1
|
Fu L, Chen T, Zhuang X, Xiao A, Xiao Q. Tuning the amphiphilicity of agarose by grafting phenolic acids: A versatile approach for developing lutein-loaded emulsion gels. Int J Biol Macromol 2025; 304:140733. [PMID: 39920944 DOI: 10.1016/j.ijbiomac.2025.140733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In this study, three phenolic acids, namely 3,4-Dihydroxybenzoic acid (DBA), 3,4-Dihydroxyphenylacetic acid (DPA), and 3,4-Dihydroxyphenylpropanoic acid (DPPA), were grafted onto agarose molecules to improve the physicochemical and biological properties of agarose. DBA-grafted agarose (DBA-AG), DPA-grafted agarose (DPA-AG), and DPPA-grafted agarose (DPPA-AG) were prepared and used as encapsulation materials to construct a lutein-loaded emulsion gel delivery system. The results confirmed that phenolic acids were successfully grafted onto the agarose backbone via ester bonds, with a grafting degree of approximately 8 %. As the length of the phenolic acid side chain increased (DBA < DPA < DPPA), the agarose gel exhibited decreased strength, thermal stability, and transparency while displaying increased hydrophobicity and emulsifying activity. Phenolic acid grafting significantly enhanced the radical scavenging ability of agarose and improved its inhibitory activity against Staphylococcus aureus (100 %) and Escherichia coli (78.44 %-100 %). DPPA-AG exhibited the highest antioxidant activity, while DBA-AG showed the best antibacterial effect. Moreover, phenolic acid grafting transformed agarose from a hydrophilic gel to an amphiphilic emulsion gel, greatly increasing lutein's encapsulation efficiency (87.3 %-94.2 %), chemical stability, and bioavailability. DPPA-AG demonstrated the optimal emulsifying activity and lutein encapsulation performance. In vitro hemolysis experiments indicated good prospects for applications in food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Liling Fu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Tianyan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Xiaoyan Zhuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
2
|
Xu X, Gao J, Qing L, Zhang M, Sun J, Jiang H, Wang S, Dong H, Mao X. Artificial Cascade Transformation Biosystem for One-Pot Biomanufacturing of Odd-Numbered Neoagarooligosaccharides and d-Tagatose through Wiser Agarose Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26339-26347. [PMID: 39545938 DOI: 10.1021/acs.jafc.4c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The application of agarose oligosaccharides has garnered great attention, with their biological activities varying among different structures. However, it still meets a great bottleneck for the targeted production of odd-numbered neoagarooligosaccharides (NAOSs), such as neoagarotriose (NA3), due to the lack of one-step hydrolases. In this work, the α-agarase AgaA33 and β-galactosidase BgaD were synergistically used to prepare NA3 with agarose as a substrate. Additionally, an l-arabinose isomerase CaLAI from Clostridium acetobutylicum was characterized to valorize low-value byproducts (d-galactose) by forming d-tagatose, which exhibited good thermal stability without the need for additional metal ions. Under the optimal reaction conditions, the production of NA3 and d-galactose catalyzed by these three enzymes was 0.40 and 0.15 g/L, respectively. The artificial three-enzyme-based cascade transformation system not only achieved the highest production of NA3 until now but also allowed for the valorization of d-galactose, providing a wiser application route for agarose utilization.
Collapse
Affiliation(s)
- Xiaohan Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jing Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Liwei Qing
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Mingyue Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| |
Collapse
|
3
|
Fujii T, Karasawa K, Takahashi H, Shirai I, Funasaka K, Ohno E, Hirooka Y, Tochio T. Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro, and inhibiting Lachnospiraceae in vivo. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001510. [PMID: 39570663 PMCID: PMC11581127 DOI: 10.1099/mic.0.001510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
Recent studies have linked Ruminococcus gnavus to inflammatory bowel disease and Fusobacterium nucleatum to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of R. gnavus and F. nucleatum at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes (fab genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of R. gnavus cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with R. gnavus and Bifidobacterium longum in 0.2% AOS resulted in B. longum dominating the population, constituting over 96% post-incubation. In vivo studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which R. gnavus belongs, following AOS administration. Quantitative PCR also showed lower levels of the nan gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.
