysis indicated 8.7 % moisture, 30.6 % lipids, 8.7 % proteins, 29.4 % total sugars, 3.8 % ashes and 18.7 % crude fibre, 3.1 °Brix, pH 3.1, 1.92 % acidity total and a caloric intake of 4.27 kcal/g. The polyphenol content was higher in 60 % ethanol extracts with 88.6 ± 50.89 mg EAG/g; for flavonoids from extracts with 100 % acetone, it was 26.52 ± 0.65 mg EQ/g, and the total carotenoid content was 46.37 mg/100 g. The total antioxidant activity was higher in extracts with 80 % acetone, with 87.17 % inhibition of the DPPH radical and 90 % inhibition of ABTS without showing a significant difference with the different solvents used. The lowest IC50 values were presented in 100 % ethanol and 60 % methanol extracts for the DPPH radical and for the ABTS radical were the 80 % ethanol and 60 % methanol extracts. The lipid, protein, carotenoid, and polyphenol contents and antioxidant capacity of the fruit of R. aromatica were as high as those of other fruits consumed in the human diet.
Collapse
Affiliation(s)
- Gonzalo Soria-Melgarejo
- Tecnológico Nacional de México/I.T. de Roque, km 8 Carretera Celaya-Juventino Rosas, C.P. 38110, Celaya, Gto, Mexico
- Tecnológico Nacional de México/I.T.S. de Puruándiro, km 4.3 Carretera Puruándiro-Galeana, C. P 58532, Puruandiro, Mich, Mexico
| | - Juan C. Raya-Pérez
- Tecnológico Nacional de México/I.T. de Roque, km 8 Carretera Celaya-Juventino Rosas, C.P. 38110, Celaya, Gto, Mexico
| | - Juan G. Ramírez-Pimentel
- Tecnológico Nacional de México/I.T. de Roque, km 8 Carretera Celaya-Juventino Rosas, C.P. 38110, Celaya, Gto, Mexico
| | - Jorge Covarrubias-Prieto
- Tecnológico Nacional de México/I.T. de Roque, km 8 Carretera Celaya-Juventino Rosas, C.P. 38110, Celaya, Gto, Mexico
| | - Glenda M. Gutiérrez-Benicio
- Tecnológico Nacional de México/I.T. de Roque, km 8 Carretera Celaya-Juventino Rosas, C.P. 38110, Celaya, Gto, Mexico
- Universidad de Guanajuato, Programa de Biotecnología, Mutualismo 303, C.P. 38060, Celaya, Gto, Mexico
| | - Isaac Andrade-González
- Tecnológico Nacional de México/I.T. de Tlajomulco, km 10 Carretera Tlajomulco-San Miguel Cuyutlán, Cto. Metropolitano Sur, 45640 Tlajomulco de Zúñiga, Jal, Mexico
| | - Cesar L. Aguirre-Mancilla
- Tecnológico Nacional de México/I.T. de Roque, km 8 Carretera Celaya-Juventino Rosas, C.P. 38110, Celaya, Gto, Mexico
| |
Collapse
|
2
|
Correia FDS, Spada ECL, Estevam BCP, Conceição TCO, Cruz GNDA, Silva WBDA, Elias MPS, Lemes SAF. Acrocomia aculeata (Jacq.) improves the antioxidant system but induces lipid accumulation in the liver of rats. AN ACAD BRAS CIENC 2024; 96:e20220974. [PMID: 39046016 DOI: 10.1590/0001-3765202420220974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/20/2023] [Indexed: 07/25/2024] Open
Abstract
Acrocomia aculeata pulp (ACP) is a source of oleic acid, phenolic compounds, and flavonoids that protect against diseases and improve antioxidant capacity. We evaluated whether regular intake of ACP, in combination with a standard diet, improves the antioxidant system and physiological parameters. Male Wistar rats were divided into: control (C), 250 mg/kg ACP, and 500 mg/kg ACP groups. Rats received either water or the respective A. aculeata solution doses for 28 days. We observed increased food intake, lower carcass protein levels, and higher carcass lipid levels in the 500 mg/kg ACP group than in the other groups. Postprandial glucose, oral glucose tolerance test results, and the area under the curve were greater, while urea was lower in the 500 mg/kg ACP group. Total liver lipids were increased, and PPAR-α, PPARγ, and carbonylated protein levels were reduced in the 500 mg/kg ACP group. NRF2 contents and glutathione reductase, superoxide dismutase, and catalase activities were increased in the 500 mg/kg ACP group. In the 250 mg/kg ACP group, only glutathione system activity increased. Thus, ACP intake improved the enzymatic antioxidant system in the liver at the evaluated doses, although the 500 mg/kg dose induced alterations in lipid, protein, and carbohydrate metabolism.
