1
|
Wen Y, Zhou Y, Xu J, Cui Q, Weng Z, Lin Y, Song H, Xiong L, Wang L, Zhao C, Shen X, Wang F. Structural characterization and fermentation of a novel Moringa oleifera leaves polysaccharide with hypoglycemic effects. Food Chem 2025; 479:143832. [PMID: 40090193 DOI: 10.1016/j.foodchem.2025.143832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
Moringa oleifera leaf-derived natural products offer diverse health benefits in metabolic disorders. However, the structural attributes of M. oleifera leaf polysaccharides, their transformations during gastrointestinal digestion, and their influence on gut microbiota and hypoglycemic activity remain insufficiently understood. This study isolated and purified a hypoglycemic polysaccharide (MOP-3) from M. oleifera leaves, primarily composed of arabinose, rhamnose, and galactose, with a molecular weight of 2.019 × 104 Da. Structural analysis identified glycosidic linkages, including →2)-α-L-Fucp-(1→, →2)-α-L-Araf-(1→, →2)-α-L-Rhap-(1→, →3,6)-β-D-Galp-(1→, →6)-β-D-Glcp-(1→, →2)-α-D-Xylp-(1→, →2,4)-β-D-Manp-(1→, →2,3)-α-D-GalpA-6-OMe-(1→, and →4)-β-D-GlcpA-6-OMe-(1→. MOP-3 reshapes gut microbiota by decreasing Firmicutes while increasing Bacteroidetes and Proteobacteria, concurrently stimulating SCFA production, and enhancing GLP-1 secretion in STC-1 cells. The structural characterization and hypoglycemic properties of MOP-3 in this study provide a theoretical basis for further utilization of food polysaccharides.
Collapse
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Yang Zhou
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Jiaxiang Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Qi Cui
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Zebin Weng
- School of Chinese Medicine & School Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yajuan Lin
- School of Chinese Medicine & School Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Luanfeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210046, China; Beth Israel Deaconess Medical Center/Harvard Medical School, Boston 02215, United States of America.
| |
Collapse
|
2
|
Liu Z, Li Q, Zhao F, Chen J. A decade review on phytochemistry and pharmacological activities of Cynomorium songaricum Rupr.: Insights into metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156602. [PMID: 40058318 DOI: 10.1016/j.phymed.2025.156602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Cynomorium songaricum Rupr. (CSR), a perennial herb with a rich history in traditional medicine, has demonstrated therapeutic potential against metabolic syndrome (MetS) through its active compounds, including proanthocyanidins, polysaccharides, and triterpenoids. MetS, a global health concern, encompasses interlinked conditions such as obesity, type 2 diabetes mellitus (T2DM), and inflammation. This review synthesizes recent findings on CSR's pharmacological and phytochemical properties, focusing on its role in ameliorating MetS. METHODS Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, relevant studies were retrieved from PubMed, Web of Science, and CNKI databases up to December 2024. Keywords included "Cynomorium Songaricum Rupr.", "Cynomorii Herba", "Suoyang", "Suo Yang", "Metabolic syndrome", "Proanthocyanidins", "Polysaccharides" and "Triterpenoids" and their combinations. Inclusion criteria emphasized studies exploring CSR's impact on MetS, while duplicate, low-quality studies and studies not written in Chinese, English, or unrelated were excluded. RESULTS A total of 92 studies were analyzed, revealing that CSR's active components exhibit multi-target effects. Proanthocyanidins reduce glucose absorption and oxidative stress, polysaccharides enhance insulin sensitivity and gut microbiota composition, and triterpenoids mitigate obesity and mitochondria damage. These mechanisms collectively contribute to the beneficial effects of CSR against MetS. CONCLUSION CSR presents a promising natural therapy for MetS, utilizing its pharmacologically active compounds to address core metabolic dysfunctions. Future studies should focus on clinical validation and safety assessments to facilitate CSR's integration into modern therapeutic regimens.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Qihao Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Jihang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China.
| |
Collapse
|
3
|
Luo D, Xu R, Jiang L, Zhu Y, Li H, Cao Y, Su Z, Chen Y. Unraveling the protective mechanisms and bioactive components of litchi polysaccharides in intestinal health. Int J Biol Macromol 2025:143383. [PMID: 40268031 DOI: 10.1016/j.ijbiomac.2025.143383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
In recent years, the rise in intestinal disease has driven the hunt for safer, cost-effective alternatives to traditional, side-effect-laden medications. Litchi polysaccharide (LP), derived from litchi pulp, has emerged as a potential intestinal protector, but its efficacy has not been well-established. Our study have demonstrated LP significantly preserves the integrity of the intestinal barrier in both Caenorhabditis elegans model and antibiotic-exposed mice. Furthermore, LP regulates the gut microbiota, promoting the dominance of beneficial bacteria such as Anaerostipes and Lachnoclostridium in antibiotic-exposed mice and elevating the levels of short-chain fatty acids (SCFAs). LP2-a, a key component making up 11.13 % of LP and with a molecular weight of 72,477 Da, has been isolated and identified as the main active agent. Its molecular structure, featuring galactose and arabinose and possessing a main chain composed of specific sugar units and side chains, is crucial for its protective effects. In C. elegans, LP2-a regulates the expression of intestinal structure-related genes, including up-regulating the expression of act-5 and down-regulating the levels of ajm-1, erm-1, and zoo-1, protecting the integrity of the intestinal barrier. This study provides a theoretical foundation for the potential use of LP, particularly LP2-a, in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Danxian Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Ruina Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Li Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Huangbo Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Zuanxian Su
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
4
|
Fang X, Zhang Y, Huang X, Miao R, Zhang Y, Tian J. Gut microbiome research: Revealing the pathological mechanisms and treatment strategies of type 2 diabetes. Diabetes Obes Metab 2025. [PMID: 40230225 DOI: 10.1111/dom.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025]
Abstract
The high prevalence and disability rate of type 2 diabetes (T2D) caused a huge social burden to the world. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. With in-depth research on the pathogenesis of T2D and growing advances in microbiome sequencing technology, the association between T2D and gut microbiota has been confirmed. The gut microbiota participates in the regulation of inflammation, intestinal permeability, short-chain fatty acid metabolism, branched-chain amino acid metabolism and bile acid metabolism, thereby affecting host glucose and lipid metabolism. Interventions focusing on the gut microbiota are gaining traction as a promising approach to T2D management. For example, dietary intervention, prebiotics and probiotics, faecal microbiota transplant and phage therapy. Meticulous experimental design and choice of analytical methods are crucial for obtaining accurate and meaningful results from microbiome studies. How to design gut microbiome research in T2D and choose different machine learning methods for data analysis are extremely critical to achieve personalized precision medicine.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Cheong KL, Chen W, Wang M, Zhong S, Veeraperumal S. Therapeutic Prospects of Undaria pinnatifida Polysaccharides: Extraction, Purification, and Functional Activity. Mar Drugs 2025; 23:163. [PMID: 40278284 DOI: 10.3390/md23040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Undaria pinnatifida, an edible brown seaweed that is widely consumed in East Asia, has gained increasing recognition for its health benefits. Among its bioactive compounds, polysaccharides have attracted significant attention due to their diverse biological activity. This review provides a comprehensive overview of recent advancements in the extraction, purification, structural characterization, and bioactivity of U. pinnatifida polysaccharides. We discuss state-of-the-art extraction techniques, including ultrasound-assisted, microwave-assisted, and enzyme-assisted extraction, as well as purification strategies such as membrane separation and chromatographic methods. Furthermore, we highlight their potential biological activity, including antioxidant, immunomodulatory, anticancer, gut health-promoting, and anti-hyperglycemic effects, along with their underlying mechanisms of action. By summarizing the latest research, this review aims to provide valuable insights into the development and application of U. pinnatifida polysaccharides in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenjie Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
6
|
Zhao M, Liu Z, Geng Y, Lv X, Xu J, Zhao X, Yu Z, Zhu R, Li M, Han F, Ma X, Gu N. Role of a low-molecular-weight polysaccharide from Boletus edulis Bull: Fr. in modulating gut microbiota and metabolic disorders. Int J Biol Macromol 2025; 309:142789. [PMID: 40210031 DOI: 10.1016/j.ijbiomac.2025.142789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study aimed to investigate the effects of Boletus edulis Bull: Fr. polysaccharide (BEP), extracted using a deep eutectic solvent based on l-lactic acid and glycine, on glucose and lipid metabolism in high-fat diet (HFD)-fed mice. The primary mechanism by which BEP improves symptoms of glucose and lipid imbalances involves the modulation of gut microbiota. Key beneficial bacteria, including S24-7, Lachnospiraceae, [Prevotella], and Lactobacillus, were significantly enriched in the intestines of BEP-treated mice, with abundances 2.48-, 1.62-, 6.33- and 2.60-fold higher, respectively, compared to the HFD group. In contrast, the abundance of harmful bacteria, particularly Desulfovibrio, was reduced by 1.81-fold. These microbial shifts contributed to the alleviation of intestinal mucus layer damage and a 50 % reduction in serum lipopolysaccharide (LPS) levels, a key driver of systemic inflammation, compared to the HFD group. As a result, BEP effectively inhibited LPS-induced activation of the hepatic TLR4/Myd88/MAPK signaling pathway, thereby normalizing the expression of proteins related to glucose and lipid metabolism. A fecal microbiota transplantation study further demonstrated that the gut microbiota changes induced by BEP were central to its anti-metabolic syndrome effects. Overall, BEP may serve as a dietary supplement for preventing and treating diet-induced metabolism disorders by targeting the gut microbiota.
