1
|
Shin S, Chen S, Xie K, Duhun SA, Ortiz-Cerda T. Evaluating the anti-inflammatory and antioxidant efficacy of complementary and alternative medicines (CAM) used for management of inflammatory bowel disease: a comprehensive review. Redox Rep 2025; 30:2471737. [PMID: 40056427 DOI: 10.1080/13510002.2025.2471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune condition whose pathogenesis has not been fully elucidated, and current treatments are not definitive and often carry several side effects. The Complementary and Alternative Medicine (CAM) offers a new approach to conventional medicine. However, their clinical application and mechanisms remain limited.Objective: The aim of this review is to evaluate the anti-inflammatory, impact on microbiota and antioxidant efficacy of currently available CAM for IBD.Methods: The literature collection was obtained from Google Scholar, MEDLINE, PubMed and Web of Science (WOS). Studies in both human and animal models, published in English language between 2018 and 2024, were selected. Sixty-seven studies were included in the current review after inclusion and exclusion screening processes.Results: Mostly, studies showed significant anti-inflammatory, gut microbiota restoring, antioxidant effects of polyphenols, polysaccharides, emodin, short-chain fatty acids (SCFA; including butyrate, propionate and acetate), and probiotics although some contrasting results were noted. Current evidence shows that polyphenols exhibit the most consistent result in alleviating IBD pathophysiology, primarily due to their significant SCFA-elevating effect.Discussion: Future studies may focus on human studies, narrowing down on individual factors which may change natural product's metabolism. Further research studies are also essential to obtain therapeutic recommendations.
Collapse
Affiliation(s)
- Sia Shin
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Siqi Chen
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Kangzhe Xie
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Suehad Abou Duhun
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tamara Ortiz-Cerda
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Villegas-Vazquez EY, Gómez-Cansino R, Marcelino-Pérez G, Jiménez-López D, Quintas-Granados LI. Unveiling the Miracle Tree: Therapeutic Potential of Moringa oleifera in Chronic Disease Management and Beyond. Biomedicines 2025; 13:634. [PMID: 40149610 PMCID: PMC11939887 DOI: 10.3390/biomedicines13030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Moringa oleifera (MO) has gained recognition as a potent natural intervention for preventing and managing chronic diseases (CDs) due to its diverse phytochemical composition and pharmacological properties. Rich in antioxidants, polyphenols, flavonoids, and glucosinolates, MO exerts anti-inflammatory, anti-hyperglycemic, cardioprotective, and anti-obesity effects. These properties make it a valuable therapeutic agent for CDs, including diabetes, cardiovascular diseases, obesity, neurodegenerative disorders, and cancer. MO's ability to modulate oxidative stress and inflammation-key drivers of CDs-highlights its significant role in disease prevention and treatment. MO enhances insulin sensitivity, regulates lipid profiles and blood pressure, reduces inflammation, and protects against oxidative damage. MO also modulates key signaling pathways involved in cancer and liver disease prevention. Studies suggest that MO extracts possess anticancer activity by modulating apoptosis, inhibiting tumor cell proliferation, and interacting with key signaling pathways, including YAP/TAZ, Nrf2-Keap1, TLR4/NF-κB, and Wnt/β-catenin. However, challenges such as variability in bioactive compounds, taste acceptability, and inconsistent clinical outcomes limit their widespread application. While preclinical studies support its efficacy, large-scale clinical trials, standardized formulations, and advanced delivery methods are needed to optimize its therapeutic potential. MO's multifunctional applications make it a promising and sustainable solution for combating chronic diseases, especially in resource-limited settings.
Collapse
Affiliation(s)
- Edgar Yebran Villegas-Vazquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Esquina Fuerte de Loreto, Ciudad de México 09230, Mexico;
| | - Rocio Gómez-Cansino
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Calzada Ermita Iztapalapa 4163, Colonia Lomas de Zaragoza, Ciudad de México 09620, Mexico;
| | - Gabriel Marcelino-Pérez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Domingo Jiménez-López
- Departamento de Nutrición, Universidad Global Latinoamericana, Av. Vía Adolfo López Mateos 73, Misiones, Naucalpan de Juárez, Méx., Mexico 53250, Mexico
- Departamento de Investigación y Desarrollo, Soluciones Orgánicas, Fertilizantes y Servicios para el Agro (SOFESA), Av. Revolución, No. 1267, Ciudad de México 01040, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Av. La Corona 320, Colonia La Palma, Ciudad de México 00000, Mexico
| |
Collapse
|
3
|
Dobutr T, Jangpromma N, Patramanon R, Daduang J, Kulchat S, Areemit J, Lomthaisong K, Daduang S. Screening of aqueous plant extracts for immunomodulatory effects on immune cells and cytokine production: In vitro and in vivo analyses. Heliyon 2025; 11:e42692. [PMID: 40034324 PMCID: PMC11872543 DOI: 10.1016/j.heliyon.2025.e42692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
This study investigates the immunomodulatory effects of various aqueous plant extracts on immune cells and cytokine production. In vitro, several extracts, including holy basil (Ocimum sanctum), patawali (Tinospora crispa), and Indian borage (Plectranthus amboinicus L.), significantly increased CD3+ T-cell populations, while soap pod (Acacia concinna), garlic (Allium sativum L.), and neem (Azadirachta indica) also boosted CD45RA+ B-cells. In vivo, the extracts had subtle effects on spleen morphology and Peyer's Patches, with milk bush (Euphorbia tirucalli L.) and Indian borage enhancing T-cell responses, while soap pod stimulated B-cells. Additionally, we observed that Neem and milk bush significantly suppressed B-cell populations. Furthermore, cytokine analysis showed that garlic and patawali reduced IL-2, while soap pod, holy basil, and patawali increased TNF-alpha levels. Soap pod also elevated IL-10 and IL-17A, indicating both anti-inflammatory and pro-inflammatory signaling, while patawali induced an increase in IL-4. In conclusion, Thai medicinal plants show strong potential as both immunostimulants and immunosuppressants. They can enhance lymphocyte proliferation, particularly in T-cells, and modulate B-cell populations. Their aqueous extracts play a key role in regulating Th1, Th2, and Th17 cytokine production. Thus, these plants could serve as natural agents and alternative medicines for boosting or modulating immune function.