Collapse
Affiliation(s)
- Francyele Dos S Correia
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Elaine C L Spada
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Bruna C P Estevam
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Thayanne C O Conceição
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Guilherme N DA Cruz
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Wéliton B DA Silva
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Maísa P S Elias
- Universidade Federal de Mato Grosso, Faculdade de Engenharia Florestal, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Suélem A F Lemes
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| |
Collapse
|
3
|
Mahrous AMK, Hifnawy MS, Ashour RMS, Issa MY, Zayed A. Phytochemical profiling of Livistona carinensis leaf extract via UHPLC-QTOF-MS/MS with assessment of its antiviral mechanisms. RSC Adv 2024; 14:21300-21306. [PMID: 38974228 PMCID: PMC11225548 DOI: 10.1039/d4ra02705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Among 36 species of the genus Livistona (family Palmae or Arecaceae), L. carinensis is considered the only species native to Africa. Previous studies showed the richness of Livistona fruits in phenolic compounds. The goal of the current study was to investigate the phytochemical composition and assess the antiviral mechanisms of the L. carinensis leaves' ethanolic extract cultivated in Egypt for the first time. The ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS) was applied. Moreover, the total crude extract was fractionated using ethyl acetate and n-butanol for phytochemical investigations by various chromatographic and spectroscopic techniques. Besides, the antiviral activity of L. carinensis leaves was assessed using three protocols in vitro using MTT assay compared to acyclovir. UHPLC-QTOF-MS/MS-based analysis resulted in identification of 72 metabolites tentatively. They belonged to diverse phytochemical classes, mainly including flavonoids (29), organic acids (10), and phenolic acids (7). The antiviral activity investigations revealed a direct Adeno virus inactivation mechanism rather than inhibition of virus replication or blocking its attachment to Vero cells. Hence, the plant leaves may be a potential candidate for discovery of novel antiviral drugs owing to the diversity of identified phytochemical classes.
Collapse
Affiliation(s)
- Amr M K Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University El Saleheya El Gadida 44813 Egypt
| | - Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Rehab M S Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Marwa Yousry Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University El-Guish Street (Medical Campus) 31527 Tanta Egypt
| |
Collapse
|
4
|
Espinoça IT, Basilio DCLS, de Araujo AJP, Ota RSN, de Souza KFS, Cassemiro NS, Lagatta DC, Paredes-Gamero EJ, Macedo MLR, Silva DB, Sardi JDCO, Wilhelm-Filho D, Jacobowski AC, Parisotto EB. Antithrombotic Effect of Oil from the Pulp of Bocaiúva- Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae). Nutrients 2024; 16:2024. [PMID: 38999771 PMCID: PMC11243071 DOI: 10.3390/nu16132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The study aimed to evaluate the antithrombotic action of Acrocomia aculeata pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). In vitro toxicity was evaluated with the Trypan Blue exclusion test and in vivo by the Galleria mellonella model. ADP/epinephrine-induced platelet aggregation after treatment with AAPO (50, 100, 200, 400, and 800 μg/mL) was evaluated by turbidimetry, and coagulation was determined by prothrombin activity time (PT) and activated partial thromboplastin time (aPTT). Platelet activation was measured by expression of P-selectin on the platelet surface by flow cytometry and intraplatelet content of reactive oxygen species (ROS) by fluorimetry. The results showed that AAPO has as major components such as oleic acid, palmitic acid, lauric acid, caprylic acid, and squalene. AAPO showed no toxicity in vitro or in vivo. Platelet aggregation decreased against agonists using treatment with different concentrations of AAPO. Oil did not interfere in PT and aPTT. Moreover, it expressively decreased ROS-induced platelet activation and P-selectin expression. Therefore, AAPO showed antiplatelet action since it decreased platelet activation verified by the decrease in P-selectin expression as well as in ROS production.
Collapse
Affiliation(s)
- Isabelly Teixeira Espinoça
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Denise Caroline Luiz Soares Basilio
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Anna Júlia Papa de Araujo
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Rafael Seiji Nakano Ota
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | | | - Nadla Soares Cassemiro
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79080-190, MS, Brazil
| | - Davi Campos Lagatta
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo 4044-020, SP, Brazil
| | - Maria Lígia Rodrigues Macedo
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Denise Brentan Silva
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79080-190, MS, Brazil
| | | | - Danilo Wilhelm-Filho
- Department of Ecology and Zoology, Center for Biological Sciences (CCB), Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Ana Cristina Jacobowski
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Eduardo Benedetti Parisotto
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
5
|
dos Santos MPL, dos Santos OV, da Conceição LRV, Teixeira-Costa BE, Lourenço LDFH, de Sousa CLL. Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits-Red, Yellow, Green, and White-Obtained through Ultrasound-Assisted Green Extraction. Foods 2024; 13:1475. [PMID: 38790775 PMCID: PMC11119073 DOI: 10.3390/foods13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study represents a pioneering investigation and comparative analysis of lipid extracts from four different colors of peach palm (Bactris gasipaes Kunt) fruits-red, yellow, green, and white-by employing a green method based on ethanolic ultrasound-assisted extraction. This study examined the extraction yield, physico-chemical-quality attributes, chromatographic profiles (GC), color measurements, total carotenoid content, differential thermogravimetry (TG/DTA), and infrared spectroscopy (FTIR). The obtained lipid extracts displayed a high quality, considering the physico-chemical parameters of the Codex Alimentarius, and a fatty acids profile characterized by unsaturated fatty acids, notably omegas (ω-3, ω-6, and ω-9). The indices of atherogenicity (A.I.), thrombogenicity (I.T.), and hypocholesterolemic and hypercholesterolemic ratios revealed superior outcomes for the red peach palm lipid extract (approximately 0.35, 0.52, and 2.75, respectively), along with higher levels of β-carotene (748.36 µg of β-carotene per 100 g-1 of lipid extract) compared to the yellow, green, and white counterparts. Consequently, this research successfully demonstrates the efficacy of using a green extraction method in preserving the lipid's quality, which can display cardiovascular functionality and thermal stability. These findings underscore the considerable potential of peach palm lipid extract as a valuable raw material for diverse industrial applications across various sectors. The results support its utilization in the production of functional food products and nutraceuticals due to its favorable fatty acid composition, potent antioxidant properties exhibited by its high β-carotene content, and notable cardiovascular functionality indices.
