1
|
Yakut A. Gut microbiota in the development and progression of chronic liver diseases: Gut microbiota-liver axis. World J Hepatol 2025; 17:104167. [PMID: 40177197 PMCID: PMC11959663 DOI: 10.4254/wjh.v17.i3.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The gut microbiota (GM) is a highly dynamic ecology whose density and composition can be influenced by a wide range of internal and external factors. Thus, "How do GM, which can have commensal, pathological, and mutualistic relationships with us, affect human health?" has become the most popular research issue in recent years. Numerous studies have demonstrated that the trillions of microorganisms that inhabit the human body can alter host physiology in a variety of systems, such as metabolism, immunology, cardiovascular health, and neurons. The GM may have a role in the development of a number of clinical disorders by producing bioactive peptides, including neurotransmitters, short-chain fatty acids, branched-chain amino acids, intestinal hormones, and secondary bile acid conversion. These bioactive peptides enter the portal circulatory system through the gut-liver axis and play a role in the development of chronic liver diseases, cirrhosis, and hepatic encephalopathy. This procedure is still unclear and quite complex. In this study, we aim to discuss the contribution of GM to the development of liver diseases, its effects on the progression of existing chronic liver disease, and to address the basic mechanisms of the intestinal microbiota-liver axis in the light of recent publications that may inspire the future.
Collapse
Affiliation(s)
- Aysun Yakut
- Department of Gastroenterology, İstanbul Medipol University Sefakoy Health Practice Research Center, İstanbul 38000, Türkiye.
| |
Collapse
|
2
|
Qiao NN, Fang Q, Zhang XH, Ke SS, Wang ZW, Tang G, Leng RX, Fan YG. Effects of alcohol on the composition and metabolism of the intestinal microbiota among people with HIV: A cross-sectional study. Alcohol 2024; 120:151-159. [PMID: 38387693 PMCID: PMC11383188 DOI: 10.1016/j.alcohol.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES Alcohol consumption is not uncommon among people with HIV (PWH) and may exacerbate HIV-induced intestinal damage, and further lead to dysbiosis and increased intestinal permeability. This study aimed to determine the changes in the fecal microbiota and its association with alcohol consumption in HIV-infected patients. METHODS A cross-sectional survey was conducted between November 2021 and May 2022, and 93 participants were recruited. To investigate the alterations of alcohol misuse on fecal microbiology in HIV-infected individuals, we performed 16s rDNA gene sequencing on fecal samples from the low-to-moderate drinking (n = 21) and non-drinking (n = 72) groups. RESULTS Comparison between groups using alpha and beta diversity showed that the diversity of stool microbiota in the low-to-moderate drinking group did not differ from that of the non-drinking group (all p > 0.05). The Linear discriminant Analysis effect size (LEfSe) algorithm was used to determine the bacterial taxa associated with alcohol consumption, and the results showed altered fecal bacterial composition in HIV-infected patients who consumed alcohol; Coprobacillus, Pseudobutyrivibrio, and Peptostreptococcaceae were enriched, and Pasteurellaceae and Xanthomonadaceae were depleted. In addition, by using the Kyoto Encyclopedia of Genes and Genomes (KEGG), functional microbiome features were also found to be altered in the low-to-moderate drinking group compared to the control group, showing a reduction in metabolic pathways (p = 0.036) and cardiovascular disease pathways (p = 0.006). CONCLUSION Low-to-moderate drinking will change the composition, metabolism, and cardiovascular disease pathways of the gut microbiota of HIV-infected patients.
Collapse
Affiliation(s)
- Ni-Ni Qiao
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Quan Fang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Xin-Hong Zhang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Su-Su Ke
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Zi-Wei Wang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Gan Tang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Rui-Xue Leng
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| | - Yin-Guang Fan
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Rochoń J, Kalinowski P, Szymanek-Majchrzak K, Grąt M. Role of gut-liver axis and glucagon-like peptide-1 receptor agonists in the treatment of metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2024; 30:2964-2980. [PMID: 38946874 PMCID: PMC11212696 DOI: 10.3748/wjg.v30.i23.2964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, β-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.
Collapse
Affiliation(s)
- Jakub Rochoń
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | | | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
4
|
Cao S, Liu M, Han Y, Li S, Zhu X, Li D, Shi Y, Liu B. Effects of Saponins on Lipid Metabolism: The Gut-Liver Axis Plays a Key Role. Nutrients 2024; 16:1514. [PMID: 38794751 PMCID: PMC11124185 DOI: 10.3390/nu16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.