Collapse
Affiliation(s)
- Theerawat Dobutr
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90000, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jringjai Areemit
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Komsorn Lomthaisong
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
5
|
Soto JA, Gómez AC, Vásquez M, Barreto AN, Molina KS, Zuniga-Gonzalez CA. Biological properties of Moringa oleifera: A systematic review of the last decade. F1000Res 2025; 13:1390. [PMID: 39895949 PMCID: PMC11782934 DOI: 10.12688/f1000research.157194.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Background The growing incidence of chronic diseases such as cancer and the emergence of drug-resistant microorganisms constitute one of the greatest health challenges of the 21st century. Therefore, it is critical to search for new therapeutic alternatives. Moringa oleifera is a plant well known for the properties of its phytocomponents and its role has been analyzed in a variety of fields, from medicine to biotechnology. Methods In this work, the biological activity of Moringa oleifera in human health was explored through a review of 129 original articles published between 2010 and 2021 related to antitumor activity and its potential uses against chronic and infectious diseases. Results Moringa oleifera extracts showed antioxidant, hypoglycemic, antihypertensive and cytoprotective properties at neuronal, hepatic, renal and cardiac levels. Besides, cytotoxic effects, apoptotic and antiploriferative activity against several cancer cell lines has been demonstrated. On the other hand, the antimicrobial potential of M. oleifera was also evidenced, especially against multidrug-resistant strains. Conclusions Hence, it is supported that there is a wide range of clinical entities in which Moringa oleifera exhibits significant biological activity that could contribute to counteracting metabolic, infectious and chronic diseases in a similar or improved way to the drugs traditionally used.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Catalina Gómez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Maryeli Vásquez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Natalia Barreto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Karen Shirley Molina
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - C. A. Zuniga-Gonzalez
- Area of knowledge of Agrarian and Veterinary Sciences Research Centre, Bioeconomy and Climate Change Unit Research, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua
| |
Collapse
|
6
|
Ben Attia T, Bahri S, Ben Younes S, Nahdi A, Ben Ali R, Bel Haj Kacem L, El May MV, López-Maldonado EA, Mhamdi A. In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats. BIOLOGY 2024; 13:896. [PMID: 39596850 PMCID: PMC11592325 DOI: 10.3390/biology13110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The primary objective of this study was to investigate the pulmonary damage resulting from isolated or combined exposure to inhaled toluene (300 ppm) and noise 85 dB (A), with a focus on evaluating the potential protective effects of Olea europaea L. leaf extract (OLE). Forty-eight male Wistar rats were divided into eight groups: control (C), OLE treatment (O), noise exposure (N), noise exposure with OLE treatment (N+OLE), toluene exposure (T), toluene exposure with OLE treatment (T + OLE), co-exposure to toluene and noise (NT), and co-exposure with OLE treatment (NT + OLE). OLE (40 mg/kg/day) was administered daily for six weeks via oral gavage. Exposure to toluene and noise resulted in significant disruption of the pulmonary tissue structure, accompanied by oxidative stress, as evidenced by increased lipid peroxidation, diminished catalase and superoxide dismutase activities, and elevated pro-inflammatory cytokines IL6, IL-β, and TNF-α. Notably, the administration of OLE effectively mitigated oxidative stress and inflammation and preserved pulmonary histology. In conclusion, exposure to toluene and its combination with noise significantly elevated oxidative stress, inflammatory responses, and histological disruptions in the lung tissue. In contrast, noise exposure alone is characterized by minimal effects, although it is still associated with an inflammatory response. Notably, Olea europaea L. leaf extract (OLE) exhibits a substantial protective role, effectively mitigating the adverse effects of combined exposure and highlighting its potential as a therapeutic agent for lung health.
Collapse
Affiliation(s)
- Takoua Ben Attia
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | - Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis 2010, Tunisia
- Laboratory of Quality Control, Herbes De Tunisie, Company AYACHI-Group, Mansoura, Siliana 6131, Tunisia
| | - Sonia Ben Younes
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
- Faculty of Sciences of Gafsa, University of Gafsa, Campus Sidi Ahmed Zarroug, Gafsa 2112, Tunisia
| | - Afef Nahdi
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | - Ridha Ben Ali
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | - Linda Bel Haj Kacem
- Research Unit n° 17ES15, Department of Pathology, Charles Nicolle Hospital, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Michèle Véronique El May
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | | | - Abada Mhamdi
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| |
Collapse
|
7
|
Ben Attia T, Nahdi A, Horchani M, Elmay MV, Ksentini M, Ben Jannet H, Mhamdi A. Olea europaea L. leaf extract mitigates pulmonary inflammation and tissue destruction in Wistar rats induced by concurrent exposure to noise and toluene. Drug Chem Toxicol 2024; 47:1072-1086. [PMID: 38508716 DOI: 10.1080/01480545.2024.2330014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
This study aimed to investigate the effects of combined exposure to noise (85 dB(A)) and inhaled Toluene (300 ± 10 ppm) on rat lung health. It also aimed to assess the potential therapeutic effects of Olea europaea L. leaves extract (OLE) (40 mg/kg/day) using biochemical, histopathological, and immunohistochemical (IHC) analyses, as well as determination of pro-inflammatory cytokines (TNF-α and IL-1β), and in silico Docking studies. The experiment involved forty-two male Wistar rats divided into seven groups, each exposed to a 6-week/6-hour/day regimen of noise and Toluene. The groups included a control group, rats co-exposed to noise and Toluene, and rats co-exposed to noise and Toluene treated with OLE for different durations. The results indicated that noise and Toluene exposure led to structural damage in lung tissue, oxidative harm, and increased levels of pro-inflammatory cytokines (TNF-α and IL-1β). However, the administration of OLE extract demonstrated positive effects in mitigating these adverse outcomes. OLE treatment reduced lipid peroxidation and enhanced the activities of catalase and superoxide dismutase, indicating its anti-oxidant properties. Furthermore, OLE significantly decreased the levels of pro-inflammatory cytokines compared to the groups exposed to noise and Toluene without OLE treatment. Moreover, the in silico investigation substantiated a robust affinity between COX-2 and OLE components, affirming the anti-inflammatory activity. Overall, our findings suggest that OLE possesses anti-inflammatory and anti-oxidative properties that mitigate the adverse effects of concurrent exposure to noise and Toluene.
Collapse
Affiliation(s)
- Takoua Ben Attia
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| | - Afef Nahdi
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| | - Mabrouk Horchani
- Department of Chemistry, University of Monastir, Monastir, Tunisia
| | | | - Meriem Ksentini
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| | | | - Abada Mhamdi
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Elmalawany AM, Osman GY, Mohamed AH, Khalaf FM, Yassien RI. Schistosomicidal Effects of Moringa oleifera Seed Oil Extract on Schistosoma mansoni-Infected Mice. Parasite Immunol 2024; 46:e13070. [PMID: 39494757 DOI: 10.1111/pim.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis causes severe hepatic fibrosis, making it a global health issue. Moringa oleifera seed oil extract, which had antiparasitic, anti-inflammatory and antioxidant effects, was investigated as an alternative treatment. The 50 mice were divided into control, infected, praziquantel-treated, M. oleifera seed oil extract-treated and combined treatment groups. These treatments were examined for their effects on egg granulomas, hepatic enzymes, total protein, albumin, antioxidant enzymes and pro-inflammatory cytokines. M. oleifera seed oil and/or PZQ significantly reduced egg numbers, granuloma size and liver histopathology. M. oleifera seed oil reduced hepatic enzyme activity, increased total protein and albumin, and increased antioxidant enzyme activity while decreasing malondialdehyde. M. oleifera seed oil reduced the levels of pro-inflammatory cytokines. M. oleifera seed oil may treat schistosomiasis instead of PZQ due to its antifibrotic, immunomodulatory and schistosomicidal properties.
Collapse
Affiliation(s)
- Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Fatema M Khalaf
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Rania I Yassien
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
9
|
Elik G, Oktay S, Turkyilmaz IB, Alev-Tuzuner B, Magaji UF, Sacan O, Yanardag R, Yarat A. Dermatoprotective effect of Moringa oleifera leaf extract on sodium valproate-induced skin damage in rats. Drug Chem Toxicol 2024; 47:1257-1266. [PMID: 38984369 DOI: 10.1080/01480545.2024.2369586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Valproic acid is an antiepileptic drug associated with skin-related issues like excessive hair growth, hair loss, and skin rashes. In contrast, Moringa oleifera, rich in nutrients and antioxidants, is gaining popularity worldwide for its medicinal properties. The protective properties of M. oleifera extract against skin-related side effects caused by valproic acid were investigated. Female rats were divided into control groups and experimental groups such as moringa, sodium valproate, and sodium valproate + moringa groups. A 70% ethanolic extract of moringa (0.3 g/kg/day) was given to moringa groups, and a single dose of sodium valproate (0.5 g/kg/day) was given to valproate groups for 15 days. In the skin samples, antioxidant parameters (such as glutathione, glutathione-S-transferase, superoxide dismutase, catalase, and total antioxidant capacity), as well as oxidant parameters representing oxidative stress (i.e. lipid peroxidation, sialic acid, nitric oxide, reactive oxygen species, and total oxidant capacity), were examined. Additionally, boron, hydroxyproline, sodium-potassium ATPase, and tissue factor values were determined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was also carried out for protein analysis in the skin samples. The results showed that moringa could increase glutathione, total antioxidant capacity, sodium-potassium ATPase, and boron levels, while decreasing lipid peroxidation, sialic acid, nitric oxide, total oxidant capacity, reactive oxygen species, hydroxyproline, and tissue factor levels. These findings imply that moringa possesses the potential to mitigate dermatological side effects.