Collapse
Affiliation(s)
- Mayara Priscila Lima dos Santos
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (O.V.d.S.)
| | - Orquídea Vasconcelos dos Santos
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (O.V.d.S.)
| | | | - Barbara Elisabeth Teixeira-Costa
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil
- Faculdade de Nutrição Emília de Jesus Ferreiro, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil
| | - Lúcia de Fátima Henriques Lourenço
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (O.V.d.S.)
| | - Consuelo Lucia Lima de Sousa
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (O.V.d.S.)
| |
Collapse
|
6
|
Alves Morais R, Lopes Teixeira G, Aparecida de Souza Martins G, Regina Salvador Ferreira S, Mara Block J. Comprehensive evaluation of the chemical profile and antioxidant potential of buritirana (Mauritiella armata) an underexplored fruit from Brazilian Cerrado. Food Res Int 2024; 179:113945. [PMID: 38342516 DOI: 10.1016/j.foodres.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Buritirana (Mauritella armata) is a fruit from a native Brazilian palm tree whose economic and industrial potential is still little explored. The nutritional composition and carbohydrates; organic acids; fatty acids; triacylglycerol; and phenolics profile of buritirana pulp, shells, and seeds were performed in this study. In addition, pH, color, ant total carotenoid, phenolic, flavonoids, flavonols, tannins, and antioxidant potential (ABTS, DPPH, ILP, FRAP, CUPRAC, and TRC) were determined in these parts of the fruit. The results indicated high lipid content and energy value for pulp (30.53 g 100 g-1, and 351.21 kcal 100 g-1, respectively) and shells (18.41 g 100 g-1, and 276.73 kcal 100 g-1, respectively). On the other hand, high fiber (63.09 g 100 g-1), starch (2.66 g 100 g-1), and carbohydrates (28.60 g 100 g-1) contents were observed for the seeds. Glucose was the main carbohydrate found in pulp and seed, while sucrose was the main sugar in shells. Tartaric acid was the predominant organic acid in pulp and shells (16.60 and 10.96 mg 100 g-1, respectively), while malic acid was the main organic acid in seeds (58.78 mg 100 g-1). Oleic and palmitic acid were the main fatty acids detected in buritirana pulp, shells, and seeds. Buritirana pulp and shells showed a high content of total phenolic and total flavonoid (918.58 and 940.63 mg GAE 100 g-1; and 679.31 and 444.94 mg CE 100 g-1, respectively). Moreover, a high antioxidant potential (DPPH•, CUPRAC, and ILP) was observed in the extracts obtained from pulp and shells. The pulp showed a significant content of carotenoids (270.23 μg g-1). Among the 28 phenolic compounds determined in buritirana pulp and seeds, and 27 in shells, 22 (pulp and seeds), and 21 (shells) were reported by first time in the literature. Ferulic acid in pulp and shells (99.39 and 111.69 μg g-1) and pinocembrin in seeds (19.21 μg g-1) were the main phenolic compounds identified in buritirana. Multivariate analysis showed high correlation of phenolic compounds on antioxidant potential. The results showed that buritirana is rich in nutrients and bioactive products and can be fully utilized. The products resulting from buritirana processing can be applied in the food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Rômulo Alves Morais
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianopolis 88034-001, Brazil.
| | - Gerson Lopes Teixeira
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianopolis 88034-001, Brazil.
| | | | | | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil.
| |
Collapse
|
7
|
Sommo M, de Aguiar LA, Raposo A, Saraiva A, Teixeira-Lemos E, Chaves C, Romão B. Development and Rapid Sensory Descriptive Characterization of Cereal Bars Made with Brazilian Licuri Nut ( Syagrus coronata). Foods 2024; 13:502. [PMID: 38338637 PMCID: PMC10855958 DOI: 10.3390/foods13030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Licuri (Syagrus coronata) is an oilseed fruit common in the Brazilian caatinga and cerrado biomes. This fruit has high socioeconomic importance in the regions where it grows, being incorporated into exported animal feed and also into gastronomic preparations. Cereal bars are ready-to-eat highly consumed products with increased demand, commonly made with cereals and oilseeds such as licuri. In this sense, the incorporation of licuri in cereal bars may increase its socioeconomic value and expand its potential use. Thus, the objective of the study was to analyze acceptance and describe the sensory characteristics of cereal bars incorporated with licuri nuts. This study was conducted in four stages: (1) development of samples; (2) chemical composition analysis; (3) sensory analysis; and (4) statistical analysis. Cereal bars with licuri presented proportionally lower carbohydrate and protein content as the incorporation of licuri nut increased. However, the dietary fiber content increased. Further, 122 untrained panelists participated in the analysis. The results showed that samples with all proportions of incorporation of licuri nuts were acceptable. Furthermore, the sensory descriptors related to the presence of licuri were positively associated with product acceptance. In this way, this study demonstrates yet another possibility for use of the fruit, increasing its socioeconomic potential.