Collapse
Affiliation(s)
- Meimei Zhao
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China
| | - Zhiqi Liu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Yuqi Geng
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Lv
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Jingyi Xu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Zhao
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Ziteng Yu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Mengcong Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Fang Han
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiao Ma
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Ning Gu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China.
| |
Collapse
|
7
|
Zhang J, Chen L, Zhao C, Chen Z, Xiao S, Yin X, Wu N, Yang L, Xu J, Zhou H, Wu Q, Shao R, Xu W. Polysaccharides from Cynanchum auriculatum Royle ex Wight ameliorate symptoms of hyperglycemia by regulating gut microbiota in type 2 diabetes mellitus mice. Int J Biol Macromol 2025; 299:139878. [PMID: 39818385 DOI: 10.1016/j.ijbiomac.2025.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level. Additionally, CRP at varying doses enhanced the mRNA expression of insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT-1), and glucose transporter 2 (GLUT-2). Following a 4-week CRP-H treatment, a significant reduction in the Firmicutes/Bacteroidetes ratio at the phylum level was observed, alongside a marked increase in the relative abundance of beneficial genera such as Limosillactobacillus and Prevotella. Overall, CRP-H displayed enhanced hypoglycemic properties by activating the IRS-1/PI3K/AKT-1/GLUT-2 pathway and enriching beneficial gut bacteria, including Prevotella and Limosillactobacillus. This study establishes a foundational framework for further development and application of Cynanchum auriculatum Royle ex Wight resources, emphasizing the hypoglycemic potential of CRP.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chengyu Zhao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuo Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shiqi Xiao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuemei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Lei Yang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jianda Xu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou 213003, China
| | - Hongcheng Zhou
- School of Medicine, Jiangsu Medical College, Yancheng 224051, China
| | - Qin Wu
- School of Medicine, Jiangsu Medical College, Yancheng 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
8
|
Ding J, Gou W, Ma M, Cui Y, Lyu B, Xu J, Wang Z, Zhao Q, Li Y, Hou W. Investigation of the fingerprint-activity relationship of Tremella fuciformis polysaccharides and its mitigating effect on radiation-induced intestinal injury. Int J Biol Macromol 2025; 304:140849. [PMID: 39938826 DOI: 10.1016/j.ijbiomac.2025.140849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The aim of this study was to conduct a comprehensive analysis of the relationship between the fingerprint of Tremella fuciformis polysaccharides (TFPs) sourced from China and their bioactivities, with an emphasis on identifying the most bioactive TFP variety that significantly mitigated radiation-induced intestinal injury (RIII). Firstly, the multi-fingerprints we developed indicated that TFPs were classified as acidic, primarily consisting of mannose, rhamnose, glucuronic acid, glucose, xylose, and fucose, with average molecular weight (Mw) ranging from 1.65 × 103 to 2.50 × 103 kDa. Subsequently, in vitro activity evaluations demonstrated variability in the antioxidant activities and the inhibitory effects on cancer cell proliferation among TFPs. Multiple linear regression analysis indicated a significant correlation between monosaccharide composition of TFPs and their bioactivity, whereas Mw did not exhibit a similar relationship. Notably, TFP sourced from Zhenjinhui (Gutian, Fujian) (i.e., TFP-2) and Shengkuo (Tongjiang, Sichuan) (i.e., TFP-23) exhibited the most significant bioactivities, both effectively mitigating RIII in mice, with TFP-23 proving to be more effective. Further investigations indicated that TFP-23 provided radioprotective benefits by rectifying RIII-induced dysbiosis of intestinal microbiota and increasing probiotic abundance. Consequently, this study not only clarifies the fingerprint-activity relationship of TFPs but also promotes the potential of TFP-23 as innovative agents for radiation protection.
Collapse
Affiliation(s)
- Juanjuan Ding
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China
| | - Mingwei Ma
- Fullbin Biotechnology (Tianjin) Co., Ltd., PR China
| | - Yating Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China
| | - Bohai Lyu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jingfei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China
| | - Zhiyun Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China
| | - Qian Zhao
- Nankai Wangdingdi Hospital, Tianjin 300191, PR China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China.
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, PR China.
| |
Collapse
|
9
|
Pang L, Huang Y, Li R, Guo L, Man C, Yang X, Jiang Y. Effects of postbiotics produced by Lactobacillus plantarum JM015 isolated from traditional fermented dairy products on Salmonella-induced intestinal inflammation: A preventive strategy. Food Chem 2025; 469:142549. [PMID: 39708644 DOI: 10.1016/j.foodchem.2024.142549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Huang
- Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Keung WS, Zhang WH, Luo HY, Chan KC, Chan YM, Xu J. Correlation between the structures of natural polysaccharides and their properties in regulating gut microbiota: Current understanding and beyond. Carbohydr Polym 2025; 352:123209. [PMID: 39843110 DOI: 10.1016/j.carbpol.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Natural polysaccharides have complex structural properties and a wide range of health-promoting effects. Accumulating evidence suggests that the effects are significantly mediated through fermentation by gut microbiota. In recent years, the relationship between the structures of natural polysaccharides and their properties in regulating gut microbiota has garnered significant research attention as researchers attempt to precisely understand the role of gut microbiota in the bioactivities of natural polysaccharides. Progress in this niche, however, remains limited. In this review, we first provide an overview of current research investigating this structure-property relationship. We then present a detailed correlation analysis between the structural characteristics of 159 purified natural polysaccharides and their effects on gut microbiota reported over the past two decades. The analysis revealed that diverse gut bacteria show specific correlations with the molecular weight, glycosidic linkages, and monosaccharide composition of natural polysaccharides. Multifaceted molecular mechanisms, including carbohydrate binding, enzymatic degradation, and cross-feeding, were proposed to be collectively involved in these correlations. Finally, we offer our perspective on future studies to further improve our understanding of the relationship between polysaccharide structure and gut microbiota regulation.
Collapse
Affiliation(s)
- Wing-Shan Keung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
11
|
Chen Z, Li L, Guo L, Kang C, Cui X, Pu S, Wang C, Yang Y. A Gastrodia elata polysaccharide for restoring intestinal immunocompromise. Int J Biol Macromol 2025; 307:141781. [PMID: 40054798 DOI: 10.1016/j.ijbiomac.2025.141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
We here extracted a polysaccharide fragment from Gastrodia elata, characterized by a main chain connected via (1 → 4)-α-D-Glcp bonds, with terminal α-D-Glcp-(1→) linked to the main chain through O-6 of (1 → 4,6)-α-D-Glcp and O-3 of (1 → 3,4)-α-D-Glcp (SRGP). Both in vitro and in vivo experiments demonstrated that SRGP activates the TLR4/NF-κB signaling pathway, exerting immunomodulatory effects and alleviating cyclophosphamide (CTX)-induced intestinal mucosal damage in mice. High-throughput 16S rRNA sequencing further revealed that SRGP restores gut microbiota composition and enhances the abundance of specific bacterial populations. Additionally, SRGP improves CTX-induced intestinal mucosal damage by upregulating tight junction proteins, mitigating gut microbiota dysbiosis, and regulating both the overall microbial community and the levels of specific bacteria.
Collapse
Affiliation(s)
- Zhuowen Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ling Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Lanping Guo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanzhi Kang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Shulin Pu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
12
|
Zhao Y, Sun S, Liu J, Zheng M, Liu M, Liu J, Liu H. Investigation of the protective mechanism of paeoniflorin against hyperlipidemia by an integrated metabolomics and gut microbiota strategy. J Nutr Biochem 2025; 137:109831. [PMID: 39653155 DOI: 10.1016/j.jnutbio.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of hyperlipidemia is gradually increasing globally, posing a serious threat to public health. Previous studies have shown that paeoniflorin (PF) effectively improved abnormal lipid metabolism in atherosclerotic mice. However, the anti-hyperlipidemia effect and potential mechanism of paeoniflorin remain unclear. The gut microbiota (GM) is closely related to hyperlipidemia. This study was aimed to investigate effects of PF on improving the health of high-fat diet (HFD)-induced hyperlipidemic mice by modulating GM. A hyperlipidemic mouse model was established using an HFD, and the hypolipidemic effect of PF was detected in vivo. Besides16S ribosomal RNA sequencing and SCFAs metabolic analysis were performed to explore the lipid-lowering mechanism of PF. Importantly, fecal microbiota transplantation (FMT) experiments were conducted to verify the lipid-lowering mechanism of PF. The results showed that PF significantly inhibited the development of hyperlipidemia, reduced serum lipid and inflammatory cytokine levels, and improved liver steatosis. In addition, 16S rRNA sequencing revealed that PF treatment significantly increased the relative abundance of Lactobacillus, Coprococcus, Blautia, Roseburia, and Bacteroides while reducing the relative abundance of Prevotella. Meanwhile, the results of targeted metabolomics indicate that PF therapy can effectively restore butyric acid and propionic acid levels in the intestine. The FMT experiments further demonstrated that PF improved hyperlipidemia by regulating GM and its metabolites. The above results provide a valuable theoretical basis for the development and application of PF as a functional food for hyperlipidemia.