Collapse
Affiliation(s)
- Gülsüm Elik
- State Hospital, Diyarbakir, Türkiye
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| | - Sehkar Oktay
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| | - Ismet Burcu Turkyilmaz
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Burcin Alev-Tuzuner
- Faculty of Dentistry, Biochemistry Department, Istanbul Gelisim University, Istanbul, Türkiye
| | - Umar Faruk Magaji
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi, Nigeria
| | - Ozlem Sacan
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Aysen Yarat
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| |
Collapse
|
10
|
Wang J, Du Y, Jiang L, Li J, Yu B, Ren C, Yan T, Jia Y, He B. LC-MS/MS-based chemical profiling of water extracts of Moringa oleifera leaves and pharmacokinetics of their major constituents in rat plasma. Food Chem X 2024; 23:101585. [PMID: 39027684 PMCID: PMC11255104 DOI: 10.1016/j.fochx.2024.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Moringa oleifera leaves (MOL) are native to India and have high biological activities. To better understand the basic pharmacodynamic materials, the chemical components in MOL and their pharmacokinetic properties were studied and quantitated using UPLC-Q-Exactive Orbitrap-MS. Forty-two compounds were identified, including phenolic acids and their derivatives, flavonoids, isothiocyanates, nucleosides, alkaloids, and other compounds. Two phenolic acids and six flavonoids were studied for their pharmacokinetic properties using UHPLC-MS/MS. Precision, accuracy, stability, matrix effects, and extraction recovery were verified. All substances that were measured reached their maximum within 0.5 h. Vicenin-2 had a high peak concentration and bioavailability. Kaempferol-3-O-rutinoside had a longer biological half-life than other components. The results from this study provide the data basis for subsequent comprehensive qualitative evaluation and potential MOL use in clinical applications.
Collapse
Affiliation(s)
- Jiahong Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Li Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jiahe Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bing Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Chuang Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
11
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
12
|
Dong Y, Gai Z, Han M, Zhao Y. Lacticaseibacillus rhamnosus LRa05 mediates dynamic regulation of intestinal microbiota in mice with low-dose DSS-induced chronic mild inflammation. Front Microbiol 2024; 15:1483104. [PMID: 39444683 PMCID: PMC11496787 DOI: 10.3389/fmicb.2024.1483104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Aim This study aimed to investigate the effects of low-dose dextran sulfate sodium (DSS) on the induction of chronic mild inflammation in mice and to evaluate the therapeutic potential of Lacticaseibacillus rhamnosus LRa05 (LRa05) to ameliorate the associated effects. The focus was on investigating changes in inflammatory, gut microbiota, serum lipopolysaccharide (LPS) and inflammatory cytokines. Methods Mice were exposed to a low-dose of DSS to induce chronic mild inflammation and LRa05 was administered as a probiotic intervention. The experiment included determination of body weight, colon length, histological examinations, and analysis of LPS and inflammatory cytokines in serum over 12 weeks. In addition, liver function, oxidative stress and intestinal microbiota were examined to understand the comprehensive effects of DSS and LRa05. Results Low-dose DSS did not lead to significant changes in body weight, colon length or histologic signs of inflammation. However, it led to a significant increase in serum levels of LPS, tumor necrosis factor-alpha (TNFα) and interleukin-6 (IL6). Intervention with LRa05 effectively attenuated these changes, particularly by lowering LPS levels and normalizing inflammatory cytokines. In addition, LRa05 protected against DSS-induced liver function damage and attenuated oxidative stress in the liver. Analysis of the gut microbiota demonstrated dynamic regulatory effects, where LRa05 intervention led to significant shifts in microbial populations, promoting a balanced microbiota profile. These changes are indicative of dynamic regulation by LRa05 in response to chronic mild inflammation, highlighting the probiotic's role in modulating the gut environment. Conclusion The LRa05 intervention showed multi-layered regulation in the chronic mild inflammation model by reducing inflammatory cytokines, maintaining liver function and restoring the balance of the gut microbiota. This provides experimental support for the potential use of LRa05 in chronic inflammation-related diseases and emphasizes the importance of probiotics for overall health. The study suggests that LRa05 is a potential therapeutic agent for the treatment of chronic inflammation associated with gut dysbiosis.
Collapse
Affiliation(s)
- Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, China
| | - Yunjiao Zhao
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Zhi T, Ma A, Liu X, Chen Z, Li S, Jia Y. A multitissue transcriptomic analysis reveals a potential mechanism whereby Brevibacillus laterosporus S62-9 promotes broiler growth. Poult Sci 2024; 103:104050. [PMID: 39106700 PMCID: PMC11343061 DOI: 10.1016/j.psj.2024.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/09/2024] Open
Abstract
Brevibacillus laterosporus S62-9 has been shown to improve broiler growth performance and immunity. In the present study, we aimed to evaluate the effects of B. laterosporus S62-9 on the immunity and lipid metabolism of broilers by means of transcriptomic analysis. A total of 160 1-day-old broilers were randomly allocated to a S62-9 group, the diet of which was supplemented with 106 CFU/g B. laterosporus S62-9 daily, and a control group, which was not. After 42 d of feeding, the broilers in the S62-9 group had higher body mass (7.2%) and feed conversion ratio (5.19%) than the control group. Supplementation with B. laterosporus S62-9 resulted in lower serum total cholesterol and low-density lipoprotein-cholesterol concentrations and higher high-density lipoprotein-cholesterol concentrations. An analysis of the fatty acid composition of the broiler's thigh muscles revealed that the proportions of the unsaturated fatty acids myristoleic acid (C14:1) and arachidonic acid (C20:1) were higher for birds in the S62-9 group. Transcriptomic analysis also showed an upregulation of immunity-related genes in the S62-9 group. Gene Ontology functional enrichment analysis showed that the mitogen-activated protein kinase pathway was enriched in the liver, the defense response was enriched in the duodenum, and immunoglobulin-related entries were enriched in the jejunum of the S62-9 group. Furthermore, the expression of key genes involved in unsaturated fatty acid synthesis (SCD, encoding stearoyl-CoA desaturase) and fatty acid metabolism (HACD2, encoding 3-hydroxyacyl-CoA dehydratase 2) was upregulated in the liver, and the expression of genes associated with fat biosynthesis and accumulation, such as PLIN1, encoding perilipin 1, and FABP4, encoding fatty acid binding protein 4, was upregulated in the ileum of the birds in the S62-9 group. In summary, supplementation with B. laterosporus S62-9 could improve immune defense and the fatty acid metabolism of broiler chickens, thereby enhancing their disease resistance and promoting growth and development.