Collapse
Affiliation(s)
- Maximiliano Sommo
- Instituto de Educação Superior de Brasilia, IESB University Center, Brasília 70200-730, Brazil; (M.S.); (L.A.d.A.)
| | - Lorena Andrade de Aguiar
- Instituto de Educação Superior de Brasilia, IESB University Center, Brasília 70200-730, Brazil; (M.S.); (L.A.d.A.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - Edite Teixeira-Lemos
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Cláudia Chaves
- ESSV, Centre for Studies in Education and Innovation (CI&DEI), Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Bernardo Romão
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
8
|
Sampaio RSL, Pereira RLS, Coutinho HDM, Almeida-Bezerra JW, Bezerra Morais-Braga MF, Santana MDS, Silva MEPD, Santos ATLD, Fonseca VJA, Costa AR, Silva VBD, Rodrigues FC, Bezerra JJL, Raposo A, Lima JPMD, Barros LM. Chemical composition and antimicrobial potential of Acrocomia aculeata (Jacq.) Lodd. ex Mart. and Syagrus cearensis Noblick (Arecaceae). Microb Pathog 2023; 180:106147. [PMID: 37169312 DOI: 10.1016/j.micpath.2023.106147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to evaluate the antibiotic effects of the fixed oils of Acrocomia aculeata (FOAA) and Syagrus cearenses (FOSC) against the bacterial strains and the fungi strains of the genus Candida spp. The method of serial microdilution using different concentrations was used for measuring the individual biological activity of the fixed oils. The fixed oil of A. aculeata showed the presence of oleic acid (24.36%), while the oil of S. cearensis displayed the content of myristic acid (18.29%), compounds detected in high concentration. The combination FOAA + Norfloxacin, and FOSC + Norfloxacin showed antibacterial activity against E. coli and S. aureus strains, demonstrating possible synergism and potentiation of the antibiotic action against multidrug-resistant strains. The combination FOAA + Fluconazole displayed a significant effect against Candida albicans (IC50 = 15.54), C. krusei (IC50 = 78.58), and C. tropicalis (IC50 = 1588 μg/mL). Regarding FOSC + Fluconazole, it was also observed their combined effect against the strains of C. albicans (IC50 = 3385 μg/mL), C. krusei (IC50 = 26.67 μg/mL), and C. tropicalis (IC50 = 1164 μg/mL). The findings of this study showed a significant synergism for both fixed oils tested when combined with the antibiotic.
Collapse
Affiliation(s)
- Raimundo Samuel Leite Sampaio
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - José Weverton Almeida-Bezerra
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | | | - Mariana Dos Santos Santana
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Maria Elenilda Paulino da Silva
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Antonia Thassya Lucas Dos Santos
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Victor Juno Alencar Fonseca
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Adrielle Rodrigues Costa
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Viviane Bezerra da Silva
- Department of Botany, Federal University of Pernambuco - UFPE, s/n, Rua Professor Moraes Rego, Recife, Pernambuco, 50.670-901, Brazil.
| | - Felicidade Caroline Rodrigues
- Department of Botany, Federal University of Pernambuco - UFPE, s/n, Rua Professor Moraes Rego, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Jailson Lima Bezerra
- Department of Botany, Federal University of Pernambuco - UFPE, s/n, Rua Professor Moraes Rego, Recife, Pernambuco, 50.670-901, Brazil.
| | - Antonio Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | | | - Luiz Marivando Barros
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| |
Collapse
|
9
|
Martins GR, Mattos MMG, Nascimento FM, Brum FL, Mohana-Borges R, Figueiredo NG, Neto DFM, Domont GB, Nogueira FCS, de Paiva Campos FDA, Sant'Ana da Silva A. Phenolic Profile and Antioxidant Properties in Extracts of Developing Açaí ( Euterpe oleracea Mart.) Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16218-16228. [PMID: 36530137 DOI: 10.1021/acs.jafc.2c07028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigated changes in the phenolic profile and antioxidant properties in the extracts of developing seeds of açaí (Euterpe oleracea). Four developmental stages were evaluated, with earlier stages displaying higher antioxidant activity and polyphenols content, while mass spectrometry analysis identified procyanidins (PCs) as the major components of the extracts in all stages. B-type PCs varied from dimers to decamers, with A-type linkages in a smaller number. Extracted PCs decreased in average length from 20.5 to 10.1 along seed development. PC composition indicated that (-)-epicatechin corresponded to over 95% of extension units in all stages, while (+)-catechin presence as the starter unit increased from 42 to 78.8% during seed development. This variation was correlated to the abundance of key enzymes for PC biosynthesis during seed development. This study is the first to report PC content and composition variations during açaí seed development, which can contribute to studies on the plant's physiology and biotechnological applications.