Collapse
Affiliation(s)
- Youwei Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shijie Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiawen Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
13
|
Sheng XY, Zhang HJ, Chen XJ, Wang KW. Degradation Polysaccharides from Benincasa hispida var. chieh-qua How: Unveiling Bioactive Properties of Degraded Compounds. Chem Biodivers 2025; 22:e202402204. [PMID: 39420159 DOI: 10.1002/cbdv.202402204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
This study reported an effective method for the degradation of Chieh-qua (Benincasa hispida var. Chieh-qua How) polysaccharides (BHCP) by a hydrogen peroxide-ascorbic acid oxidation (H2O2-VC) system. The degradation conditions were optimized using a Box-Behnken response surface design as concentration of H2O2-VC 19.5 mM, degradation temperature 46.4 °C and degradation time 1.0 h. The average molecular weight was decreased and total sugar content was raised of the degraded polysaccharide (DBHCP). Two refined degraded polysaccharides (DBHCP-1, DBHCP-2) were purified and prepared, and their structures were analyzed by chemical and spectral analysis. The in vitro experiments showed that degraded polysaccharides (DBHCP and DBHCP-1) have better antioxidant and anti-tyrosinase activity than natural polysaccharide BHCP. These findings support the potential application of Chieh-qua polysaccharides in the food and medical industries.
Collapse
Affiliation(s)
- Xin-Yuan Sheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Hai-Jiang Zhang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an, 223003, P. R. China
| | - Xin-Juan Chen
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Kui-Wu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| |
Collapse
|
14
|
Zhang H, Tian Y, Xu C, Chen M, Xiang Z, Gu L, Xue H, Xu Q. Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer. Cell Death Discov 2025; 11:78. [PMID: 40011436 DOI: 10.1038/s41420-025-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Miaomiao Chen
- Department of Radiology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
15
|
Zhou W, He Y, Lv JM, Wang R, He H, Wu M, Zhang R, He J. Preparation technologies, structural characteristics and biological activities of polysaccharides from bee pollen: A review. Int J Biol Macromol 2025; 306:141545. [PMID: 40020838 DOI: 10.1016/j.ijbiomac.2025.141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Bee pollen, a natural honeybee product, is hailed as a treasure trove of human nutrition. Among the nourishing substances of bee pollen, the constituents with a low molecular weight (such as phenolic acids and flavonoid glycosides) have been extensively studied in the past decades, whereas the polysaccharides with a relatively high molecular weight have received much less attention. To deepen our understanding of bee pollen polysaccharides, this review summarizes the published findings related to their preparation technologies, structural characteristics and biological activities. Among the preparation technologies, ultrasonic-assisted extraction is currently the most effective technology for the recovery of polysaccharides from bee pollen, because ultrasound can crack the pollen exine into fragments and facilitate the release of polysaccharides present in the pollen intine. The preliminary structures, including the molecular weight and monosaccharide composition, of bee pollen polysaccharides have been widely reported, but their fine structures have not fully elucidated. Moreover, bee pollen polysaccharides have antioxidant, immunomodulatory, and antitumor activities, exhibiting potential application in functional foods. Furthermore, bee pollen polysaccharides can modulate the composition of gut microbiota and promote the production of short-chain fatty acids. It is expected that this review can provide inspiration for the development and utilization of bee pollen polysaccharides.
Collapse
Affiliation(s)
- Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuzhen He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ji-Min Lv
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Xianghu Laboratory, Hangzhou 311231, PR China
| | - Runqi Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huaiye He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
16
|
Khandwal D, Patel S, Pandey AK, Mishra A. A Comprehensive, Analytical Narrative Review of Polysaccharides from the Red Seaweed Gracilaria: Pharmaceutical Applications and Mechanistic Insights for Human Health. Nutrients 2025; 17:744. [PMID: 40077614 PMCID: PMC11901860 DOI: 10.3390/nu17050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Gracilaria species, a widely distributed genus of red macroalgae, have gathered significant attention for their diverse medical applications attributable to their bioactive sulphated polysaccharides (SPs). This review examines the global narrative of various Gracilaria SP applications in terms of their therapeutic potential and mechanistic insights into the use of these SPs against a range of medical conditions, including cancer, inflammation, neurodegenerative disorders, diabetes, and immune dysfunctions. SPs extracted from G. lemaneiformis and G. fisheri have demonstrated potent anti-tumour activities by inducing apoptosis through various mechanisms, including the upregulation of CD8+ T cells and IL-2, inhibition of EGFR/MAPK/ERK signalling pathways, and activation of the Fas/FasL pathway. Selenium nanoparticles (SeNPs) conjugated with SPs further enhanced the targeted delivery and efficacy of these SPs against glioblastoma by the downregulation of ROS followed by the activation of p53, MAPK, and AKT pathways. The anti-inflammatory properties of SPs are evidenced by key suppressive inflammatory markers like NO, TNF-α, IL-1β, and IL-6 in mutant rodent models. SPs from G. cornea and G. birdiae effectively reduce neutrophil migration and vascular permeability, offering potential treatments for acute inflammation and conditions such as colitis by modulating pathways involving COX-2 and NF-κB. Neuroprotective effects by SPs (from G. cornea and G. gracili) studied in 6-OHDA-induced rats, which mitigate oxidative stress and enhance neuronal cell viability, facilitate the management of neurodegenerative diseases like Parkinson's and Alzheimer's. Regarding the hypoglycaemic effect, SPs from G. lemaneiformis exhibit a glucose-modulating response by improving insulin regulation, inhibiting α-amylase activity, repairing pancreatic β-cells, and modulating lipid metabolism. Moreover, immunomodulatory activities of Gracilaria-derived SPs include the stimulation of macrophages, T-cell proliferation, and cytokine production, underscoring their potential as functional food and immunotherapeutic agents. Recently, Gracilaria-derived SPs have been found to modulate gut microbiota, promote SCFA production, and enhance gut microbials, suggesting their potential as prebiotic agents (G. rubra and G. lemaneiformis). This review highlights the multifaceted medical applications of Gracilaria sulphated polysaccharides, providing detailed mechanistic insights and suggesting avenues for future clinical translation and therapeutic innovations.
Collapse
Affiliation(s)
- Deepesh Khandwal
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Patel
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Abhay Kumar Pandey
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Gu FT, Li JH, Zhao ZC, Zhu YY, Huang LX, Wu JY. Metabolic outcomes of Cordyceps fungus and Goji plant polysaccharides during in vitro human fecal fermentation. Carbohydr Polym 2025; 350:123019. [PMID: 39647938 DOI: 10.1016/j.carbpol.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
This study was to assess the digestion and colonic fermentation of two bioactive polysaccharides, EPS-LM and LBPS, and the subsequent influences on human gut microbiota through simulated gastrointestinal systems. EPS-LM, an exopolysaccharide isolated from mycelial culture of a medicinal fungus Cordyceps sinensis Cs-HK1, was characterized as a heteropolysaccharide consisting of Man(108):Gal(52.7):Glc(29.2) (molar ratio) with an average molecular weight (MW) 5.513 × 106. LBPS was isolated from a well-known medicinal plant (Lycium barbarum L.) which was also characterized as a heteropolysaccharide (1.236 × 105 MW). Both polysaccharides were highly resistant to saliva, gastric and small-intestine digestion with negligible MW reduction and release of reducing sugars but were quickly degraded to lower MW during in vitro human fecal fermentation. They were consumed as a carbon source by the gut bacteria to produce short-chain fatty acids (SCFAs). In comparison, the carbohydrate content of EPS-LM was more completely consumed than LBPS and there were also notable differences in consumption of specific monosaccharides and production of specific SCFAs, propionic and butyric acid, and relative abundance of gut bacterial populations between EPS-LM and LBPS group. The results suggest that metabolic outcomes and modulating effects of EPS-LM and LBPS on the gut microbiota are highly dependent on their molecular composition.