Collapse
Affiliation(s)
- Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiangfei Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
14
|
Shang Y, Cui P, Chen Y, Zhang Z, Li S, Chen Z, Ma A, Jia Y. Study on the mechanism of mitigating radiation damage by improving the hematopoietic system and intestinal barrier with Tenebrio molitor peptides. Food Funct 2024; 15:8116-8127. [PMID: 39011610 DOI: 10.1039/d4fo01141d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Research on plant and animal peptides has garnered significant attention, but there is a lack of studies on the functional properties of Tenebrio molitor peptides, particularly in relation to their potential mitigating effect on radiation damage and the underlying mechanisms. This study aims to explore the protective effects of Tenebrio molitor peptides against radiation-induced damage. Mice were divided into five groups: normal, radiation model, and low-, medium-, and high-dose Tenebrio molitor peptide (TMP) groups (0.15 g per kg BW, 0.30 g per kg BW, and 0.60 g per kg BW). Various parameters such as blood cell counts, bone marrow DNA content, immune organ indices, serum levels of D-lactic acid, diamine oxidase (DAO), endotoxin (LPS), and inflammatory factors were assessed at 3 and 15 days post gamma irradiation. Additionally, the intestinal tissue morphology was examined through H&E staining, RT-qPCR experiments were conducted to analyze the expression of inflammatory factors in the intestine, and immunohistochemistry was utilized to evaluate the expression of tight junction proteins ZO-1 and Occludin in the intestine. The findings revealed that high-dose TMP significantly enhanced the hematopoietic system function in mice post radiation exposure, leading to increased spleen index, thymus index, blood cell counts, and bone marrow DNA production (p < 0.05). Moreover, TMP improved the intestinal barrier integrity and reduced the intestinal permeability. Mechanistic insights suggested that these peptides may safeguard intestinal barrier function by downregulating the gene expression of inflammatory factors TNF-α, IL-1β, and IL-6, while upregulating the expression of tight junction proteins ZO-1 and Occludin (p < 0.05). Overall, supplementation with TMP mitigates radiation-induced intestinal damage by enhancing the hematopoietic system and the intestinal barrier, offering valuable insights for further investigations into the mechanisms underlying the protective effects of these peptides against ionizing radiation.
Collapse
Affiliation(s)
- Yuting Shang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Pengfei Cui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yachun Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ziqi Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
15
|
García-Milla P, Peñalver R, Nieto G. Formulation and Physical-Chemical Analysis of Functional Muffin Made with Inulin, Moringa, and Cacao Adapted for Elderly People with Parkinson's Disease. Antioxidants (Basel) 2024; 13:683. [PMID: 38929120 PMCID: PMC11200759 DOI: 10.3390/antiox13060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects people's health. Constipation is probably one of the most prominent gastrointestinal symptoms (non-motor symptoms) of PD with devastating consequences. The aim of this research work is to formulate a functional food product, supplemented with inulin, cocoa, and Moringa, which can be an adjuvant in the treatment of constipation. The product was prepared according to a muffin or "Chilean cake" recipe; this basic muffin was prepared with additions of inulin (MI), inulin + cacao (MIC), and inulin + Moringa (MIM). A physical-chemical analysis of the macronutrients and an antioxidant capacity assessment of the samples were conducted, as well as a sensory evaluation performed by a group of people suffering from Parkinson's disease. A statistically significant difference was observed in the soluble (p = 0.0023) and insoluble (p = 0.0015) fiber values between the control samples and all samples. Furthermore, inulin + cacao improved the antioxidant capacity and folate intake compared to the control. Inulin alone has been shown to have antioxidant capacity according to ABTS (262.5728 ± 34.74 μmol TE/g) and DPPH (9.092518 ± 10.43 μmol TE/g) assays. A sensory evaluation showed a preference for the product with inulin and for the product with inulin + cacao, with a 78% purchase intention being reported by the subjects who evaluated the products. The incorporation of inulin and cacao improved the nutritional value of the muffins; the dietary fiber, antioxidant capacity and folate content are some of the features that stood out. A bakery product enriched with inulin, cocoa and Moringa could serve as a nutritional strategy to enhance nutritional value, thus helping in the treatment of constipation.
Collapse
Affiliation(s)
- Paula García-Milla
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
- Nutrition and Dietetics Program, Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia 7500975, Chile
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (P.G.-M.); (R.P.)
| |
Collapse
|
16
|
Balasubramaniam M, Sapuan S, Hashim IF, Ismail NI, Yaakop AS, Kamaruzaman NA, Ahmad Mokhtar AM. The properties and mechanism of action of plant immunomodulators in regulation of immune response - A narrative review focusing on Curcuma longa L. , Panax ginseng C. A. Meyer and Moringa oleifera Lam. Heliyon 2024; 10:e28261. [PMID: 38586374 PMCID: PMC10998053 DOI: 10.1016/j.heliyon.2024.e28261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Herbal treatments have been utilized for millennia to cure a variety of ailments. There are over 20, 000 herbal remedies available to treat cancer and other disease in humans. In Ayurveda, traditional plants having revitalizing and nourishing characteristics are known as "Rasayanas." They have anti-inflammatory, anticancer, anti-microbicidal, antiviral, and immunomodulatory effects on the immune system. Immunomodulation is a mechanism through which the body stimulates, suppresses, or boosts the immune system to maintain homeostasis. Plant-derived immunomodulators are typically phytocompounds, including carbohydrates, phenolics, lipids, alkaloids, terpenoids, organosulfur, and nitrogen-containing chemicals. Immunomodulation activity of phytocompounds from traditional plants is primarily mediated through macrophage activation, phagocytosis stimulation, peritoneal macrophage stimulation, lymphoid cell stimulation, and suppression or enhancement of specific and non-specific cellular immune systems via numerous signalling pathways. Despite extensive research, the precise mechanism of immunomodulation of most traditional plants has not yet been fully elucidated, justifying the need for further experimentation. Therefore, this review describes the immunomodulatory agents from traditional plants such as Curcuma longa L., Panax ginseng C.A. Meyer, and Moringa oleifera Lam, further highlighting the common molecular targets and immunomodulatory mechanism involved in eradicating diseases.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Sarah Sapuan
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Ilie Fadzilah Hashim
- Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Nurul Izza Ismail
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | | | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
- Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| |
Collapse
|
17
|
Liu X, Xiao H, Luo M, Meng J, Zhong L, Wu T, Zhao Y, Wu F, Xie J. Anti-inflammatory and protective effects of Pimpinella candolleana on ulcerative colitis in rats: a comprehensive study of quality, chemical composition, and molecular mechanisms. Front Pharmacol 2024; 15:1328977. [PMID: 38645561 PMCID: PMC11026630 DOI: 10.3389/fphar.2024.1328977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: P. candolleana Wight et Arn. Is a traditional Chinese herbal medicine used by the Gelao nationality in southwest China, has been historically applied to treat various gastrointestinal disorders. Despite its traditional usage, scientific evidence elucidating its efficacy and mechanisms in treating ulcerative colitis (UC) remains sparse. This study aimed to determine the quality and chemical composition of Pimpinella candolleana and to identify its potential therapeutic targets and mechanisms in acetic acid-induced ulcerative colitis (UC) rats through integrated approaches. Methods: Morphological and microscopic characteristics, thin layer chromatography (TLC) identification, and quantitative analysis of P. candolleana were performed. UPLC-Q-TOF-MS, network pharmacology, and molecular docking were used to identify its chemical composition and predict its related targets in UC. Furthermore, a rat model was established to evaluate the therapeutic effect and potential mechanism of P. candolleana on UC. Results: Microscopic identification revealed irregular and radial arrangement of the xylem in P. candolleana, with a light green cross-section and large medullary cells. UPLC-Q-TOF-MS analysis detected and analyzed 570 metabolites, including flavonoids, coumarins, and terpenoids. Network pharmacology identified 12 effective components and 176 target genes, with 96 common targets for P. candolleana-UC, including quercetin, luteolin, and nobiletin as key anti-inflammatory components. GO and KEGG revealed the potential involvement of their targets in RELA, JUN, TNF, IKBKB, PTGS2, and CHUK, with action pathways such as PI3K-Akt, TNF, IL-17, and apoptosis. Molecular docking demonstrated strong affinity and binding between these key components (quercetin, luteolin, and nobiletin) and the key targets of the pathway, including JUN and TNF. Treatment with P. candolleana improved body weight loss, the disease activity index, and colonic histological damage in UC rats. Pimpinella candolleana also modulated the levels of IL-2 and IL-6 in UC rats, reduced the expression of pro-inflammatory cytokines such as IL-6, MAPK8, TNF-α, CHUK, and IKBKB mRNA, and decreased the expression of TNF, IKBKB, JUN, and CHUK proteins in the colon of UC rats, thereby reducing inflammation and alleviating UC symptoms. Conclusion: P. candolleana exerts its protective effect on UC by reducing the expression of proinflammatory cytokines and inhibiting inflammation, providing scientific evidence for its traditional use in treating gastrointestinal diseases. This study highlights the potential of P. candolleana as a natural therapeutic agent for UC and contributes to the development of novel medicines for UC treatment.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