Collapse
Affiliation(s)
- Gabriel R Martins
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Mariana M G Mattos
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Fabiane Marques Nascimento
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
| | - Felipe L Brum
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Centro de Espectrometria de Massas de Biomoléculas (CEMBIO), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| | - Ronaldo Mohana-Borges
- Centro de Espectrometria de Massas de Biomoléculas (CEMBIO), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| | - Natália Guimarães Figueiredo
- Laboratório de Tabaco e Derivados (LATAB), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 216, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
| | - Domingos F M Neto
- Departamento de Fitotecnia, Universidade Federal do Ceará, Fortaleza, Ceará60356-900, Brazil
| | - Gilberto Barbosa Domont
- Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
- Laboratório de Proteômica/LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Fábio César Sousa Nogueira
- Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
- Laboratório de Proteômica/LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | | | - Ayla Sant'Ana da Silva
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| |
Collapse
|
10
|
Euterpe oleracea Mart (Açaizeiro) from the Brazilian Amazon: A Novel Font of Fungi for Lipase Production. Microorganisms 2022; 10:microorganisms10122394. [PMID: 36557647 PMCID: PMC9784082 DOI: 10.3390/microorganisms10122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
Lipases (EC 3.1.1.3) are hydrolases that catalyze triglycerides hydrolysis in free fatty acids and glycerol. Among the microorganisms that produce lipolytic enzymes, the entophytic fungi stand out. We evaluated 32 fungi of different genera, Pestalotiopsis, Aspergillus, Trichoderma, Penicillium, Fusarium, Colletotrichum, Chaetomium, Mucor, Botryodiplodia, Xylaria, Curvularia, Neocosmospora and Verticillium, isolated from Euterpe oleracea Mart. (Açaizeiro) from the Brazilian Amazon for lipase activity. The presence of lipase was evidenced by the deposition of calcium crystals. The endophytic Pestalotiopsis sp. (31) and Aspergillus sp. (24) with Pz 0.237 (++++) and 0.5 (++++), respectively, were the ones that showed the highest lipolytic activity in a solid medium. Lipase activity was rated in liquid medium, in a different range of temperatures (°C), pH and time (days). The values obtained in the production of lipase by the endophytic fungi were 94% for Pestalotiopsis sp. (31) and 93.87% for Aspergillus sp. (24). Therefore, it is emphasized that the endophytic fungus isolated the E. oleracea palm may be a potential candidate to produce enzymes of global commercial interest.
Collapse
|
11
|
Lahlou A, Chileh-Chelh T, Lyashenko S, Rincón-Cervera MÁ, Rodríguez-García I, López-Ruiz R, Urrestarazu M, Guil-Guerrero JL. Arecaceae fruits: Fatty acids, phenolic compounds and in vitro antitumour activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Morais RA, Teixeira GL, Ferreira SRS, Cifuentes A, Block JM. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients 2022; 14:nu14194009. [PMID: 36235663 PMCID: PMC9571529 DOI: 10.3390/nu14194009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The fruits from the Arecaceae family, although being rich in bioactive compounds with potential benefits to health, have been underexplored. Studies on their composition, bioactive compounds, and effects of their consumption on health are also scarce. This review presents the composition of macro- and micronutrients, and bioactive compounds of fruits of the Arecaceae family such as bacaba, patawa, juçara, açaí, buriti, buritirana, and butiá. The potential use and reported effects of its consumption on health are also presented. The knowledge of these underutilized fruits is important to encourage production, commercialization, processing, and consumption. It can also stimulate their full use and improve the economy and social condition of the population where these fruits are found. Furthermore, it may help in future research on the composition, health effects, and new product development. Arecaceae fruits presented in this review are currently used as raw materials for producing beverages, candies, jams, popsicles, ice creams, energy drinks, and edible oils. The reported studies show that they are rich in phenolic compounds, carotenoids, anthocyanins, tocopherols, minerals, vitamins, amino acids, and fatty acids. Moreover, the consumption of these compounds has been associated with anti-inflammatory, antiproliferative, antiobesity, and cardioprotective effects. These fruits have potential to be used in food, pharmaceutical, and cosmetic industries. Despite their potential, some of them, such as buritirana and butiá, have been little explored and limited research has been conducted on their composition, biological effects, and applications. Therefore, more detailed investigations on the composition and mechanism of action based on in vitro and/or in vivo studies are needed for fruits from the Arecaceae family.