Collapse
Affiliation(s)
- Fang Ting Gu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jun Hui Li
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Zhejiang University Shandong (Linyi) Institute of Modern Agriculture, Linyi, China
| | - Zi Chen Zhao
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yan Yu Zhu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lin Xi Huang
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jian Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Lu H, Liu S, Zhang S, Chen J, Chen Q. Suppression of Alzheimer's disease by Agaricus sinodeliciosus var. Chaidam exopolysaccharide with amyloid-β clearance activity via gut microbiota-metabolite regulation. Int J Biol Macromol 2025; 305:141048. [PMID: 39954909 DOI: 10.1016/j.ijbiomac.2025.141048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Amyloid-β (Aβ) aggregation is a hallmark of Alzheimer's disease (AD), characterized by cognitive impairment, and there remains a lack of effective functional compound with Aβ clearance activity. To elucidate the effect of exopolysaccharide (EPS) extracted from Agaricus sinodeliciosus var. Chaidam on Aβ1-42- induced AD rat and uncover the underlying mechanism, the neuroprotective activity of EPS was evaluated using immunofluorescence, immunohistochemistry, western blot, RT-qPCR, microbiomics and metabolomics. The results demonstrated that EPS exhibited significant anti-AD efficacy, as evidenced by improved cognitive function and spatial memory, balanced brain redox status, suppressed neuroinflammatory responses. EPS substantially reduced Aβ1-42 accumulation in the hippocampus by activating Aβ-phagocytic microglia through the mTOR-HIF-1α pathway. Importantly, EPS reconstructed gut microbiota composition by increasing the relative abundance of Ruminococcaceae and reduced Erysipelotrichaceae. The reshaped gut microbiome and the formation of the metabolite serotonin were associated with behavioral alterations, neuroinflammation, and brain oxidative status. Thus, EPS significantly alleviated cognitive deficit and neuroinflammation in Aβ1-42-induced AD rats, potentially by enhancing microglial phagocytosis of Aβ1-42 and modulating the gut microbiome and serotonin production. Collectively, EPS from A. sinodeliciosus var. Chaidam polysaccharide may serve as a novel Aβ1-42-targeted approach for anti-AD therapy.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Shenliang Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jicheng Chen
- College of Food Science, Fujian Agriculture & Forestry University, Fuzhou, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
19
|
Wang X, Zhang J, Zhong R, Chen G, Qi H, Cao Y, Lan Y. Consumption of oleogel alleviates lipid metabolism disorders in high-fat diet-fed rats by inhibiting LPS-induced gut microbiota-mediated inflammation. Food Funct 2025; 16:1130-1141. [PMID: 39831811 DOI: 10.1039/d4fo02974g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study investigated the effect of oleogel consumption on lipid metabolism, gut microbiota and low-grade inflammation in rats fed with a high-fat diet. Male SD rats received either a control diet or high-fat diets for six weeks. The high-fat diets included a regular high-fat diet and high-fat diets in which lard was replaced with pure sunflower oil, un-gelled sunflower oil containing a dispersed gelator, or gelled sunflower oil with the gelator (oleogel). Results showed that compared to regular fat, pure sunflower oil and un-gelled sunflower oil consumption, oleogel consumption significantly suppressed weight gain and adipose tissue accumulation as well as serum and liver lipid accumulation. Microscopic observations further confirmed that oleogel intake alleviated white adipose tissue and liver steatosis caused by high-fat diet. Ex vivo biodistribution studies indicated an increased movement of TAGs toward the large intestine in the oleogel group. In the meantime, the dysregulation of gut microbiota was restored by reducing the Firmicutes/Bacteroidetes ratio and the relative abundance of Desulfobacterota and Proteobacteria. The oleogel group also exhibited reduced LPS levels in faeces, serum and liver. Furthermore, oleogel consumption alleviated inflammation, including decreased gene expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, as well as suppressed protein expression of TLR4 and NF-κB in the liver. These results provide theoretical guidance for the regulation of oleogel properties and the potential application of oleogels as healthy fat replacers in high-fat diets.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, Guangdong, P.R. China
| | - Gangchao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Hongjin Qi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
20
|
Wang H, Zhou F, Shen M, Ma R, Yu Q. Classification of Nanomaterial Drug Delivery Systems for Inflammatory Bowel Disease. Int J Nanomedicine 2025; 20:1383-1399. [PMID: 39925683 PMCID: PMC11804237 DOI: 10.2147/ijn.s502546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, primarily arises from defects in the colonic barrier, imbalances of the gut microbiota, and immune response issues. These complex causes make it difficult to achieve a complete cure. Patients with IBD frequently experience recurrent abdominal pain and bloody diarrhea, while severe cases may result in intestinal obstruction, perforation, and cancer. Lifelong maintenance therapy may thus be needed to manage these symptoms; however, traditional IBD drugs, such as 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are often associated with problems including poor solubility, instability, and ineffective targeting, as well as causing serious side effects in non-target tissues. Nanomaterial drug delivery systems (NDDS) have recently shown great promise in optimizing drug distribution, solubility through biocompatible coatings, enhancing bioavailability via PEGylation and reducing side effects. These formulations can enhance a drug's pharmacokinetics by modifying its properties, improve its ability to cross barriers, and boost bioavailability. In addition, NDDS can enable targeted delivery, increase local drug concentrations, improve efficacy, and reduce side effects, as well as protecting active drug molecules from immune recognition and protease degradation. The clinical use of these systems for treating IBD, however, requires further research. This review summarizes the classification of NDDS for IBD, and concludes that, despite ongoing challenges, NDDS may represent an effective treatment approach for IBD. In summary, NDDS enhance the targeted delivery of therapeutic agents to specific cells or tissues, thereby improving drug bioavailability and therapeutic efficacy. These systems effectively surmount biological barriers, facilitating efficient drug delivery to targeted sites, which is crucial for attaining optimal therapeutic outcomes. This review contributes to a deeper understanding of how the physicochemical properties of NDDS influence pharmacological behavior in vivo and can expedite their clinical translation.
Collapse
Affiliation(s)
- Haichen Wang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Feifei Zhou
- Department of Gastroenterology, Suzhou City Wuzhong District Chengnan Street Community Health Service Center, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Mengdan Shen
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Ronglin Ma
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Qiang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| |
Collapse
|
21
|
Ni Z, Chen L, Qian X, Yong Y, Wu M, Li Y, Li J, Wang Y, Li L, Shao Y, Chen A. Preliminary characterization of Ramaria botrytoides polysaccharide RB-P1-1 and analysis of its hypoglycemic effects by altering the gut microbiota and metabolites in mice with type 2 diabetes mellitus. Int J Biol Macromol 2025; 289:138774. [PMID: 39674485 DOI: 10.1016/j.ijbiomac.2024.138774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Gut microbiota has a symbiotic relationship with the host and is closely linked to the development of type 2 diabetes mellitus (T2DM). Polysaccharides are natural bioactive compounds with beneficial effects on T2DM; however, the mechanisms underlying their effects remain unclear. This study investigated the hypoglycemic effects of a purified polysaccharide, RB-P1-1, from Ramaria botrytoides and assessed its association with gut microbiota and metabolite changes using 16S rDNA sequencing and liquid chromatography-mass spectrometry, respectively. Hypoglycemic effects were evaluated after microbial community restoration via fecal microbiota transplantation. RB-P1-1 significantly improved hyperglycemia profiles and reshaped gut microbiota, increasing the abundance of Alistipes, Bacteroides, Ruminococcus, Odoribacter, Akkermansia, and Turicibacter. RB-P1-1 modulated microbiota metabolites associated with hypoglycemic effects, including pyridoxamine, L-histidine, quercetin, 3-phosphonopropionic acid, oleoylethanolamide, 3-ketocholanic acid, 4-phenylbutyric acid, LysoPC(P-16:0/0:0), LysoPC(18:2), and short-chain fatty acids, and altered various metabolic pathways involved in T2DM development. Gut microbiota that showed altered abundance were correlated with metabolites that showed altered concentration. Gut microbiota isolated from the RB-P1-1-treated group alleviated the symptoms associated with T2DM. These results suggest RB-P1-1 is an effective active ingredient in the treatment of T2DM by modulating gut microbiota and metabolites.
Collapse
Affiliation(s)
- Zaizhong Ni
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lingzhi Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Qian
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yidan Yong
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Mengmeng Wu
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yihao Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jinting Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yanan Wang
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lulu Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ying Shao
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Anhui Chen
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China; Jiangsu Province universities key laboratory (construction) of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou 221018, China.
| |
Collapse
|
22
|
Zhang C, Hao L, Zhu Y, Zhang X, Zhao H, Zhang B. In vitro fermentation characteristics and modulation effects of polysaccharide fractions from Schisandra sphenanthera on intestinal microflora. Int J Biol Macromol 2025; 289:138771. [PMID: 39701254 DOI: 10.1016/j.ijbiomac.2024.138771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Schisandra Sphenanthera polysaccharides fractions (SSPs), namely SSP40, SSP60, and SSP80, were obtained by gradient precipitation with 40 %, 60 %, and 80 % (v/v) ethanol, respectively. It was found that gradient ethanol precipitation (GEP) significantly affected the physicochemical and structural characteristics of SSPs, including molecular weight, monosaccharide composition, and surface morphology. Compared to fractions SSP40 and SSP60, SSP80 was observed to have a lower molecular weight (22.58 kDa) and certain specific monosaccharide composition, such as lower glucose content and higher galactose, arabinose, rhamnose, and galacturonic acid content. Furthermore, the apparent porosity of the SSPs increased with increasing ethanol concentration in GEP. After fermentation at 37 °C for 48 h, fraction SSP80 prominently promoted the production of more short-chain fatty acids (SCFAs), increasing from an initial 1.39 ± 0.08 to 26.75 ± 0.54 mmol/L. The SSP fraction types extracted by GEP greatly affected the modulation of the intestinal microflora at different levels. The SSP80 fraction with excellent structure demonstrated the best ability to modulate the intestinal microflora by increasing the relative abundance of Bacteroides, Faecalibacterium and Dialister and decreasing the relative abundance of Escherichia-Shigella. The remarkable differences in modulating the intestinal microflora confirmed the importance of carefully selecting GEP to fraction SSPs that promote health.
Collapse
Affiliation(s)
- Chen Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lei Hao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadong Zhu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojia Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
23
|
Li G, He Y, Liew A, Huang C, Song B, Jia X, Malairaj S, Zhong S, Cheong KL. Dietary polysaccharides from dragon fruit pomace, a co-product of the fruit processing industry, exhibit therapeutic potential in high-fat diet-induced metabolic disorders. Food Res Int 2025; 203:115818. [PMID: 40022344 DOI: 10.1016/j.foodres.2025.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
The increasing prevalence of metabolic disorders, often associated with high-fat diets (HFD), highlights the need for new therapeutic approaches, especially from natural sources. Dragon fruit pomace, a by-product of the fruit processing industry, is rich in polysaccharides with potential health benefits. This study investigates the effects of dragon fruit pomace-derived polysaccharides (PDPS) in alleviating HFD-induced metabolic dysfunction. Treatment with PDPS in mice fed a high-fat diet led to significant decreases in body weight increase, abdominal fat accumulation, total cholesterol, triglycerides, and low-density lipoprotein cholesterol (LDL-C) concentrations, along with a notable elevation in high-density lipoprotein cholesterol (HDL-C) concentrations. PDPS also improved glucose tolerance and prevented fat accumulation in the liver and adipose tissue. Additionally, PDPS exhibited anti-inflammatory properties, evidenced by reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the liver. Gut microbiota analysis indicated a shift toward beneficial bacteria, such as Romboutsia, Lachnospiraceae_NK4A136_group, Coriobacteriaceae_UCG-002, and Blautia. These findings suggest that PDPS may mitigate HFD-induced metabolic issues by enhancing lipid metabolism, glycemic control, and gut health, positioning it as a promising, sustainable functional ingredient for dietary interventions aimed at managing metabolic disorders.