| | - Hai Xiao
- Maternal and Child Health Carelhospita, Zunyi, China
| | - Mingxia Luo
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
| | - Junpeng Meng
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Lin Zhong
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Tao Wu
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
| | - Faming Wu
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
- Guizhou Medical and Health Industry Research Institute, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
- Guizhou Medical and Health Industry Research Institute, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Zhang S, Li S, Liu Q, Wei D, Huang L, Yin H, Yi M. Electroacupuncture alleviates ventilator-induced lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway. BMC Anesthesiol 2024; 24:37. [PMID: 38263038 PMCID: PMC10804525 DOI: 10.1186/s12871-024-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE This study was aimed to explore the protective effect of electroacupuncture (EA) pretreatment at Zusanli point (ST36) on ventilation-induced lung injury (VILI) and its potential anti-inflammatory mechanism. METHODS High tidal volume ventilation was used to induce the VILI in mice, and EA pretreatment at ST36 was given for 7 consecutive days. The wet/dry ratio and pathological injury score of lung tissue, and total protein content of pulmonary alveolar lavage fluid (BALF) were detected after 4 h of mechanical ventilation (MV). Meanwhile, the expressions of TLR4 and NF- κB in lung tissue were evaluated by Western Blot, and the inflammatory factors in lung tissue were detected by ELISA. RESULTS After four hours of mechanical ventilation, mice with ventilator-induced lung injury showed significant increases in lung wet/dry ratio, tissue damage scores, and protein content in bronchoalveolar lavage fluid. Pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) and TLR4/NF-κB expression levels in the lung were also markedly elevated (P < 0.05). Conversely, ST36 acupuncture point pre-treatment significantly reduced these parameters (P < 0.05). CONCLUSION EA pretreatment at ST36 could alleviate the inflammatory response for VILI via inhibiting TLR4/NF- κB pathway.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China
| | - Shuji Li
- Department of Anesthesiology, North Sichuan Medical College, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Qingmei Liu
- Department of Anesthesiology, North Sichuan Medical College, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Daneng Wei
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China
| | - Liping Huang
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China
| | - Hong Yin
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China.
| | - Mingliang Yi
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China.
| |
Collapse
|
20
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
21
|
Zhang S, Cao Y, Huang Y, Zhang S, Wang G, Fang X, Bao W. Aqueous M. oleifera leaf extract alleviates DSS-induced colitis in mice through suppression of inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116929. [PMID: 37480965 DOI: 10.1016/j.jep.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Guo W, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Chen W, Cui S. Improvement of inflammatory bowel disease by lactic acid bacteria-derived metabolites: a review. Crit Rev Food Sci Nutr 2023; 65:1261-1278. [PMID: 38078699 DOI: 10.1080/10408398.2023.2291188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lactic acid bacteria (LAB) plays a crucial role in the establishment and maintenance of host health, as well as the improvement of some diseases. One of the major modes is the secretion of metabolites that may be intermediate or end products of the LAB's metabolism. In this review, we summarized some common metabolites (particularly short-chain fatty acids [SCFAs], bacteriocin, and exopolysaccharide [EPS]) from LAB in fermented foods and the gut for the first time. The effects of LAB-derived metabolites (LABM) on inflammation, oxidative stress, the intestinal barrier, and gut microbiota in inflammatory bowel disease (IBD) model are also discussed. The discovery of LABM and identification of IBD biomarkers are mainly attributed to the development of metabolomics technologies, especially nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography tandem mass spectrometry (LC-MS). The application of these metabolomics technologies in identification of LABM and IBD biomarkers are also summarized and analyzed. Although the beneficial effects of some LABM have been explored, undiscovered metabolites and their functions still need further investigations.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Ertik O, Magaji UF, Sacan O, Yanardag R. Effect of Moringa oleifera leaf extract on valproate-induced oxidative damage in muscle. Drug Chem Toxicol 2023; 46:1212-1222. [PMID: 36373188 DOI: 10.1080/01480545.2022.2144876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022]
Abstract
Valproic acid (VPA) is a drug used for the treatment of epilepsy worldwide. Depending on usage, it can cause complications such as coagulopathies, hepatotoxicity, and encephalopathy. Moringa oleifera has been shown to have antitumor, anti-inflammatory, antiulcer, antispasmodic, diuretic, antihypertensive, antidiabetic, and hepatoprotective activities. The current study investigated the effects of Moringa leaves extract (70% ethanol) on antioxidant systems against valproate-induced oxidative damage in muscle tissues of rats. Female Sprague Dawley rats were randomly divided into four groups. Group I: control group; Group II: animals given only Moringa extract; Group III: animals that received only sodium valproate; Group IV: animals administered with sodium valproate + Moringa extract. Moringa extract and sodium valproate were administered orally. Muscle tissues were collected after sacrificing the animals. Biochemical analysis of muscle tissue homogenates of the valproate group revealed elevated levels/activities of lipid peroxidation, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, catalase, glutathione reductase, glutathione-S-transferase, reactive oxygen species, total oxidant status, oxidative stress index, glucose-6-phosphate dehydrogenase, sialic acid, protein carbonyl, nitric oxide, and myeloperoxidase. While glutathione, superoxide dismutase, glutathione peroxidase, total antioxidant status, aryl esterase and sodium/potassium ATPase were decreased. The administration of Moringa extract reversed these biochemical changes. These results indicate that Moringa leaves extract had a protective effect on muscle tissues against valproate-induced damage.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| |
Collapse
|
24
|
Hong Z, Shi C, Hu X, Chen J, Li T, Zhang L, Bai Y, Dai J, Sheng J, Xie J, Tian Y. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An in Silico Analysis and in Vivo Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15604-15619. [PMID: 37815395 DOI: 10.1021/acs.jafc.3c04220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Walnut (Juglans regia L.) is a food with food-medicine homology, whose derived protein peptides have been shown to have anti-inflammatory activity in vitro. However, the effects and mechanisms of walnut protein peptides on ulcerative colitis (UC) in vivo have not been systematically and thoroughly investigated. In this study, we applied virtual screening and network pharmacology screening of bioactive peptides to obtain three novel WPPs (SHTLP, HYNLN, and LGTYP) that may alleviate UC through TLR4-MAPK signaling. In vivo studies have shown that WPPs improve intestinal mucosal barrier dysfunction and reduce inflammation by inhibiting activation of the TLR4-MAPK pathway. In addition, WPPs restore intestinal microbial homeostasis by reducing harmful bacteria (Helicobacter and Bacteroides) and increasing the relative abundance of beneficial bacteria (Candidatus_Saccharimonas). Our study showed that the WPPs obtained by virtual screening were effective in ameliorating colitis, which has important implications for future screening of bioactive peptides from medicinal food homologues as drugs or dietary supplements.