Collapse
Affiliation(s)
- Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| |
Collapse
|
5
|
Zhang Y, Huang K, Duan J, Zhao R, Yang L. Gut microbiota connects the brain and the heart: potential mechanisms and clinical implications. Psychopharmacology (Berl) 2024; 241:637-651. [PMID: 38407637 DOI: 10.1007/s00213-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Nowadays, high morbidity and mortality of cardiovascular diseases (CVDs) and high comorbidity rate of neuropsychiatric disorders contribute to global burden of health and economics. Consequently, a discipline concerning abnormal connections between the brain and the heart and the resulting disease states, known as psychocardiology, has garnered interest among researchers. However, identifying a common pathway that physicians can modulate remains a challenge. Gut microbiota, a constituent part of the human intestinal ecosystem, is likely involved in mutual mechanism CVDs and neuropsychiatric disorder share, which could be a potential target of interventions in psychocardiology. This review aimed to discuss complex interactions from the perspectives of microbial and intestinal dysfunction, behavioral factors, and pathophysiological changes and to present possible approaches to regulating gut microbiota, both of which are future directions in psychocardiology.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
6
|
Craven H, Erlandsson H, McGuinness D, McGuinness D, Mafra D, Ijaz U, Bergman P, Shiels P, Stenvinkel P. A normative microbiome is not restored following kidney transplantation. Clin Sci (Lond) 2023; 137:1563-1575. [PMID: 37756543 PMCID: PMC10582644 DOI: 10.1042/cs20230779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Dialysis and kidney transplantation (Ktx) mitigate some of the physiological deficits in chronic kidney disease (CKD), but it remains to be determined if these mitigate microbial dysbiosis and the production of inflammatory microbial metabolites, which contribute significantly to the uraemic phenotype. We have investigated bacterial DNA signatures present in the circulation of CKD patients and those receiving a KTx. Our data are consistent with increasing dysbiosis as CKD progresses, with an accompanying increase in trimethylamine (TMA) producing pathobionts Pseudomonas and Bacillus. Notably, KTx patients displayed a significantly different microbiota compared with CKD5 patients, which surprisingly included further increase in TMA producing Bacillus and loss of salutogenic Lactobacilli. Only two genera (Viellonella and Saccharimonidales) showed significant differences in abundance following KTx that may reflect a reciprocal relationship between TMA producers and utilisers, which supersedes restoration of a normative microbiome. Our metadata analysis confirmed that TMA N-oxide (TMAO) along with one carbon metabolism had significant impact upon both inflammatory burden and the composition of the microbiome. This indicates that these metabolites are key to shaping the uraemic microbiome and might be exploited in the development of dietary intervention strategies to both mitigate the physiological deficits in CKD and enable the restoration of a more salutogenic microbiome.
Collapse
Affiliation(s)
- Hannah Craven
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Molecular Biosciences, Davidson Bld, Glasgow, U.K
| | - Helen Erlandsson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dagmara McGuinness
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Molecular Biosciences, Davidson Bld, Glasgow, U.K
| | | | - Denise Mafra
- Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G. Shiels
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Molecular Biosciences, Davidson Bld, Glasgow, U.K
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Huang S, Lim SY, Tan SH, Chan MY, Ni W, Li SFY. Targeted Plasma Metabolomics Reveals Association of Acute Myocardial Infarction Risk with the Dynamic Balance between Trimethylamine- N-oxide, Betaine, and Choline. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15097-15105. [PMID: 37781984 DOI: 10.1021/acs.jafc.2c08241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The relationship between trimethylamine-N-oxide (TMAO), betaine, and choline with acute myocardial infarction (AMI) end point remains unclear. We analyzed plasma TMAO, betaine, and choline concentrations in AMI cases and non-AMI community-dwelling controls by LC-MS/MS to understand how the balance between these metabolites helps to reduce AMI risk. Results showed that the odds ratio (OR) for the highest versus lowest quartiles of betaine was 0.30 (95% CI, 0.10-0.82) after adjustment for AMI risk factors, and the unadjusted OR for quartile 3 versus quartile 1 of TMAO was 2.47 (95% CI, 1.02-6.17) (p < 0.05). The study populations with "high betaine + low TMAO" had a significant protective effect concerning AMI with a multivariable-adjusted OR of 0.20 (95% CI, 0.07-0.55) (p < 0.01). Multivariate linear regression showed that the chronological age was correlated with TMAO concentrations among AMI patients (95% CI, 0.05-3.24, p < 0.01) but not among the controls. This implies a further potential interplay between age and metabolite combination─AMI risk association.