Collapse
Affiliation(s)
- Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| | - Koji Karasawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Research & Development, Ina Food Industry, Co., Ltd., Ina, Nagano, Japan
| | - Hideaki Takahashi
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Ikuya Shirai
- Research & Development, Ina Food Industry, Co., Ltd., Ina, Nagano, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
- BIOSIS Lab. Co., Ltd., Toyoake, Aichi, Japan
| |
Collapse
|
4
|
Liu C, Gao J, Jiang H, Sun J, Gao X, Mao X. Value-added utilization technologies for seaweed processing waste in a circular economy: Developing a sustainable modern seaweed industry. Compr Rev Food Sci Food Saf 2024; 23:e70027. [PMID: 39379297 DOI: 10.1111/1541-4337.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
The global seaweed industry annually consumes approximately 600,000 tons of dried algal biomass to produce algal hydrocolloids, yet only 15-30% of this biomass is utilized, with the remaining 70-85% discarded or released as scum or wastewater during the hydrocolloid extraction process. This residual biomass is often treated as waste and not considered for further commercial use, which contradicts the principles of sustainable development. In reality, the residual algal biomass could be employed to extract additional biochemical components, such as pigments, proteins, and cellulose, and these ingredients have important application prospects in the food sector. According to the biorefinery concept, recycling various products alongside the principal product enhances overall biomass utilization. Transitioning from traditional single-product processes to multi-product biorefineries, however, raises operating costs, presenting a significant challenge. Alternatively, developing value-added utilization technologies that target seaweed waste without altering existing processes is gaining traction among industry practitioners. Current advancements include methods such as separation and extraction of residual biomass, anaerobic digestion, thermochemical conversion, enzymatic treatment, functionalized modification of algal scum, and efficient utilization through metabolic engineering. These technologies hold promise for converting seaweed waste into alternative proteins, dietary supplements, and bioplastics for food packaging. Combining multiple technologies may offer the most effective strategy for future seaweed waste treatment. Nonetheless, most research on value-added waste utilization remains at the laboratory scale, necessitating further investigation at pilot and commercial scales.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Jiale Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
5
|
Yuan L, Liu C, Li B, Wang S, Sun J, Mao X. Multi-omics analysis reveals that agaro-oligosaccharides with different degrees of polymerization alleviate colitis in mice by regulating intestinal flora and arginine synthesis. Food Funct 2024; 15:10628-10643. [PMID: 39310981 DOI: 10.1039/d4fo03650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a common chronic disease with a complex etiology, characterized by body weight loss, intestinal barrier damage, and an imbalance of intestinal flora, posing a significant threat to people's health. In this work, we studied whether safer natural active agaro-oligosaccharides (AOSs) benefit mice with IBD and elucidated their underlying mechanisms. The findings indicated that oral administration of agarobiose (A2), agarotriose (A3), and agarotetraose (A4) contributed to alleviating body weight loss and colon shortening, as well as enhancing IL-10 levels while reducing IL-6, IL-1β, and TNF-α. AOSs improved colon disruption, reduced the number of goblet cells caused by DSS, and enhanced the expression of Muc2, ZO-1, and occludin-1 to repair the intestinal barrier. It is noteworthy that A3 demonstrated superior outcomes in the evaluated AOSs relative to A2 and A4. This was evidenced by an increase in Bacteroidota and reduced Firmicutes at the phylum level, which corrected DSS-induced intestinal dysbiosis and significantly restored disrupted metabolic pathways, including amino acid and lipid metabolism. The differential metabolites between the AOS treatment groups and the model group were mainly enriched in arginine synthesis with co-regulated critical substances N-acetyl-L-citrulline and N2-acetylornithine, which alleviated colitis. This evidence offers a fresh perspective on the potential application of AOSs as functional foods to improve intestinal inflammation and metabolism.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| |
Collapse
|
6
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
7
|
Lu Z, Jiang H, Yang D, Tang H, Hamouda HI, Wang T, Mao X. Characterization of a λ-Carrageenase Mutant with the Generation of Long-Chain λ-Neocarrageenan Oligosaccharides. Foods 2024; 13:1923. [PMID: 38928863 PMCID: PMC11202985 DOI: 10.3390/foods13121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
λ-carrageenan oligosaccharides can be widely applied in the food, pharmaceutical, medicine and cosmetic industries due to their abundant bioactivities, and they are important products for the high-value utilization of λ-carrageenan. However, oligosaccharides with different degrees of polymerization have different properties, and the final products of λ-carrageenase reported so far are mainly λ-neocarrabiose, λ-neocarratetraose and λ-neocarrahexaose without longer-chain oligosaccharides. Further research is consequently required. Herein, a mutant λ-carrageenase was constructed by deleting the pyrroloquinoline quinone-like domain of OUC-CglA derived from Maribacter vaceletii. Interestingly, it was discovered that the majority of final products of the mutant OUC-CglA-DPQQ were long-chain oligosaccharides with a polymerization degree of 10-20, which underwent significant changes compared to that of OUC-CglA. Additionally, without the pyrroloquinoline quinone-like domain, fewer inclusion bodies were produced throughout the expression process, and the yield of the λ-carrageenase increased about five-fold. However, compared to its parental enzyme, significant changes were made to its enzymatic properties. Its optimal temperature and pH were 15 °C and pH 7.0, and its specific activity was 51.59 U/mg. The stability of the enzyme decreased. Thus, it was found that the deleting domain was related to the formation of inclusion bodies, the stability of the enzyme, the activity of the enzyme and the composition of the products.