Collapse
Affiliation(s)
- Zishan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jinlian Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yuying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jingjing Dai
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
25
|
Park JH, Kim JH, Jang SI, Cho BO. Anti-inflammatory of disenecionyl cis-khellactone in LPS-stimulated RAW264.7 cells and the its inhibitory activity on soluble epoxide hydrolase. Heliyon 2023; 9:e21032. [PMID: 37876448 PMCID: PMC10590947 DOI: 10.1016/j.heliyon.2023.e21032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
The objective of the present study was to investigate anti-inflammatory effects of disenecionyl cis-khellactone (DK) isolated from Peucedanum japonicum Thunberg, a traditional edible plant, in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Anti-inflammatory effects of DK were analyzed using various techniques, including NO assay, Western blot analysis, enzyme-linked immunosorbent assay (ELISA), real-time PCR, and immunofluorescence staining. It was revealed that DK reduced the production of pro-inflammatory cytokines including Monocyte chemoattractant protein-1 (MCP-1), Tumor necrosis factor-α (TNF-α), Interleukin 1β (IL-1β), and Interleukin 6 (IL-6) in RAW264.7 cells stimulated with LPS. It was revealed that DK effectively downregulated expression levels of iNOS and COX-2 due to inhibition of NF-κB activation and suppressing the phosphorylation of p38 and jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) phosphorylation. Also, soluble epoxide hydrolase activity and expression were decreased by the proinflammatory inhibitor, DK. Finally, findings of this study suggest that DK isolated from P. japonicum might have potential as a therapeutic candidate for inflammatory diseases.
Collapse
Affiliation(s)
- Ji Hyeon Park
- Institute of Health Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea
| | - Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, 27709, Republic of Korea
| | - Seon Il Jang
- Institute of Health Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea
- Department of Health Management, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea
| | - Byoung Ok Cho
- Institute of Health Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea
| |
Collapse
|
26
|
Lian J, Lin D, Huang Y, Chen X, Chen L, Zhang F, Tang P, Xie J, Hou X, Du Z, Deng J, Hao E, Liu J. Exploring the potential use of Chinese herbs in regulating the inflammatory microenvironment of tumours based on the concept of 'state-target identification and treatment': a scooping review. Chin Med 2023; 18:124. [PMID: 37742025 PMCID: PMC10517536 DOI: 10.1186/s13020-023-00834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/03/2023] [Indexed: 09/25/2023] Open
Abstract
Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1β), transforming growth factor-beta (TGF-β), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.
Collapse
Affiliation(s)
- Jing Lian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongxin Lin
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaohui Chen
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Chen
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China.
| | - Junhui Liu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
27
|
Mohd Sahardi NFN, Makpol S. Suppression of Inflamm-Aging by Moringa oleifera and Zingiber officinale Roscoe in the Prevention of Degenerative Diseases: A Review of Current Evidence. Molecules 2023; 28:5867. [PMID: 37570837 PMCID: PMC10421196 DOI: 10.3390/molecules28155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
29
|
Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chem 2023; 404:134592. [DOI: 10.1016/j.foodchem.2022.134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
30
|
Lopez-Rodriguez NA, Sanchez-Ortiz LK, Reynoso-Camacho R, Riesgo-Escovar JR, Loarca-Piña G. Chronic Consumption of Moringa Leaf Powder ( Moringa oleifera) Concentration-Dependent Effects in a Drosophila melanogaster Type 2 Diabetes Model. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:285-294. [PMID: 35512766 DOI: 10.1080/07315724.2022.2034068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The metabolic effects of chronic consumption of food laced with different doses of moringa leaf powder (MLP) were assessed using a heteroallelic mutant of the sole insulin receptor gene of Drosophila melanogaster (InR), and the yellow,white (y,w) control stock. METHODS The MLP composition was partially determined. Both strains were raised in a standard diet (SD) or in a SD supplemented with different MLP doses (0.5, 1.5, 2.5, 4.0, and 5.5%) until 4-5 days of emergence. Afterward, the total carbohydrate, lipid, glucose, and triacylglyceride levels were measured in the flies. Additionally, survival and weight changes were reported. For metabolic tests, female and male virgin flies were evaluated separately. RESULTS Low MLP supplementation improved carbohydrate and glucose levels in the y,w strain. Additionally, the InR-mutant strain reported lower lipid content when subjected to the same regimes. Survival improved in both strains with low MLP doses, while chronic consumption of high MLP doses resulted in triacylglycerides increase, weight gain, and survival reduction. CONCLUSION Low doses of MLP supplementation improves some metabolic parameters that affect flies' survival, especially in the y,w strain. Furthermore, the same low doses of MLP treatments also resulted in metabolic improvements in the InR-mutant flies; however, MLP consumption levels should be carefully assessed. Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Norma A Lopez-Rodriguez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| | - Laura K Sanchez-Ortiz
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| | - Rosalía Reynoso-Camacho
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
31
|
Potential of moringa (Moringa oleifera) leaf powder for functional food ingredients: A review. CZECH JOURNAL OF FOOD SCIENCES 2023. [DOI: 10.17221/221/2022-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
32
|
Green Synthesized Zinc Oxide Nanoparticles Using Moringa olifera Ethanolic Extract Lessens Acrylamide-Induced Testicular Damage, Apoptosis, and Steroidogenesis-Related Gene Dysregulation in Adult Rats. Antioxidants (Basel) 2023; 12:antiox12020361. [PMID: 36829920 PMCID: PMC9952201 DOI: 10.3390/antiox12020361] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study assessed the possible protective role of green synthesized zinc oxide nanoparticles using Moringa olifera leaf extract (MO-ZNPs) in acrylamide (ACR)-induced reproductive dysfunctions in male rats. ACR (20 mg/kg b.wt/day) and/or MO-ZNPs (10 mg/kg b.wt/day) were given orally by gastric gavage for 60 days. Then, sperm parameters; testicular enzymes; oxidative stress markers; reproductive hormones including testosterone, luteinizing hormone (LH)-estradiol, and follicle-stimulating hormone (FSH) concentration; testis histology; steroidogenesis-related gene expression; and apoptotic markers were examined. The findings revealed that MO-ZNPs significantly ameliorated the ACR-induced decline in the gonadosomatic index and altered the pituitary-gonadal axis, reflected by decreased serum testosterone and FSH with increased estradiol and LH, and sperm analysis disruption. Furthermore, a notable restoration of the tissue content of antioxidants (catalase and reduced glutathione) but depletion of malondialdehyde was evident in MO-ZNPs+ACR-treated rats compared to ACR-exposed ones. In addition, MO-ZNPs oral dosing markedly rescued the histopathological changes and apoptotic caspase-3 reactions in the testis resulting from ACR exposure. Furthermore, in MO-ZNPs+ACR-treated rats, ACR-induced downregulation of testicular steroidogenesis genes and proliferating cell nuclear antigen (PCNA) immune-expression were reversed. Conclusively, MO-ZNPs protected male rats from ACR-induced reproductive toxicity by suppressing oxidative injury and apoptosis while boosting steroidogenesis and sex hormones.