Collapse
Affiliation(s)
- Guanghui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang City 524088, China
| | - Yunhua He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang City 524088, China; Guangdong Meichen Biotechnology Company Limited, Guangdong Suixi Dragon Fruit Science and Technology Small Courtyard, Zhanjiang City China
| | - Ahluk Liew
- Guangdong Meichen Biotechnology Company Limited, Guangdong Suixi Dragon Fruit Science and Technology Small Courtyard, Zhanjiang City China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang City 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang City 524088, China
| | - Sathuvan Malairaj
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Kancheepuram District, Chennai Tamil Nadu, India
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang City 524088, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang City 524088, China.
| |
Collapse
|
24
|
Yang D, Li MM, Xu HX, Wang WJ, Yin ZP, Zhang QF. Retrograded starch as colonic delivery carrier of taxifolin for treatment of DSS-induced ulcerative colitis in mice. Int J Biol Macromol 2025; 288:138602. [PMID: 39672437 DOI: 10.1016/j.ijbiomac.2024.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Taxifolin, a natural dihydroflavonol compound, possesses notable anti-inflammatory properties and regulatory effects on intestinal microbiota. In this study, gelatinized-retrograded corn starch (GCS) was utilized as a carrier for colonic delivery of taxifolin, and its therapeutic efficacy against dextran sulfate sodium (DSS)-induced colitis in mice were systematically investigated. Taxifolin can integrate into the helical structure of starch, and the formation of GCS-Taxifolin complexes (GCS-Tax) significantly delayed the release of taxifolin in vitro. After oral administration of GCS-Tax, fecal excretion of taxifolin increased from 0.42 % to 10.89 % within 24 h compared to free taxifolin. Moreover, GCS-Tax facilitated the production of short-chain fatty acid in mice and effectively alleviated DSS-induced colitis symptoms, including weight loss, bloody stools, and colonic tissue damage. Additionally, GCS-Tax significantly suppressed proinflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and lipopolysaccharide (LPS), while elevating anti-inflammatory interleukin-10 (IL-10) level in mice serum. Furthermore, it restored intestinal mucosal barrier function by upregulating the expression of Mucin 2, Occludin, and zonula occludens-1 (ZO-1), reducing Beclin 1 expression, and exhibited hepatoprotective effects by enhancing total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities. High-throughput sequencing analysis revealed that GCS-Tax improved intestinal flora diversity, reducing inflammation-related Bacterium 1 and Staphylococcus, while promoting the abundance of beneficial bacteria like Lachnospiraceae.
Collapse
Affiliation(s)
- Dan Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mang-Mang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai-Xia Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2025; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
26
|
Zhang Y, Ji W, Qin H, Chen Z, Zhou Y, Zhou Z, Wang J, Wang K. Astragalus polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner. Carbohydr Polym 2025; 349:122829. [PMID: 39643403 DOI: 10.1016/j.carbpol.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Natural polysaccharides from Astragalus membranaceus have been shown to relieve ulcerative colitis (UC). However, the mechanism and causal relationship between the gut microbiota and Astragalus polysaccharides (APS) treatment of UC are unclear. The results of the present study showed that APS ameliorated colonic injury and the disruption of the gut microbiota and restored intestinal immune homeostasis in mice with DSS-induced colitis. Meanwhile, we found that APS treatment was ineffective in antibiotic-treated colitis mice but was effective when FMT (Fecal microbiota transplantation) was performed on UC mice using APS-treated mice as donors. APS increased the proportion of relevant microbiota that produce SCFAs and both direct administration of APS and administration of APS-adjusted gut microbiota significantly promoted the production of SCFAs in colitis mice. We demonstrated that APS dually inhibited NF-κB activation via the TLR4 and HDAC3 pathways and improved the balance in Th17/Treg cells in UC mice. In conclusion, our study revealed that APS is a promising prebiotic agent for the maintenance of intestinal health and demonstrated that APS may ameliorate colitis in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Hailong Qin
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zhihong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
27
|
Abd El-Salam MH, El-Shibiny S, Assem FM, El-Sayyad GS, Hasanien YA, Elfadil D, Soliman TN. Impact of Fermented Milk On Gut Microbiota And Human Health: A Comprehensive Review. Curr Microbiol 2025; 82:107. [PMID: 39888432 DOI: 10.1007/s00284-025-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The beneficial impact of gut microbiota on human health has encouraged studies on factors modulating it. Among the different factors, diet plays a vital role in this area. Many studies on animals and humans have been concerned with the effects of fermented milk products on gut microbiota and how they relate to health benefits. Yoghurt, kefir, Koumiss, and fermented kinds of milk made using different probiotic strains were tested for their capability to modulate gut microbiota. It is apparent that the microflora present in fermented milk, specifically probiotics, are capable of enduring the gastrointestinal tract's adverse conditions primarily through transit microorganisms. Meanwhile, they can alter the gut microbiota in several ways that benefit human health. The present article gives a comprehensive overview of the modulation of gut microbiota by consumption of fermented milk, particularly those containing probiotics, and their impact on human health.
Collapse
Affiliation(s)
| | | | | | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Yasmeen A Hasanien
- Microbiology Laboratory, Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | | |
Collapse
|
28
|
Shi J, Liu Y, Zhang Z, Zhong X, Cao Y, Ni H, He Q, Wang Z, Liu Y, Chen Q, Wei J, Wang H, Gong L, Xie C, Hou J, Wu W. Zexie-Baizhu Decoction ameliorates non-alcoholic fatty liver disease through gut-adipose tissue crosstalk. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118700. [PMID: 39182702 DOI: 10.1016/j.jep.2024.118700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zexie-Baizhu Decoction (AA), a Chinese Classical Formula composed of Alisma orientalis (Sam.) Juzep. and Aractylodes Macrocephala Koidz in the specific ratio of 5:2, has a long history of use in treating metabolic disorders. Recent studies have demonstrated AA's ameliorative effects on non-alcoholic fatty liver disease (NAFLD); however, the mechanism underlying its action on the gut and adipose tissue, key regulators of metabolism, have not been fully explored. AIM OF THE STUDY This study aimed to investigate the mechanisms by which AA regulates the homeostasis of gut and adipose tissue in NAFLD. MATERIALS AND METHODS AA (1500 mg/kg/day) or vehicle was administrated to the high-fat diet-induced and normal chow-fed mice (C57BL/6J). Plasma, the liver, gut microbiota, bile acids, and short-chain fatty acids in the gut, were systematically investigated. RNA sequencing analysis, reverse transcription quantitative real-time PCR, and Western Blotting were performed on the epididymal white adipose tissues (eWAT) to explore AA's influence on NAFLD. Lipidomics of the liver and eWAT were analyzed by liquid chromatography-mass spectrometry and desorption electrospray ionization mass spectrometry imaging. RESULTS Our study demonstrated that AA administration effectively alleviated liver injury induced by NAFLD, as evidenced by reduced hepatic fat accumulation and inflammation. Mechanistically, AA modulated the composition of the gut microbiota, promoting the growth of beneficial bacteria such as Akkermansia muciniphila and restoring the balance between Firmicutes and Bacteroidetes. Furthermore, AA regulated the levels of bile acids and short-chain fatty acids in the intestine, plasma, and liver. Correspondingly in the eWAT, AA administration activated bile acid receptor (Gpbar1) and short-chain fatty acid receptor (Ffar2), facilitating lipid breakdown and attenuating triglyceride accumulation. Transcriptome analysis revealed that AA influenced gene expression related to fatty acid metabolism, thermogenesis, insulin resistance, AMPK signaling, and the tricarboxylic acid (TCA) cycle, thereby improving NAFLD at the transcriptional level. Additionally, AA treatment significantly altered the lipid composition in the liver, reducing levels of diacylglycerols, triacylglycerols, phosphatidylserines, and cholesterol esters, while increasing levels of phosphatidic acids, phosphatidylethanolamines, and sphingomyelins. CONCLUSION Our study builds a connection between the gut and adipose tissue to understand the mechanism of AA on alleviating NAFLD, providing new insights into the development of targeted therapies for this condition.
Collapse
Affiliation(s)
- Jingying Shi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianchun Zhong
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Cao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ni
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qingqing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhaojun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yameng Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinhua Chen
- Department of Pharmaceutical, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Jianming Wei
- Shanghai GuoChuang Pharmaceutical Co.Ltd., Shanghai, China
| | - Haibo Wang
- Shanghai GuoChuang Pharmaceutical Co.Ltd., Shanghai, China
| | - Likun Gong
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cen Xie
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wanying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
29
|
Pan L, Wang L, Zeng Z, Zhang Z, Zheng B, Zhang Y. Chemical structure and prebiotic activity of a Dictyophora indusiata polysaccharide fraction. Food Chem 2025; 463:141086. [PMID: 39241418 DOI: 10.1016/j.foodchem.2024.141086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate the chemical structure and prebiotic activity of a Dictyophora indusiata polysaccharide fraction DIP0p. Our results indicated that DIP0p belongs to a heteropolysaccharide composed of glucose, galactose, mannose and xylose, accounting for 53.25 %, 24.18 %, 19.19 % and 3.37 %, respectively. Methylation and NMR results suggested that the main glycosidic bonds of DIP0p is →3)-Glcp-(1 → with →4)-Glcp-(1→, →3,4)-Glcp-(1→, →3,4)-Galp-(1 → and →6)-Manp-(1 → branches. In addition, DIP0p increased the abundance of benificial bacteria during the in vitro fecal fermentation, including Phascolarctobacterium, Parabacteroides and Bifidobacterium. It is remarkable that DIP0p improved the level of acetic acid, propionic acid, and butyric acid of the fermentation system, which were 1.31, 1.52, and 2.64 folds higher than the Controls, respectively. In summary, this study comprehensively analyzed the structure and probiotic activity of DIP0p, which providing a theoretical basis for the development of the functional foods.