Collapse
Affiliation(s)
- Rômulo Alves Morais
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | - Gerson Lopes Teixeira
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | | | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), 28049 Madrid, Spain
- Correspondence: (A.C.); (J.M.B.)
| | - Jane Mara Block
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
- Correspondence: (A.C.); (J.M.B.)
| |
Collapse
|
13
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
14
|
Emerging Lipids from Arecaceae Palm Fruits in Brazil. Molecules 2022; 27:molecules27134188. [PMID: 35807433 PMCID: PMC9268242 DOI: 10.3390/molecules27134188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Arecaceae palm tree fruits (APTFs) with pulp or kernel rich in oil are widely distributed in six Brazilian biomes. APTFs represent a great potential for the sustainable exploitation of products with high added value, but few literature studies have reported their properties and industrial applications. The lack of information leads to underutilization, low consumption, commercialization, and processing of these fruit species. This review presents and discusses the occurrence of 13 APTFs and the composition, physicochemical properties, bioactive compounds, and potential applications of their 25 oils and fats. The reported studies showed that the species present different lipid profiles. Multivariate analysis based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) indicated a correlation between the composition of pulp and kernel oils. Myristic, caprylic, capric, and lauric acids are the main saturated fatty acids, while oleic acid is the main unsaturated. Carotenoids and phenolic compounds are the main bioactive compounds in APTFs, contributing to their high oxidative stability. The APTFs oils have a potential for use as foods and ingredients in the cosmetic, pharmaceutical, and biofuel industries. However, more studies are still necessary to better understand and exploit these species.
Collapse
|
15
|
Morais NDS, Passos TS, Ramos GR, Ferreira VAF, Moreira SMG, Chaves Filho GP, Barreto APG, Leite PIP, de Almeida RS, Paulo CLR, Fernandes R, da Silva SÂD, Nascimento SSDC, de Sousa Júnior FC, de Assis CF. Nanoencapsulation of buriti oil (Mauritia flexuosa L.f.) in porcine gelatin enhances the antioxidant potential and improves the effect on the antibiotic activity modulation. PLoS One 2022; 17:e0265649. [PMID: 35303021 PMCID: PMC8932573 DOI: 10.1371/journal.pone.0265649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/05/2022] [Indexed: 11/23/2022] Open
Abstract
The present study evaluated the cytotoxicity, antioxidant potential, and antimicrobial effect on the antibiotic activity modulation of gelatin nanoparticles containing buriti oil (OPG). The cytotoxicity analysis was performed on Chinese Hamster Ovary Cells (CHO) using a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. The antioxidant potential of buriti oil and OPG was determined by total antioxidant capacity, reducing power, and the ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) test. The modulating antimicrobial activity was evaluated by determining the minimum inhibitory concentration (MIC) concentration against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, gentamicin and norflaxacillin. The nanoformulation of OPG did not show a cytotoxic effect on CHO cells and had a higher antioxidant potential than free buriti oil (p<0.05). The combination of antibiotics with free buriti oil and OPG was more efficient in inhibiting E. coli and P. aeruginosa than isolated norfloxacillin and gentamicin (p<0.05). Regarding the inhibition of S. aureus, OPG in combination with norfloxacillin reduced MIC by 50%. Nanoencapsulation was a viable alternative to enhance functionality and adding commercial value to buriti oil.
Collapse
Affiliation(s)
- Neyna de Santos Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gabriela Rocha Ramos
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Susana Margarida Gomes Moreira
- Department of Cellular and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gildácio Pereira Chaves Filho
- Department of Cellular and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Paula Gomes Barreto
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ray Silva de Almeida
- Department of Chemical Biology, Regional University of Cariri, Crato, CE, Brasil
| | | | - Rafael Fernandes
- Chemical Intitute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Sara Sayonara da Cruz Nascimento
- Postgraduate Program in Biotechnology—RENORBIO, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Francisco Canindé de Sousa Júnior
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Fernandes de Assis
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
16
|
Ramos-Escudero F, Gómez-Coca RB, Muñoz AM, Fuente-Carmelino LDL, Pérez-Camino MDC. Oil From Three Aguaje Morphotypes (Mauritia flexuosa L.f.) Extracted by Supercritical Fluid With CO2: Chemical Composition and Chromatic Properties. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.843772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The chemical composition and CIELAB color parameters of oil from three aguaje morphotypes (Mauritia flexuosa L.f.) extracted by supercritical carbon dioxide was investigated. By chromatography (HPLC and GC), spectrometry (UV/vis), and digital image colorimetry (digital camera), carotenoids, tocopherols, tocotrienols, fatty acids, total polyphenols, and CIELAB color space were analyzed. These findings showed that the oil obtained from morphotype 3 was superior in several analytes (carotenoids, polyphenols, oleic acid, β-sitosterol, campesterol, and stigmasterol), while morphotype 2 and morphotype 1 showed very close profiles. The most similar chemical components in the oils of the three morphotypes were stigmasterol (16.00 to 17.81%), β-sitosterol (66.39 to 68.94%), palmitic acid (15.56 to 20.69%), and oleic acid (73.29 to 79.54%). The chromatic parameters (L*, a*, b*, and Cab*) were quite different except for the hue angle (hab) (66.55 to 69.71 U), which showed some similarity. Aguaje oil is an interesting resource that stands out for its high content of carotenoids. All three morphotypes may be suitable for potential commercial applications.