Collapse
Affiliation(s)
- Shan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei, Anhui 230036, China
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore 117543, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore 117543, Singapore
- Integrative Sciences & Engineering Programme, NUS Graduate School, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, NUS, Singapore 117599, Singapore
| | - Mark Y Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, NUS, Singapore 117599, Singapore
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore 117543, Singapore
- Integrative Sciences & Engineering Programme, NUS Graduate School, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- NUS Environmental Research Institute (NERI), #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
8
|
Dietary Methionine Restriction Alleviates Choline-Induced Tri-Methylamine-N-Oxide (TMAO) Elevation by Manipulating Gut Microbiota in Mice. Nutrients 2023; 15:nu15010206. [PMID: 36615863 PMCID: PMC9823801 DOI: 10.3390/nu15010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dietary methionine restriction (MR) has been shown to decrease plasma trimethylamine-N-oxide (TMAO) levels in high-fat diet mice; however, the specific mechanism used is unknown. We speculated that the underlying mechanism is related with the gut microbiota, and this study aimed to confirm the hypothesis. In this study, we initially carried out an in vitro fermentation experiment and found that MR could reduce the ability of gut microbiota found in the contents of healthy mice and the feces of healthy humans to produce trimethylamine (TMA). Subsequently, mice were fed a normal diet (CON, 0.20% choline + 0.86% methionine), high-choline diet (H-CHO, 1.20% choline + 0.86% methionine), or high-choline + methionine-restricted diet (H-CHO+MR, 1.20% choline + 0.17% methionine) for 3 months. Our results revealed that MR decreased plasma TMA and TMAO levels in H-CHO-diet-fed mice without changing hepatic FMO3 gene expression and enzyme activity, significantly decreased TMA levels and expression of choline TMA-lyase (CutC) and its activator CutD, and decreased CutC activity in the intestine. Moreover, MR significantly decreased the abundance of TMA-producing bacteria, including Escherichia-Shigella (Proteobacteria phylum) and Anaerococcus (Firmicutes phylum), and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria and SCFA levels. Furthermore, both MR and sodium butyrate supplementation significantly inhibited bacterial growth, down-regulated CutC gene expression levels in TMA-producing bacteria, including Escherichia fergusonii ATCC 35469 and Anaerococcus hydrogenalis DSM 7454 and decreased TMA production from bacterial growth under in vitro anaerobic fermentation conditions. In conclusion, dietary MR alleviates choline-induced TMAO elevation by manipulating gut microbiota in mice and may be a promising approach to reducing circulating TMAO levels and TMAO-induced atherosclerosis.
Collapse
|
9
|
Chen P, Guo Z. Plasmatic trimethylamine N-oxide and its relation to stroke: A systematic review and dose-response meta-analysis. Medicine (Baltimore) 2022; 101:e29512. [PMID: 35866835 PMCID: PMC9302353 DOI: 10.1097/md.0000000000029512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Elevated circulating concentrations of the gut metabolite, trimethylamine N-oxide (TMAO), were found in patients who experienced stroke. However, it has not been reported whether a high level of TMAO is associated with a significantly increased risk of stroke. This study aimed to review the available scientific evidence about the relationship between TMAO levels and the risk of stroke in a dose-response meta-analysis. METHODS The PubMed, Embase, Cochrane library, and China National Knowledge Infrastructure databases were searched for studies starting from September 1996 to December 2020. Nine studies including 4402 subjects were reviewed in this study. RESULTS The results of meta-analysis showed that high levels of circulating TMAO were associated with an increased risk of stroke in patients in the random-effects model (odds ratio [OR], 1.64; 95% confidence interval [CI], 1.12-2.41; P = 0.047). The OR for the prevalence of stroke increased by 48% per 5-μmol/L increment (OR, 1.05; 95% CI, 1.16-1.78; P < 0.001) and by 132% per 10-μmol/L increment (OR, 2.32; 95% CI, 1.38-3.86; P < 0.001) in circulating TMAO concentration according to the dose-response meta-analysis. CONCLUSION There was a significant association between higher plasma TMAO concentrations and the risk of stroke. Further in-depth studies are warranted to validate this interaction and explore potential mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhilei Guo
- Department of pharmacy, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * Correspondence: Zhilei Guo, Department of Pharmacy,Wuhan Fourth Hospital;Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (e-mail: )
| |
Collapse
|
10
|
Bordoni L, Malinowska AM, Petracci I, Szwengiel A, Gabbianelli R, Chmurzynska A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol Nutr Food Res 2022; 66:e2200003. [PMID: 35490412 DOI: 10.1002/mnfr.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Indexed: 12/11/2022]
Abstract
SCOPE Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, 62032, MC, Italy
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| |
Collapse
|
11
|
Xiao M, Huang M, Huan W, Dong J, Xiao J, Wu J, Wang D, Song L. Effects of Torreya grandis Kernel Oil on Lipid Metabolism and Intestinal Flora in C57BL/6J Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4472751. [PMID: 35464771 PMCID: PMC9023180 DOI: 10.1155/2022/4472751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023]
Abstract
Background Recent experimental studies have shown that vegetable oil supplementation ameliorates high-fat diet- (HFD-) induced hyperlipidemia and oxidative stress in mice via modulating hepatic lipid metabolism and the composition of the gut microbiota. The aim of this study was to investigate the efficacy of the Torreya grandis kernel oil (TKO) rich in unpolysaturated fatty acid against hyperlipidemia and gain a deep insight into its potential mechanisms. Methods Normal mice were randomly divided into three groups: ND (normal diet), LO (normal diet supplement with 4% TKO), and HO (normal diet supplement with 8% TKO). Hyperlipidemia mice were randomly divided into two groups: HFN (normal diet) and HFO (normal diet supplement with 8% TKO). Blood biochemistry and histomorphology were observed; liver RNA-seq, metabolomics, and gut 16S rRNA were analyzed. Results Continuous supplementation of TKO in normal mice significantly ameliorated serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) accumulation, decreased blood glucose and malondialdehyde (MDA), and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. According to GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most differentially expressed genes (DEGs) were significantly enriched in the biosynthesis of unsaturated fatty acid pathways, and significantly changed metabolites (SCMs) might be involved in the metabolism of lipids. High-dose TKO improved gut alpha diversity and beta diversity showing that the microbial community compositions of the five groups were different. Conclusion Supplementation of TKO functions in the prevention of hyperlipidemia via regulating hepatic lipid metabolism and enhancing microbiota richness in normal mice. Our study is the first to reveal the mechanism of TKO regulating blood lipid levels by using multiomics and promote further studies on TKO for their biological activity.