Collapse
Affiliation(s)
- Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
30
|
Song W, Zhang T, Wang Y, Xue S, Zhang Y, Zhang G. Glycyrrhiza uralensis Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice. Nutrients 2025; 17:225. [PMID: 39861355 PMCID: PMC11767424 DOI: 10.3390/nu17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES Polysaccharides from Glycyrrhiza are known to have several bioactive effects. Previous studies have found that low-molecular-weight Glycyrrhiza polysaccharide (GP1) is degraded by Muribaculum_sp_H5 and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied. In this study, we aimed to reveal the immune enhancement effect and mechanism of GP1 on healthy mice. METHODS The cytotoxicity and immunomodulatory activity of GP1 were analyzed by cell experiment; the effects of GP1 on antioxidation, immune regulation and gut microbiota structure of healthy body were studied in vivo. In addition, the mechanism of GP1 enhancing immune response of healthy body was analyzed by multi-omics. RESULTS The results show that GP1 enhanced the immune function of healthy mice by increasing the index of immune organs, improving the organizational structure of immune organs, and increasing the secretion of immune cytokines and immunoglobulin. GP1 also increased the contents of antioxidant factors such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in various organs and reduced the content of oxide malondialdehyde (MDA), thus enhancing the body's antioxidant capacity, promoting cell proliferation and prolonging life. Moreover, GP1 promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Muribaculum, Prevotellaceae_UCG-001, and Paramuribaculum, and the production of characteristic metabolites (collectively referred to as postbiotics), including α-tocopherol, arachidonic acid, melibiose, taurine, and nicotinic acid. These beneficial bacteria and postbiotics have been proven to have health maintaining functions. CONCLUSIONS GP1 promoted the proliferation of beneficial bacteria and increased the production of postbiotics, which should be the mechanism of its beneficial effect. It is expected to be a promising immune dietary supplement.
Collapse
Affiliation(s)
- Wangdi Song
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Taifeng Zhang
- Testing Center of Xinjiang Tianye Co., Ltd., Shihezi 832099, China
| | - Yunyun Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Shengnan Xue
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yan Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
31
|
Cai C, Song Z, Xu X, Yang X, Wei S, Chen F, Dong X, Zhang X, Zhu Y. The neurotoxicity of acrylamide in ultra-processed foods: interventions of polysaccharides through the microbiota-gut-brain axis. Food Funct 2025; 16:10-23. [PMID: 39611232 DOI: 10.1039/d4fo03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Ultra-processed foods (UPFs) have become popular in recent years, however, the detrimental effects of their excessive consumption have also become evident. Acrylamide (AA), a processing hazard present in UPFs, can further aggravate the harmful effects of UPFs. AA can cause significant damage to both the intestinal barrier and gut microbiota, thereby affecting the nervous system through the microbiota-gut-brain (MGB) axis. Natural polysaccharides have demonstrated the capacity to significantly alleviate the oxidative stress and inflammatory response associated with AA exposure. In addition, they exhibit neuroprotective properties that may be mediated through the MGB axis. This paper reviews literature on the presence of AA in certain UPFs and its potential to inflict serious harm on the human gut microbiota and brain. Moreover, the possibility of utilizing polysaccharides as a preventative measure against AA-induced neurotoxicity was also proposed. These findings provide new insights into the safety risks associated with the overconsumption of UPFs and highlight the potential of polysaccharides to counteract the neurodegeneration induced by AA.
Collapse
Affiliation(s)
- Chen Cai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xu Dong
- Department of Gynaecology, Beilun People's Hospital, Ningbo 315800, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| |
Collapse
|
32
|
Farid MS, Shafique B, Xu R, Łopusiewicz Ł, Zhao C. Potential interventions and interactions of bioactive polyphenols and functional polysaccharides to alleviate inflammatory bowel disease - A review. Food Chem 2025; 462:140951. [PMID: 39213975 DOI: 10.1016/j.foodchem.2024.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Bakhtawar Shafique
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Xu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Łukasz Łopusiewicz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 59 Okopowa Str. Warszawa, 01-043, Poland; Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
33
|
Gao C, Gong N, Chen F, Hu S, Zhou Q, Gao X. The Effects of Astaxanthin on Metabolic Syndrome: A Comprehensive Review. Mar Drugs 2024; 23:9. [PMID: 39852511 PMCID: PMC11766962 DOI: 10.3390/md23010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Metabolic syndrome (MS) represents a complex cluster of metabolic disorders primarily characterized by obesity, insulin resistance, hyperglycemia, dyslipidemia, hypertension, and hyperuricemia. Diet and functional ingredients play a pivotal role in seeking non-pharmacological strategies to prevent and ameliorate MS. Astaxanthin (AST), a carotenoid found in various marine organisms, exhibits exceptional antioxidant properties and holds great promise as a natural compound that improves MS. This article introduces the basic properties of AST, including its absorptance and metabolic pathways, along with various isomers. Most importantly, we comprehensively review the effects and mechanisms of AST on improving the primary components of MS. These mechanisms primarily involve regulating signal transduction, transport, or metabolic pathways within the body, as well as influencing intestinal microbiota and metabolites, thereby exerting positive effects on metabolism and inhibiting the occurrence of MS. This review emphasizes the potential efficacy of AST in managing MS. However, more studies are needed to confirm the clinical effect of AST on MS and reveal potential molecular mechanisms.
Collapse
Affiliation(s)
- Chunhao Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Nengyun Gong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic, Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization, Shandong Engineering Research Center for Efficient Utilization Technology of Marine Food Resources, Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources, Rizhao 276826, China;
| | - Shiran Hu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic, Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization, Shandong Engineering Research Center for Efficient Utilization Technology of Marine Food Resources, Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources, Rizhao 276826, China;
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| |
Collapse
|
34
|
Gui WY, Yin JG, Liao JC, Luo HZ, You Q, Gong JH, Xiang J, Zou JD, Li CY. Integrated analysis of metabolome, lipidome, and gut microbiome reveals the immunomodulation of Astragali radix in healthy human subjects. Chin Med 2024; 19:174. [PMID: 39702294 DOI: 10.1186/s13020-024-01045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a typical medicinal food homology species, Chinese herbal medicine Astragali radix (AR) has been widely used to regulate the human immune system worldwide. However, the human immunomodulation of AR and its corresponding mechanisms remain unclear. METHODS First, following a fortnight successive AR administration, the changes in immune cytokines and immune cells from 20 healthy human subjects were used as immune indicators to characterize the immunomodulatory effects of AR. Subsequently, ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) based lipidomics and metabolomics analysis was performed on human serum, urine, and feces samples to investigate the changes in metabolic profiles. Then, 16S rRNA gene sequencing of feces samples was adopted for the changes of human gut microbiota. Finally, correlation analysis was conducted on the gut microbiome, metabolome/lipidome data, and immune indicators. RESULTS AR displayed good safety in clinical use and posed a minor impact on gut microbiota major genera, global metabolic profiles, and immune cells. Meanwhile, AR could significantly up-regulate anti-inflammatory cytokines, down-regulate serum creatinine and pro-inflammatory cytokines, promote the anabolism of arginine, glycerolipid, sphingolipid, and purine, and the catabolism of phenylalanine and glycerophospholipid. Moreover, these AR-induced changes were closely correlated with significantly decreased Granulicatella, slightly higher Bifidobacterium, Ruminococcus, and Subdoligranulum, and slightly lower Blautia. CONCLUSION The study clearly demonstrated that AR could modulate the human immune, by modifying the metabolism of amino acids, lipids, and purines in a microbiota-related way. Trial registration ChiCTR, ChiCTR2100054765. Registered 26 December 2021-Prospectively registered, https://www.chictr.org.cn/historyversionpub.html?regno=ChiCTR2100054765.