Collapse
|
33
|
Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, Pareek A, Chuturgoon AA. Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. Int J Mol Sci 2023; 24:ijms24032098. [PMID: 36768420 PMCID: PMC9916933 DOI: 10.3390/ijms24032098] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
- Correspondence: (A.P.); (A.A.C.)
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Pushpa Kashania
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (A.P.); (A.A.C.)
| |
Collapse
|
34
|
Su H, Tian CJ, Wang Y, Shi J, Chen X, Zhen Z, Bai Y, Deng L, Feng C, Ma Z, Liu J. Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and ameliorates inflammation in the lung of streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2022; 60:2229-2236. [PMID: 36367996 PMCID: PMC9662009 DOI: 10.1080/13880209.2022.2140168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Ginsenoside Rb1 (Rb1) is a biologically active component of ginseng [Panax ginseng C.A. Meyer (Araliaceae)]. OBJECTIVE This study determined the underlying mechanisms of Rb1 treatment that acted on diabetes-injured lungs in diabetic rats. MATERIALS AND METHODS Streptozotocin (STZ)-induced diabetic rat model was used. Male Sprague-Dawley (SD) rats were divided into four groups (n = 10): control, Rb1 (20 mg/kg), insulin (15 U/kg to attain the euglycaemic state) and diabetic (untreated). After treatment for six weeks, oxidative stress assay; histological and ultrastructure analyses; TNF-α, TGF-β, IL-1 and IL-6 protein expression analyses; and the detection of apoptosis were performed. RESULTS There was decreased activity of SOD (3.53-fold), CAT (2.55-fold) and GSH (1.63-fold) and increased levels of NO (4.47-fold) and MDA (3.86-fold) in the diabetic group from control. Rb1 treatment increased SOD (2.4-fold), CAT (1.9-fold) and GSH (1.29-fold) and decreased the levels of NO (1.76-fold) and MDA (1.51-fold) as compared with diabetic rats. The expression of IL-6 (5.13-fold), IL-1α (2.35-fold), TNF-α (2.35-fold) and TGF-β (2.39-fold) was increased in diabetic rats from control. IL-6 (2.43-fold), IL-1α (2.27-fold), TNF-α (1.68-fold) and TGF-β (2.3-fold) were decreased in the Rb1 treatment group. Diabetes increased the apoptosis rate (2.23-fold vs. control), and Rb1 treatment decreased the apoptosis rate (1.73-fold vs. the diabetic rats). Rb1 and insulin ameliorated lung tissue injury. DISCUSSION AND CONCLUSIONS These findings indicate that Rb1 could be useful for mitigating oxidative damage and inflammatory infiltration in the diabetic lung.
Collapse
Affiliation(s)
- Hao Su
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Cheng-Ju Tian
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Ying Wang
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Jiaojiao Shi
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Xiaoxiao Chen
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Zhong Zhen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yu Bai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Lan Deng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chunpeng Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Zhuang Ma
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Jinfeng Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
35
|
Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats. Food Chem Toxicol 2022; 171:113537. [PMID: 36442736 DOI: 10.1016/j.fct.2022.113537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-β protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-β and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.
Collapse
|
36
|
Cuellar-Nuñez ML, Luzardo-Ocampo I, Lee-Martínez S, Larrauri-Rodríguez M, Zaldívar-Lelo de Larrea G, Pérez-Serrano RM, Camacho-Calderón N. Isothiocyanate-Rich Extracts from Cauliflower ( Brassica oleracea Var. Botrytis) and Radish ( Raphanus sativus) Inhibited Metabolic Activity and Induced ROS in Selected Human HCT116 and HT-29 Colorectal Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214919. [PMID: 36429638 PMCID: PMC9691161 DOI: 10.3390/ijerph192214919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2023]
Abstract
Cruciferous vegetables such as cauliflower and radish contain isothiocyanates exhibiting chemoprotective effects in vitro and in vivo. This research aimed to assess the impact of cauliflower (CIE) and radish (RIE) isothiocyanate extracts on the metabolic activity, intracellular reactive oxygen species (ROS), and LDH production of selected human colorectal adenocarcinoma cells (HCT116 and HT-29 for early and late colon cancer development, respectively). Non-cancerous colon cells (CCD-33Co) were used as a cytotoxicity control. The CIE samples displayed the highest allyl isothiocyanate (AITC: 12.55 µg/g) contents, whereas RIE was the most abundant in benzyl isothiocyanate (BITC: 15.35 µg/g). Both extracts effectively inhibited HCT116 and HT-29 metabolic activity, but the CIE impact was higher than that of RIE on HCT116 (IC50: 0.56 mg/mL). Assays using the half-inhibitory concentrations (IC50) of all treatments, including AITC and BITC, displayed increased (p < 0.05) LDH (absorbance: 0.25-0.40 nm) and ROS release (1190-1697 relative fluorescence units) in both cell lines. BITC showed the highest in silico binding affinity with all the tested colorectal cancer molecular markers (NF-kB, β-catenin, and NRF2-NFE2). The theoretical evaluation of AITC and BITC bioavailability showed high values for both compounds. The results indicate that CIE and RIE extracts display chemopreventive effects in vitro, but additional experiments are needed to validate their effects.
Collapse
Affiliation(s)
- Mardey Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Queretaro 76230, Mexico
| | - Sarah Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Michelle Larrauri-Rodríguez
- Licenciatura en Medicina General, Facultad de Medicina, Universidad Autónoma de Querétaro, Queretaro 76176, Mexico
| | | | - Rosa Martha Pérez-Serrano
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Nicolás Camacho-Calderón
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| |
Collapse
|
37
|
Functional Plasmon-Activated Water Increases Akkermansia muciniphila Abundance in Gut Microbiota to Ameliorate Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms231911422. [PMID: 36232724 PMCID: PMC9570201 DOI: 10.3390/ijms231911422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is associated with dysbiosis and intestinal barrier dysfunction, as indicated by epithelial hyperpermeability and high levels of mucosal-associated bacteria. Changes in gut microbiota may be correlated with IBD pathogenesis. Additionally, microbe-based treatments could mitigate clinical IBD symptoms. Plasmon-activated water (PAW) is known to have an anti-inflammatory potential. In this work, we studied the association between the anti-inflammatory ability of PAW and intestinal microbes, thereby improving IBD treatment. We examined the PAW-induced changes in the colonic immune activity and microbiota of mice by immunohistochemistry and next generation sequencing, determined whether drinking PAW can mitigate IBD induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) and dysbiosis through mice animal models. The effects of specific probiotic species on mice with TNBS-induced IBD were also investigated. Experimental results indicated that PAW could change the local inflammation in the intestinal microenvironment. Moreover, the abundance of Akkermansia spp. was degraded in the TNBS-treated mice but elevated in the PAW-drinking mice. Daily rectal injection of Akkermansia muciniphila, a potential probiotic species in Akkermansia spp., also improved the health of the mice. Correspondingly, both PAW consumption and increasing the intestinal abundance of Akkermansia muciniphila can mitigate IBD in mice. These findings indicate that increasing the abundance of Akkermansia muciniphila in the gut through PAW consumption or other methods may mitigate IBD in mice with clinically significant IBD.