Collapse
|
17
|
de Souza FG, de Araújo FF, Orlando EA, Rodrigues FM, Chávez DWH, Pallone JAL, Neri-Numa IA, Sawaya ACHF, Pastore GM. Characterization of Buritirana ( Mauritiella armata) Fruits from the Brazilian Cerrado: Biometric and Physicochemical Attributes, Chemical Composition and Antioxidant and Antibacterial Potential. Foods 2022; 11:786. [PMID: 35327209 PMCID: PMC8949527 DOI: 10.3390/foods11060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
The buritirana is a little-explored species of the Arecaceae family. The biometric and physicochemical characteristics, nutritional and chemical composition and antioxidant and antibacterial potential of the buritirana fruit fractions were evaluated here for the first time. The fruits presented an oblong shape. The pulp represented 16.58% of the whole-fruit weight (10.07 g). The moisture, ash and soluble fiber contents were similar for the whole fraction without seed (WS) and pulp. Although the total carbohydrate content was the same for seed and peel (23.24 g·100 g-1), the seed showed higher protein and insoluble fiber contents. Except for glucose (1256.63 mg·100 g-1), the seed showed the highest concentrations of mono-, di- and oligosaccharides. Mineral content ranged from 0.43 to 800 mg·100 g-1 in all fractions. The peel fraction showed the highest content of vitamin C. The physicochemical results indicate the pulp and WS fraction have potential for the production of fruit-derived food products. Protocatechuic and quinic acids and epicatechin/catechin were found in all fractions. The assay antioxidant capacity DPPH, phenolic content and total flavonoids were higher in the pulp; TEAC and ORACHF values were lower in the seed. Volatile organic compounds were not identified, and the fractions did not show antibacterial activity.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Eduardo Adilson Orlando
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fernando Morais Rodrigues
- Department of Food Science and Technology, Federal Institute of Education, Science and Technology of Tocantins, Paraíso of Tocantins 77600-000, TO, Brazil;
| | - Davy William Hidalgo Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| |
Collapse
|
18
|
Condessa BMB, da Silva KV, da Silva JFM, de Morais PB, Leal Zimmer FMA, de Almeida AF, Niculau EDS, Nogueira KL, Santos CCADA. Performance of wild
Saccharomyces
and Non‐
Saccharomyces
yeasts as starter cultures in dough fermentation and bread making. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Paula Benevides de Morais
- Bionorte – Legal Amazon Biodiversity and Biotechnology Network Federal University of Tocantins Palmas Brazil
| | | | - Alex Fernando de Almeida
- Graduate Program in Food Science and Technology Federal University of Tocantins (UFT) Palmas Brazil
| | | | | | | |
Collapse
|
19
|
Hoang NB, Ngo TCQ, Tran TKN, Lam VT. Comprehensive review on synthesis, physicochemical properties, and application of activated carbon from the Arecaceae plants for enhanced wastewater treatment. OPEN CHEM 2022. [DOI: 10.1515/chem-2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Arecaceae presents one of the plant families distributed mainly in the equatorial and subequatorial regions. Arecaceae are widely applied in many fields such as food, cosmetics, fuel, and chemical industries. However, a large amount of agricultural waste from the Arecaceae trees has been released into the environment. The objective of this report is to gain more insights into the potentials and applications of activated carbon (AC) from the Arecaceae trees in wastewater treatment, in which, the ability to handle organic pigments, metals, and antibiotics is focused. The physical properties and processability of AC are statistically evaluated. With a uniform structure, large specific surface area, processing ability according to Langmuir and pseudo-second-order models, we showed that ACs from Arecaceae trees are promising materials for water treatment applications. This is the basis for the development and reduction of by-products that affect the environment.
Collapse
Affiliation(s)
- Ngoc Bich Hoang
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City 700000 , Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Thi Cam Quyen Ngo
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City 700000 , Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Thi Kim Ngan Tran
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City 700000 , Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Van Tan Lam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- Department of Science and Technology, People’s Committee in Ben Tre , Ben Tre City 86000 , Vietnam
| |
Collapse
|
20
|
Monteiro-Alfredo T, Oliveira S, Amaro A, Rosendo-Silva D, Antunes K, Pires AS, Teixo R, Abrantes AM, Botelho MF, Castelo-Branco M, Seiça R, Silva S, de Picoli Souza K, Matafome P. Hypoglycaemic and Antioxidant Properties of Acrocomia aculeata (Jacq.) Lodd Ex Mart. Extract Are Associated with Better Vascular Function of Type 2 Diabetic Rats. Nutrients 2021; 13:2856. [PMID: 34445015 PMCID: PMC8398401 DOI: 10.3390/nu13082856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress is involved in the metabolic dysregulation of type 2 diabetes (DM2). Acrocomia aculeata (Aa) fruit pulp has been described for the treatment of several diseases, and recently we have proved that its leaves have phenolic compounds with a marked antioxidant effect. We aimed to assess whether they can improve metabolic, redox and vascular functions in DM2. Control Wistar (W-Ctrl) and non-obese type 2 diabetic Goto-Kakizaki (GK-Ctrl) rats were treated for 30 days with 200 mg.kg-1 aqueous extract of Aa (EA-Aa) (Wistar, W-EA-Aa/GK, GK-EA-Aa). EA-Aa was able to reduce fasting glycaemia and triglycerides of GK-EA-Aa by improving proteins related to glucose and lipid metabolism, such as GLUT-4, PPARγ, AMPK, and IR, when compared to GK-Ctrl. It also improved viability of 3T3-L1 pre-adipocytes exposed by H2O2. EA-Aa also increased the levels of catalase in the aorta and kidney, reduced oxidative stress and increased relaxation of the aorta in GK-treated rats in relation to GK-Ctrl, in addition to the protective effect against oxidative stress in HMVec-D cells. We proved the direct antioxidant potential of the chemical compounds of EA-Aa, the increase in antioxidant defences in a tissue-specific manner and hypoglycaemic properties, improving vascular function in type 2 diabetes. EA-Aa and its constituents may have a therapeutic potential for the treatment of DM2 complications.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Research Group of Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil; (K.A.); (K.d.P.S.)