Collapse
Affiliation(s)
- Wan-Yu Gui
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jun-Gang Yin
- Center of Good Clinical Practice, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jian-Cheng Liao
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Hui-Zhi Luo
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Qing You
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jia-Hui Gong
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jie Xiang
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Chang-Yin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
35
|
Yu W, Wang J, Xiong Y, Liu J, Baranenko D, Zhang Y, Lu W. In vivo absorption, in vitro simulated digestion, and fecal fermentation properties of Imperata cylindrica polysaccharides and their effects on gut microbiota. Food Chem 2024; 461:140773. [PMID: 39154459 DOI: 10.1016/j.foodchem.2024.140773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Recently we have investigated polysaccharide from Imperata cylindrica (ICP) for its physicochemical structure and biological activities. However, the digestion characteristics have yet to be understood. This study investigated the digestion and metabolism characteristics of ICP through in vivo fluorescence tracking, in vitro simulated digestion, fecal fermentation experiments, and microbial sequencing. The results showed that ICP significant distribution in the gastrointestinal tract and kidneys. ICP underwent slight degradation during simulated gastric and intestinal digestion. During fecal fermentation, the utilization degree of ICP and the concentration of short-chain fatty acids (SCFAs) increased. ICP promoted the increase of beneficial microbial abundance. To understand the impact of ICP on the integrity and health of intestinal tissues, molecular docking was employed to preliminarily predict the interaction between ICP and key proteins. The results revealed that ICP could recognize and bind to key proteins through high-affinity targeting binding sites.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Junwen Wang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China
| | - Jiaren Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Denis Baranenko
- School of Life Sciences, Faculty of Ecotechnologies, ITMO University, St. Petersburg. 197101, Russia
| | - Yingchun Zhang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| |
Collapse
|
36
|
Yang B, Yang R, Zhang X, Wang W, Kan J. Hovenia dulcis (Guaizao) polysaccharide ameliorates hyperglycemia through multiple signaling pathways in rats with type 2 diabetes mellitus. Int J Biol Macromol 2024; 285:138338. [PMID: 39638196 DOI: 10.1016/j.ijbiomac.2024.138338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant threat to human health, with its incidence and mortality rates increasing annually. This study investigated the hypoglycemic effects and underlying mechanisms of pure Hovenia dulcis (Guaizao) polysaccharide (HDPs-2A) in rats subjected to a high-fat and high-sugar diet combined with streptozotocin-induced T2DM. Oral administration of HDPs-2A resulted in significant increases in body weight and liver glycogen levels compared to untreated controls. Moreover, a reduction in fasting blood glucose levels, alleviation of hyperinsulinemia, enhanced glucose tolerance, and improved insulin resistance were observed in the HDPs-2A-treated group. HDPs-2A also effectively reversed diabetes-induced dyslipidemia, as evidenced by decreased total cholesterol and triglyceride levels, alongside increased high-density lipoprotein cholesterol levels. Histopathological analyses confirmed that HDPs-2A partially repaired liver tissue damage by mitigating oxidative stress responses in the liver. Additionally, treatment with HDPs-2A significantly elevated short-chain fatty acid levels in T2DM rats. Real-time quantitative PCR and Western blot analyses indicated that HDPs-2A significantly enhanced the expression of InsR, IRS2, PI3K, Akt, and GLUT4, suggesting that HDPs-2A regulates insulin resistance and glycometabolism through the activation of the PI3K/Akt signaling pathway. Furthermore, HDPs-2A appeared to modulate the expression of GS, GSK-3β, and FoxO1 to improve glucose metabolism and reduce insulin resistance. It also improved glucose metabolism by activating the AMPK pathway and modulating G6Pase and PEPCK expression. This study provides novel insights into the antidiabetic effects of HDPs, positioning them as promising nutritional agents for the management of T2DM.
Collapse
Affiliation(s)
- Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.
| | - Ruyan Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Xinyu Zhang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Wanjia Wang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
37
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
38
|
Sun J, Jiang Y, Wang B, Yang J, Chen Y, Luo H, Chen T, Xiao C, Weng L. Structural characterization of the polysaccharides from Atractylodes chinensis (DC.) Koidz. and the protective effection against alcohol-induced intestinal injury in rats. Int J Biol Macromol 2024; 282:136641. [PMID: 39427804 DOI: 10.1016/j.ijbiomac.2024.136641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A neutral polysaccharide, AP, with a weight-average molecular weight of 60.61 kDa, consisting mainly of arabinose and galactose, was isolated from the rhizomes of Atractylodes chinensis (DC.) Koidz. Methylation analyses and nuclear magnetic resonance spectroscopy indicated that the probable repeat unit of AP was →3,6)-α-D-Galp-(1→ residues and constituted the main chain, with a side chain of →5)-α-L-Araf-(1→ and terminal α-L-Araf attached to C-6 of the main chain. The protective activity and potential mechanisms of action of AP on the intestinal tract were investigated. AP improved intestinal oxidative stress injury and inflammatory responses by promoting the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway and inhibiting the toll-like receptor 4/myeloid differentiation primary response protein 88/nuclear factor-kappa B signaling pathway, but also repaired colonic mucosal injury and reduced intestinal leakage of endotoxins by promoting expression of the tight-junction proteins zonula occludens-1 and occludin. AP improved ecological dysregulation of the intestinal microbiota and promoted the growth of the potentially beneficial bacteria Lactobacillus_taiwanensis, Limosilactobacillus_reuteri and Akkermansia_muciniphila. AP promoted intestinal health by increasing the production of potentially beneficial metabolites such as short-chain fatty acids, Indole-3-propionic acid, and N-Eicosapentaenoyl tryptophan through metabolism (amino acids, lipids, carbohydrates). These results suggest that AP is a promising prebiotic in attenuating alcohol-induced intestinal damage.
Collapse
Affiliation(s)
- Jin Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; School of Chinese Medicine, Bozhou University, Bozhou 236800, China
| | - Yuxin Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bo Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jingrong Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yanan Chen
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianli Chen
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chunping Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Lili Weng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
39
|
Chen J, Mei MS, Yu Y, Zhao Y, Gong H, Chen W, Qiu B, Shi S, Dilixiati M, Wang S, Wang H. Elegant approach to intervention of homogalacturonan from the fruits of Ficus pumila L. in colitis: Unraveling the role of methyl esters and acetyl groups. Int J Biol Macromol 2024; 283:137793. [PMID: 39557266 DOI: 10.1016/j.ijbiomac.2024.137793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Oral administration of homogalacturonan (HG) has shown significant potential in anti-colitis activity, yet the therapeutic efficacy of naturally sourced HG still requires enhancement. Herein, HG from the fruits of Ficus pumila L. was modified by chemical methods and the intervention effect of modified HG with different degrees of methyl-esterification (DM) and acetylation (DA) on dextran sulfate sodium-induced colitis in mice was explored. Our results indicated that low-DM HG (DM3 and DM25) primarily mitigated colitis by reducing inflammation (TNF-α, IL-1β, IL-17, and IL-6), while high-DM HG (DM54 and DM94) primarily repaired the intestinal barrier. These effects may be attributed to the differential regulation of gut microbiota by HG with varying DM, such as Lachnospiraceae_NK4A136_group, Lactobacillus, Mucispirillum, Escherichia-Shigella, Bifidobacterium, and Bacteroides. Increased DA reduced the solubility of HG, showing limited anti-inflammatory response but unique advantages in intestinal barrier repair and microbiome regulation (Bifidobacterium, Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group, Mucispirillum, and Escherichia-Shigella). Furthermore, various structural parameters and substitution degrees showed no significant impact on HG's regulation of oxidative stress reactions. This study emphasized the importance of substituent effect in determining HG's functional role, providing a robust foundation for the design and development of functional polysaccharides for the prevention of intestinal inflammation and other related conditions.
Collapse
Affiliation(s)
- Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ming-Shun Mei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yue Yu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Baoyu Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
40
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
41
|
Chen Y, Li H, Lai F, Min T, Wu H, Zhan Q. The Influence and Mechanisms of Natural Plant Polysaccharides on Intestinal Microbiota-Mediated Metabolic Disorders. Foods 2024; 13:3882. [PMID: 39682954 DOI: 10.3390/foods13233882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural plant polysaccharides are renowned for their broad spectrum of biological activities, making them invaluable in both the pharmaceutical and food industries. Their safety, characterized by low toxicity and minimal side effects, coupled with their potential therapeutic properties, positions them as crucial elements in health-related applications. The functional effectiveness of these polysaccharides is deeply connected to their structural attributes, including molecular weight, monosaccharide components, and types of glycosidic bonds. These structural elements influence how polysaccharides interact with the gut microbiota, potentially alleviating various metabolic and inflammatory disorders such as inflammatory bowel disease, diabetes, liver-associated pathologies, obesity, and kidney diseases. The polysaccharides operate through a range of biological mechanisms. They enhance the formation of short-chain fatty acids, which are pivotal in keeping intestinal health and metabolic balance. Additionally, they strengthen the intestinal mucosal barrier, crucial for deterring the ingress of pathogens and toxins into the host system. By modulating the immune responses within the gut, they help in managing immune-mediated disorders, and their role in activating specific cellular signaling pathways further underscores their therapeutic potential. The review delves into the intricate structure-activity relationships of various natural polysaccharides and their interactions with the intestinal flora. By understanding these relationships, the scientific community can develop targeted strategies for the use of polysaccharides in therapeutics, potentially leading to innovative treatments for a range of diseases. Furthermore, the insights gained can drive the advancement of research in natural polysaccharide applications, providing direction for novel dietary supplements and functional foods designed to support gut health and overall well-being.
Collapse
Affiliation(s)
- Yong Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Hui Li
- Culinary Institute, Shunde Polytechnic, Foshan 528000, China
| | - Furao Lai
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tian Min
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Du C, Zhao Y, Shen F, Qian H. Effect of Brassica rapa L. Polysaccharide on Lewis Lung Cancer Mice by Inflammatory Regulation and Gut Microbiota Modulation. Foods 2024; 13:3704. [PMID: 39594117 PMCID: PMC11593872 DOI: 10.3390/foods13223704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related fatalities globally, related to inflammatory and gut microbiota imbalance. Brassica rapa L. polysaccharide (BP) is a functional compound, which is utilized by the gut microbiota to regulate immunity and metabolism. However, the effect of BP on lung cancer and whether it affects the "gut-lung" axis remains unclear. This study explored the intervention of BP in Lewis lung cancer (LLC) mice and its effect on the gut microbiota. The results revealed that BP reduced tumor weight and downregulated the expression of Ki67 protein. Additionally, BP reduced the content of inflammatory factors and growth factors, promoting tumor cell apoptosis and inhibiting the growth of LLC. The intervention of BP suppressed intestinal inflammation, preserved intestinal barrier integrity, and augmented the level of beneficial microbiota, such as Blautia and Bifidobacterium. Furthermore, BP significantly increased the production of short-chain fatty acids (SCFAs), particularly butyrate and propionate. A correlation analysis showed significant correlations among the gut microbiota, SCFAs, inflammatory factors, and tight junction proteins. A functional analysis indicated that BP promoted amino acid metabolism and fatty acid metabolism. These findings suggested that BP had the potential to act as prebiotics to prevent disease and improve lung cancer progression by regulating the gut microbiota.