Collapse
|
38
|
Mao B, Guo W, Tang X, Zhang Q, Yang B, Zhao J, Cui S, Zhang H. Inosine Pretreatment Attenuates LPS-Induced Lung Injury through Regulating the TLR4/MyD88/NF-κB Signaling Pathway In Vivo. Nutrients 2022; 14:2830. [PMID: 35889786 PMCID: PMC9318366 DOI: 10.3390/nu14142830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Inosine is a type of purine nucleoside, which is considered to a physiological energy source, and exerts a widely range of anti-inflammatory efficacy. The TLR4/MyD88/NF-κB signaling pathway is essential for preventing host oxidative stresses and inflammation, and represents a promising target for host-directed strategies to improve some forms of disease-related inflammation. In the present study, the results showed that inosine pre-intervention significantly suppressed the pulmonary elevation of pro-inflammatory cytokines (including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), malondialdehyde (MDA), nitric oxide (NO), and reactive oxygen species (ROS) levels, and restored the pulmonary catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities (p < 0.05) in lipopolysaccharide (LPS)-treated mice. Simultaneously, inosine pre-intervention shifted the composition of the intestinal microbiota by decreasing the ratio of Firmicutes/Bacteroidetes, elevating the relative abundance of Tenericutes and Deferribacteres. Moreover, inosine pretreatment affected the TLR4/MyD88/NF-κB signaling pathway in the pulmonary inflammatory response, and then regulated the expression of pulmonary iNOS, COX2, Nrf2, HO-1, TNF-α, IL-1β, and IL-6 levels. These findings suggest that oral administration of inosine pretreatment attenuates LPS-induced pulmonary inflammatory response by regulating the TLR4/MyD88/NF-κB signaling pathway, and ameliorates intestinal microbiota disorder.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (W.G.); (X.T.); (Q.Z.); (B.Y.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Sugiharto S, Ramadany S, Handayani H, Achmad H, Mutmainnah N, Inayah NH, Sesioria A, Thamrin AZ. Assessment of the Anti-inflammatory Activities of the Moringa Leaf Extract in Periodontitis Cases through IL-6 Cytokine Analysis in Wistar (Rattus novergicus). Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Periodontitis is a chronic inflammatory disease that causes damage to the supporting structures of the teeth, and if left untreated, it can lead to impaired function, appearance, pain, and tooth loss. Periodontitis is caused by bacteria that adhere to and grow on the tooth surface. The “red complex” bacteria consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. These bacteria will trigger an inflammatory response in the body. Interleukin-6 (IL-6) is an IL that acts both as a pro-inflammatory cytokine, IL-6 is a stimulator for MMP production. To treat the periodontal disease can be through non-surgical therapy as well as surgical therapy, to maximize therapy, it is accompanied by antimicrobial therapy. However, because of the frequent use of antimicrobials, causing antimicrobial resistance in patients, the use of natural ingredients as additional therapy is very necessary for this study using Moringa leaves as a substitute for antimicrobials.
AIM: This study aimed to determine the effectiveness of Moringa leaf in influencing the anti-inflammatory cytokine IL-6. The first benefit of this research is to provide scientific information in the field of dentistry regarding the effectiveness of Moringa leaves against red-complex bacteria P. gingivalis as a cause of chronic periodontitis through anti-inflammatory cytokine analysis.
METHODS: The type of research that will be used is quasi-experimental with a post-test research design with a control group design. This study used a sample consisted of 30 Wistars (Rattus novergicus) and was divided into two groups based on periodontal tissue sampling as follows treatment group which was treated with extracts Moringa and control group with aquadest irrigation after bacterial induction in the gingival sulcus. Blood samples were taken on days 0, 1, 3, 5, and 7 and centrifuged obtain blood serum and serum cytokine levels (pg/mL) were quantified using a commercial ELISA IL-6 kit.
RESULTS: This study obtained the results that there was a decrease in IL-6 in both groups on the 3rd day of observation (D3) where the treatment group given Moringa extract showed a greater decrease in IL-6 levels compared to the control group. There is a significant value in the comparison of IL-6 levels between the two groups with p-value: 0.000 (p < 0.05).
CONCLUSION: Moringa oleifera leaf extract showed the anti-inflammatory effect on inflammation induced by the bacterium P. gingivalis. M. oleifera extract can reduce the production of the pro-inflammatory cytokine IL-6 induced by P. gingivalis bacteria in periodontitis.
Collapse
|
40
|
Anti-inflammatory and gut microbiota regulatory effects of walnut protein derived peptide LPF in vivo. Food Res Int 2022; 152:110875. [DOI: 10.1016/j.foodres.2021.110875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
|
41
|
Fuel M, Mesas C, Martínez R, Ortiz R, Quiñonero F, Prados J, Porres JM, Melguizo C. Antioxidant and antiproliferative potential of ethanolic extracts from Moringa oleifera, Tropaeolum tuberosum and Annona cherimola in colorrectal cancer cells. Biomed Pharmacother 2021; 143:112248. [PMID: 34649364 DOI: 10.1016/j.biopha.2021.112248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
Moringa oleifera, Tropaeolum tuberosum and Annona cherimola are medicinal plants traditionally used in Ecuador. However, their therapeutic properties are not completely known. We analyzed chromatographically ethanolic extracts of the seeds of M. oleifera, A. cherimola and the tubers of T. tuberosum; all presented a high content of polyphenols. The extract of A. cherimola showed the highest antioxidant activity and M. oleifera had the highest capacity to enhance the activity of detoxifying enzymes such as glutathione S-transferase and quinone oxidoreductase. The antitumor effect of these extracts was evaluated in vitro with colorectal cancer (CRC) cell lines T84, HCT-15, SW480 and HT-29, as well as with cancer stem cells (CSCs). A. cherimola and M. oleifera extracts presented the lowest IC50 in T-84 and HCT-15 (resistant) cells, respectively, as well as the highest level of inhibition of proliferation in multicellular tumor spheroids of HCT-15 cells. The inhibitory effect on CSCs is noteworthy because in vivo, these cells are often responsible for cancer recurrences and resistance to chemotherapy. Moreover, all extracts showed a synergistic activity with 5-Fu. The antiproliferative mechanism of the extracts was related to overexpression of caspases 9, 8 and 3 and increased production of reactive oxygen species. In addition, we observed cell death by autophagy in M. oleifera and T. tuberosum extracts. Therefore, these ethanolic extracts are excellent candidates for future molecular analysis of the presence of bioactive compounds and in vivo studies which could improve colon cancer therapy.
Collapse
Affiliation(s)
- Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| | - Rosario Martínez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain; Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain.
| | - Jesús M Porres
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain; Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto Biosanitario de Granada (ibs.GRANADA), Granada, 18014 Granada, Spain
| |
Collapse
|
42
|
Melatonin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Pharmaceuticals (Basel) 2021; 14:ph14080822. [PMID: 34451919 PMCID: PMC8399719 DOI: 10.3390/ph14080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have indicated that obesity is an independent risk factor for colitis and that a high-fat diet (HFD) increases the deterioration of colitis-related indicators in mice. Melatonin has multiple anti-inflammatory effects, including inhibiting tumor growth and regulating immune defense. However, the mechanism of its activity in ameliorating obesity-promoted colitis is still unclear. This study explored the possibility that melatonin has beneficial functions in HFD-induced dextran sodium sulfate (DSS)-induced colitis in mice. Here, we revealed that HFD-promoted obesity accelerated DSS-induced colitis, while melatonin intervention improved colitis. Melatonin significantly alleviated inflammation by increasing anti-inflammatory cytokine release and reducing the levels of proinflammatory cytokines in HFD- and DSS-treated mice. Furthermore, melatonin expressed antioxidant activities and reversed intestinal barrier integrity, resulting in improved colitis in DSS-treated obese mice. We also found that melatonin could reduce the ability of inflammatory cells to utilize fatty acids and decrease the growth-promoting effect of lipids by inhibiting autophagy. Taken together, our study indicates that the inhibitory effect of melatonin on autophagy weakens the lipid-mediated prosurvival advantage, which suggests that melatonin-targeted autophagy may provide an opportunity to prevent colitis in obese individuals.
Collapse
|