Collapse
Affiliation(s)
- Zewei Lu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Dianqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengxin Tang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I. Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tao Wang
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
8
|
Wang Q, Wang Y, Wang Y, Zhang Q, Mi J, Ma Q, Li T, Huang S. Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice. Food Funct 2024; 15:3380-3394. [PMID: 38498054 DOI: 10.1039/d3fo04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.
Collapse
Affiliation(s)
- Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 21001, Liaoning, China
| | - Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
9
|
Mune Mune MA, Hatanaka T, Kishimura H, Kumagai Y. Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition. Molecules 2024; 29:1536. [PMID: 38611816 PMCID: PMC11013419 DOI: 10.3390/molecules29071536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), β-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), β-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.
Collapse
Affiliation(s)
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan;
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| |
Collapse
|
10
|
Rigueira LL, Perecmanis S. Concerns about the use of antimicrobials in swine herds and alternative trends. Transl Anim Sci 2024; 8:txae039. [PMID: 38685989 PMCID: PMC11056889 DOI: 10.1093/tas/txae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Pig productivity in Brazil has advanced a lot in recent decades. Specialized breeds are more vulnerable to pathogens, which has boosted the use of antimicrobials by farmers. The selective pressure generated favors the emergence of resistant bacteria, which compromises the effectiveness of this treatment and limits therapeutic options. In addition to increasing costs and mortality rates in the production system, public awareness of this issue has increased. The authorities have imposed restrictive measures to control the use of antimicrobials and have banned their use as growth promoters. This literature review highlights biosecurity and animal welfare to prevent pig diseases. Hence, we describe alternatives to the use of antimicrobials in pig production for the selection of effective non-antibiotic feed additives that help maintain good health and help the pig resist disease when infection occurs.
Collapse
Affiliation(s)
- Luciana L Rigueira
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
- Secretary of Agriculture of Federal District, 70770-914, Brasília, Brazil
| | - Simone Perecmanis
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
| |
Collapse
|
11
|
Zhu La ALT, Li D, Cheng Z, Wen Q, Hu D, Jin X, Liu D, Feng Y, Guo Y, Cheng G, Hu Y. Enzymatically prepared neoagarooligosaccharides improve gut health and function through promoting the production of spermidine by Faecalibacterium in chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169057. [PMID: 38056640 DOI: 10.1016/j.scitotenv.2023.169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial β-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial β-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.
Collapse
Affiliation(s)
- A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Cheng
- Huzhou Inspection & Quarantine Comprehensive Technology Center, Zhejiang 313000, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Praiboon J, Chantorn S, Krangkratok W, Choosuwan P, La-ongkham O. Evaluating the Prebiotic Properties of Agar Oligosaccharides Obtained from the Red Alga Gracilaria fisheri via Enzymatic Hydrolysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3958. [PMID: 38068595 PMCID: PMC10708334 DOI: 10.3390/plants12233958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024]
Abstract
Currently, the demand in the food market for oligosaccharides with biological activities is rapidly increasing. In this study, agar polysaccharides from Gracilaria fisheri were treated with β-agarases and hydrolyzed to agar oligosaccharides (AOSs). High-performance anion-exchange chromatography/pulsed amperometric detection (HPAEC-PAD), Fourier-transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC), were employed to analyze the chemical characteristics of AOSs. The FT-IR spectra revealed that the enzymatic hydrolysis had no effect on specific functional groups in the AOS molecule. To investigate the prebiotic and pathogen inhibitory effects of AOSs, the influence of AOSs on the growth of three probiotic and two pathogenic bacteria was examined. The gastrointestinal tolerance of probiotics in the presence of AOSs was also investigated. AOSs enhanced the growth of Lactobacillus plantarum by 254%, and inhibited the growth of Bacillus cereus by 32.80%, and Escherichia coli by 58.94%. The highest survival rates of L. plantarum and L. acidophilus were maintained by AOSs in the presence of α-amylase and HCl under simulated gastrointestinal conditions. This study demonstrates that AOSs from G. fisheri exhibit potential as a prebiotic additive in foods.