Collapse
Affiliation(s)
- Changhui Du
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yong Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China;
| | - Fanglin Shen
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China;
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
43
|
Xiao Q, Yang L, Guo J, Zhang X, Huang Y, Fu Q. Preparation, Structural Characterization, and Hypoglycemic Activity of Dietary Fiber from Sea Buckthorn Pomace. Foods 2024; 13:3665. [PMID: 39594081 PMCID: PMC11593619 DOI: 10.3390/foods13223665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sea buckthorn pomace is often discarded as a by-product during the sea buckthorn processing stage. Consequently, its richness in dietary fiber is usually overlooked. In this study, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were extracted from sea buckthorn pomace using ultrasound combined with the enzyme method. The optimal values of the independent variable were determined by a combinatorial design and a response surface optimization test with SDF/IDF as the dependent variable, prepared as follows: 5% enzyme addition, ultrasonic power of 380 W, enzymatic time of 30 min, and alcoholic precipitation liquid ratio of 4:1. Under these conditions, the SDF/IDF ratio was 17.07%. The structural characterization and hypoglycemic activity of the two dietary fibers were then compared. The results show that two dietary fibers have respective structures and functional groups of fibers. SDF was less crystalline than IDF, and its structure was looser. Furthermore, the hypoglycemic activity of SDF was significantly better than IDF's (p < 0.05). The glucose adsorption capacity of SDF was 1.08-1.12 times higher than that of IDF. SDF inhibited α-amylase and α-glucosidase by 1.76 and 4.71 times more than IDF, respectively. These findings provide a reference for improving the utilization of sea buckthorn processing by-products.
Collapse
Affiliation(s)
- Qi Xiao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Liting Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Jingjing Guo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Xiyu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Yu Huang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Qun Fu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
- Key Laboratory of Forest Food Resource Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
44
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
45
|
Chang S, Lei X, Xu W, Guan F, Ge J, Nian F. Preparation and characterization of Tobacco polysaccharides and its modulation on hyperlipidemia in high-fat-diet-induced mice. Sci Rep 2024; 14:26860. [PMID: 39500936 PMCID: PMC11538525 DOI: 10.1038/s41598-024-77514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the structural properties of tobacco polysaccharide (TP) and its mechanism of modulating hyperlipidemia in high-fat diet-induced mice. The structural properties of TP were characterized by FT-IR, 1HNMR, SEM, AFM and thermogravimetric analysis. And the regulatory mechanism of TP on lipid metabolism was investigated in hyperlipidemia mice. These results showed that TP had a high composition of reducing monosaccharide and the glycosidic bond type was α-glycosidic bond. The intervention by TP resulted in a significant reduction of body weight and improvement in lipid accumulation. And the modulation mechanism by which TP ameliorated the abnormalities of lipid metabolism was associated with the expression levels of lipid metabolism-related genes and serum exosomes miRNA-128-3p, as well as the modulation of structure and abundance of the gut microbiota in mice. In addition, TP treatment significantly increased the content of short-chain fatty acids (SCFAs) in mice feces. The results of molecular docking and dual-luciferase assay exhibited a good interaction between propionic acid and PPAR-α, and it was hypothesized that the interaction might further ameliorate the hyperlipidemia. Therefore, TP can regulate the expression levels of lipid metabolism-related genes through miRNAs from serum exosomes and SCFAs from gut microbiota.
Collapse
Affiliation(s)
- Shuaishuai Chang
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Xuanhao Lei
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Weijia Xu
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Feng Guan
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Jian Ge
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China.
| | - Fuzhao Nian
- Yunnan Agricultural University School of Tobacco Science, Kunming, 650201, China
| |
Collapse
|
46
|
Yao L, Zhu L, Chen C, Wang X, Zhang A, Gao S, Wu J, Qin L. A systematic review on polysaccharides from fermented Cordyceps sinensis: Advances in the preparation, structural characterization, bioactivities, structure-activity relationships. Int J Biol Macromol 2024; 282:137275. [PMID: 39510481 DOI: 10.1016/j.ijbiomac.2024.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Cordyceps sinensis (Berk.) Sacc. (Ophiocordyceps sinensis) is an edible and medicinal fungus used as a natural superior tonic. It is considered as scarce fungus with a high market demand. Therefore, as an alternative, fermentation technology has been proposed to produce artificial cordyceps (fermented C. sinensis) to address the shortage of cordyceps resources for industrialization and commercial utilization. Numerous studies have proved that polysaccharides are the important bioactive substances in the fermented C. sinensis, but the research data lack systematic review. In this review, current relevant research data regarding the preparation (including extraction, fractionation, and purification), structural characterization (including molecular weight, monosaccharide composition, glycosidic bond type, structural and conformational features), bioactivities, structure-activity relationships (SAR) and applications of polysaccharides from different sources of fermented C. sinensis last decade were analyzed and discussed. The findings highlight that the most commonly employed methods for preparing fermented Cordyceps sinensis polysaccharides (FCSPs) involve water extraction and alcohol precipitation, combing with sophisticated chromatographic techniques such as ion exchange and gel permeation chromatography. From these processes, 34 different polysaccharides were identified including 5 glucans and 7 heteropolysaccharides that were thoroughly characterized. FCSPs exhibited a broad spectrum of biological activities, ranging from antioxidant and renal protective effects to immunomodulatory, antitumor, and hypolipidemic properties. The structure-activity relationships (SAR) demonstrated that key factors, such as molecular weight, monosaccharide composition and glucosidic bond types, play critical roles in determining the bioactivity of FCSPs. Nevertheless, there remain unknown elements that continue to influence SAR, leaving room for further exploration. Furthermore, the limitation of existing studies and some new perspectives for future investigations on FCSPs were proposed.
Collapse
Affiliation(s)
- Lumeng Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Lili Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Changlun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xingxing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Anna Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Siqi Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
47
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
48
|
Bo S, Dan M, Li W, Chen C. The regulatory mechanism of natural polysaccharides in type 2 diabetes mellitus treatment. Drug Discov Today 2024; 29:104182. [PMID: 39284523 DOI: 10.1016/j.drudis.2024.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Diabetes is a complex, multifactorial disease that is caused by a pathological combination of insulin resistance and pancreatic islet dysfunction. Polysaccharides are extensively dispersed in nature and have a very complicated structure with various biological properties. Natural polysaccharides have potentially extraordinary beneficial health effects on managing metabolic diseases such as diabetes, obesity and cardiovascular disease. Thus, a systematic review of the latest research into and possible regulatory mechanisms of natural polysaccharides for type 2 diabetes mellitus treatment is of great significance for a better understanding of their pharmaceutical value. We discuss the regulatory mechanisms of natural polysaccharides for the treatment of diabetes, and especially their role in reshaping dysfunctional gut microbiota. Natural polysaccharides could be developed as new and safe antidiabetic drugs, and detailed mechanistic studies could further clarify the molecular targets of polysaccharides in the treatment of diabetes.
Collapse
Affiliation(s)
- Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Jinshan Development Zone, Hohhot, Inner Mongolian Province 010110, China; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mu Dan
- College of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Jinshan Development Zone, Hohhot, Inner Mongolian Province 010110, China
| | - Wei Li
- Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
49
|
Chen D, Wang A, Lv J, Peng Y, Zheng Y, Zuo J, Kan J, Zong S, Zeng X, Liu J. Tea (Camellia sinensis L.) flower polysaccharide attenuates metabolic syndrome in high-fat diet induced mice in association with modulation of gut microbiota. Int J Biol Macromol 2024; 279:135340. [PMID: 39255891 DOI: 10.1016/j.ijbiomac.2024.135340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
There is a growing body of evidence suggesting that dietary polysaccharides play a crucial role in preventing metabolic syndrome (MetS) through their interaction with gut microbes. Tea (Camellia sinensis L.) flower polysacchride (TFPS) is a novel functional compound known for its diverse beneficial effects in both vivo and vitro. To further investigate the effects of TFPS on MetS and gut microbiota, and the possible association between gut microbiota and their activities, this study was carried out on mice that were fed a high-fat diet (HFD) and given oral TFPS at a dose of 400 and 800 mg/kg·body weight (BW)/d, respectively. TFPS treatment significantly mitigated HFD-induced MetS, evidenced by reductions in body weight, fat accumulation, plasma levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-1β, along with an increase in plasma IL-10 levels. Furthermore, TFPS induced alterations in the diversity and composition of HFD-induced gut microbiota. Specifically, TFPS influenced the relative abundance of 11 genera, including Lactobacillus and Lactococcus, which showed strong correlations with metabolic improvements and likely contributed to the amelioration of MetS. In conclusion, TFPS exhibits promising prebiotic properties in preventing MetS and regulating gut microbiota.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yiling Peng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yunqing Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiayu Zuo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
50
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|