| | - Sara Oliveira
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
| | - Andreia Amaro
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Rosendo-Silva
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
| | - Katia Antunes
- Research Group of Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil; (K.A.); (K.d.P.S.)
| | - Ana Salomé Pires
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Centre for Neuroscience and Cell Biology (CNC), IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratório de Bioestatística Médica, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
| | - Sónia Silva
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Kely de Picoli Souza
- Research Group of Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil; (K.A.); (K.d.P.S.)
| | - Paulo Matafome
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-A.); (S.O.); (A.A.); (D.R.-S.); (R.S.)
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.P.); (R.T.); (A.M.A.); (M.F.B.); (S.S.)
- Clinical Academic Center of Coimbra, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Department of Complementary Sciences, 3000-548 Coimbra, Portugal
| |
Collapse
|
21
|
|
22
|
Inhibitory Effect of Catechin-Rich Açaí Seed Extract on LPS-Stimulated RAW 264.7 Cells and Carrageenan-Induced Paw Edema. Foods 2021; 10:foods10051014. [PMID: 34066479 PMCID: PMC8148186 DOI: 10.3390/foods10051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Açaí berry is a fruit from the tree commonly known as açaízeiro (Euterpe oleracea Mart.) originated from the Amazonian region and widely consumed in Brazil. There are several reports of the anti-inflammatory activity of its pulp and few data about the seed's potential in inflammation control. This work aimed to evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and carrageenan-induced paw edema. The treatment with E. oleracea ethyl acetate extract (EO-ACET) was used in an in vitro model performed with macrophages stimulated by LPS, in which pro-inflammatory markers were evaluated, and in an in vivo model of acute inflammation, in which edema inhibition was evaluated. EO-ACET showed an absence of endotoxins, and did not display cytotoxic effects in RAW 264.7 cells. LPS-stimulated cells treated with EO-ACET displayed low levels of nitrite and interleukins (IL's), IL-1β, IL-6 and IL-12, when compared to untreated cells. EO-ACET treatment was able to inhibit carrageenan-induced paw edema at 500 and 1000 mg/kg, in which no acute inflammatory reaction or low mast cell counts were observed by histology at the site of inoculation of λ-carrageenan. These findings provide more evidence to support further studies with E. oleracea seeds for the treatment of inflammation.
Collapse
|
23
|
de Souza FG, Náthia-Neves G, de Araújo FF, Dias Audibert FL, Delafiori J, Neri-Numa IA, Catharino RR, de Alencar SM, de Almeida Meireles MA, Pastore GM. Evaluation of antioxidant capacity, fatty acid profile, and bioactive compounds from buritirana (Mauritiella armata Mart.) oil: A little-explored native Brazilian fruit. Food Res Int 2021; 142:110260. [PMID: 33773690 DOI: 10.1016/j.foodres.2021.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Buritirana (Mauritiella armata Mart.) is a fruit species native to the Amazon and Cerrado region, belonging to the Arecaceae family. It has high nutritional and functional potential, yet little explored. In this study, we evaluated for the first time the overall yield, behavior of total carotenoids in the extraction kinetics, fatty acid profile, bioactive compounds, and the antioxidant capacity of the oil from buritirana fractions obtained by supercritical CO2. The highest extraction yield was found in the pulp and whole without seed at 60 °C (18.06 ± 0.40 and 14.55 ± 1.10 g 100 g-1 of the freeze-dried sample (fdw), respectively), and in the peel at 40 °C (8.31 ± 0.73 g 100 g-1 fdw). During the extraction kinetics, the pulp had the highest yields of oil (41.57%) and total carotenoids (8.34 mg g-1) after 61 min at 40 °C. The antioxidant potential, fatty acid profile, and α-tocopherol content were dependent on both fraction and temperature, with oleic acid being the main fatty acid. The oil from the whole fraction without seed had the largest number (20) of identified phenolic compounds. The extraction at 60 °C reduced the relative intensity of most compounds in the whole without seed and pulp. Moreover, it increased the intensity of the compounds in the peel. These results suggest that buritirana is a good oil source with great bioactive potential to produce new products with functional claims.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Grazielle Náthia-Neves
- LASEFI - Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Flavia Luísa Dias Audibert
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Jeany Delafiori
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | | | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|