Collapse
Affiliation(s)
- Minghui Xiao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Jiasheng Wu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lili Song
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Yang HT, Liu JK, Xiu WJ, Tian TT, Yang Y, Hou XG, Xie X. Gut Microbiome-Based Diagnostic Model to Predict Diabetes Mellitus. Bioengineered 2021; 12:12521-12534. [PMID: 34927535 PMCID: PMC8810174 DOI: 10.1080/21655979.2021.2009752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to determine the diversity of intestinal microflora and its correlation with clinical parameters in diabetic patients and healthy subjects and to assess the importance of intestinal flora in patients with diabetes. Forty-four patients with diabetes were included. The control group included 47 healthy people. Their data, biochemical indicators and results from 16S rRNA sequencing of their fecal samples were collected. Compared with the healthy population, the intestinal flora of the diabetic patients was obviously abnormal. Within the diabetes group, the abundances of the genera Faecalibacterium, Prevotella, and Roseburia were higher, and the abundances of the genera Shigella and Bifidobacterium were lower. In the correlation analysis between bacteria and clinical indicators, it was found that the genera Veillonella and unclassified_Enterobacteriaceae were negatively related to blood glucose, while the genera Phascolarctobacterium, unidentified_Bacteroidales and Prevotella were significantly positively correlated with fasting blood glucose. Twelve microbial markers were detected in the random forest model, and the area under the curve (AUC) was 84.1%. This index was greater than the diagnostic effect of fasting blood glucose. This was also supported by the joint diagnostic model of microorganisms and clinical indicators. In addition, the intestinal flora significantly improved the diagnosis of diabetes. In conclusion, it can be concluded from these results that intestinal flora is essential for the occurrence and development of diabetes, which seems to be as important as blood glucose itself. Abbreviations: PCoA: principal coordinate analysis; NMDS: non econometric multidimensional scaling analysis; LEfSe: linear discriminant analysis effect size; LDA: linear discriminant analysis; POD: probability of disease; BMI: body mass index; DCA: decision curve analysis
Collapse
Affiliation(s)
- Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing-Kun Liu
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wen-Juan Xiu
- College of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Ting-Ting Tian
- College of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
13
|
Gutiérrez-Repiso C, Moreno-Indias I, Tinahones FJ. Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes. Rev Endocr Metab Disord 2021; 22:1137-1156. [PMID: 34287758 DOI: 10.1007/s11154-021-09676-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Evidence suggests that bariatric surgery alters gut microbiota, although its impact at compositional and functional level is not well described. In this review, the most relevant findings, mainly described in Roux-en-Y gastric bypass and sleeve gastrectomy, are outlined. Although the number of studies has increased in the last years, conclusive assertions cannot be elaborated. An issue to address is to know the influence of these alterations on host metabolism and the contribution of gut microbiota derived metabolites. New lines of research have been focusing on analysing gut microbiota functionality rather than evaluating changes at compositional level, and the functions of gut microbiota metabolites in host metabolism, what will bring more relevant information about the influence of gut microbiota in bariatric surgery outcomes. Personalized medicine, because of the predictive value of gut microbiota, is another promising field. The possibility of a specific gut microbiota pattern that could predict type 2 diabetes remission or weight loss failure after bariatric surgery is a matter of great interest. However, little is known about how gut microbiota manipulation could contribute to the beneficial effects of bariatric surgery. Peri-operative antibiotics prophylaxis or probiotic supplementation early after surgery, are strategies barely studied so far, and could constitute a novel tool in the management of weight loss and metabolic profile improvement after surgery.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina Y Dermatología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|