Collapse
Affiliation(s)
- Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Chantorn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Weerada Krangkratok
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Pradtana Choosuwan
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Orawan La-ongkham
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
13
|
Zhang Y, Chen G, Shen J, Mei X, Liu G, Chang Y, Dong S, Feng Y, Wang Y, Xue C. The characteristic structure of funoran could be hydrolyzed by a GH86 family enzyme (Aga86A_Wa): Discovery of the funoran hydrolase. Carbohydr Polym 2023; 318:121117. [PMID: 37479453 DOI: 10.1016/j.carbpol.2023.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Funoran, agarose and porphyran all belong to agaran, and share the similar skeleton. Although the glycoside hydrolase for agarose and porphyran, i.e. agarase and porphyranase, have been extensively studied, the enzyme hydrolyzing funoran has not been reported hitherto. The crystal structure of a previously characterized GH86 β-agarase Aga86A_Wa showed a large cavity at subsite -1, which implied its ability to accommodate sulfate ester group. By using glycomics and NMR analysis, the activity of Aga86A_Wa on the characteristic structure of funoran was validated, which signified the first discovery of funoran hydrolase, i.e. funoranase. Aga86A_Wa hydrolyzed the β-1,4 glycosidic bond between β-d-galactopyranose-6-sulfate (G6S) and 3,6-anhydro-α-l-galactopyranose (LA) unit of funoran, and released disaccharide LA-G6S as the predominant end product. Considering the hydrolysis pattern, we proposed to name the activity represented by Aga86A_Wa on funoran as "β-funoranase" and suggested to assign it an EC number.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| |
Collapse
|
14
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
15
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
16
|
Suresh G, Kopperi H, Mohan SV. Hydrothermal Processing of Agar Waste to Levulinic acid and Fermentation of Hydrolysate to Bioethanol. BIORESOURCE TECHNOLOGY 2023; 382:129063. [PMID: 37080439 DOI: 10.1016/j.biortech.2023.129063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Increasing global energy consumption and depleting fossil-fuel supplies prompted the search for green-alternatives. This study focuses on conversion of waste agar using different acids/alkalis (0.5% and 1%) as catalysts under varied temperature and time towards galactose (Gal), 5-hydroxymethylfurfural (HMF) and levulinic acid (LA) production in a sequential reaction. The optimized process for agar depolymerisation was achieved using 1 % acid (H2SO4/HCl) catalysed conditions with a maximum of 11 g/L Gal yield (121 °C; 15 min). Increase in temperature (150 °C) and time (180 min) with 1% HCl/H2SO4 catalyst resulted in improved LA production along with Gal and HMF. The hydrolysis process was optimised for the selective production of LA (10 g/L) at 175 °C; 180 min. Further, galactose-rich hydrolysates were assessed for bioethanol fermentation using Saccharomyces cerevisiae and resulted 3 g/L ethanol. Thus, the study comprehensively demonstrates waste agar utilization to yield biochemicals/fuels in a circular bio-based economy approach.
Collapse
Affiliation(s)
- G Suresh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Dai X, Zhang Q, Zhang G, Ma C, Zhang R. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway. Carbohydr Polym 2023; 313:120878. [PMID: 37182968 DOI: 10.1016/j.carbpol.2023.120878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Agar oligosaccharide (AOS) is a new kind of marine functional oligosaccharide with generous biological activities. To investigate the antioxidative effects of AOS in vivo, 3 % aqueous hydrogen peroxide (H2O2) was used to induce oxidative stress in male Drosophila melanogaster (D. melanogaster) fed 5 % sucrose (SUC). AOS (0.125 %) in the medium extended the lifespan of D. melanogaster suffering from oxidative stress by improving antioxidant capacity and intestinal function. Electron microscopic observation of epithelial cells showed that AOS alleviated the damage caused by H2O2 challenge in the intestine of D. melanogaster, including a reduction of gut leakage and maintenance of intestinal length and cell ultrastructure. The Keap1-Nrf2 (analogues of CncC gene in D. melanogaster) signaling pathway was significantly activated based on gene expression levels and a reduction in ROS content in the intestine of D. melanogaster suffering from oxidative stress. The improvement of antioxidant capacity may be related to the regulation of intestinal microflora with AOS supplementation for D. melanogaster. Nrf2-RNAi, sterile and gnotobiotic D. melanogaster were used to validate the hypothesis that AOS activated the Keap1-Nrf2 signaling pathway to achieve antioxidant effects by regulating intestinal microflora. The above results contribute to our understanding of the antioxidative mechanism of AOS and promote its application in the food industry.
Collapse
|
18
|
Wang L, Fu X, Hyun J, Xu J, Gao X, Jeon YJ. In Vitro and In Vivo Protective Effects of Agaro-Oligosaccharides against Hydrogen Peroxide-Stimulated Oxidative Stress. Polymers (Basel) 2023; 15:polym15071612. [PMID: 37050226 PMCID: PMC10096889 DOI: 10.3390/polym15071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
In our previous research, we investigated the anti-inflammatory activity of the agaro-oligosaccharides prepared from the agar of Gracilaria lemaneiformis (AO). In the present study, in order to further explore the bioactivities of AO, the antioxidant activity of AO was investigated in vitro in Vero cells and in vivo in zebrafish. AO scavenged alkyl, 1,1-diphenyl-2-picrylhydrazyl, and hydroxyl radicals at the IC50 value of 4.86 ± 0.13, 3.02 ± 0.44, and 1.33 ± 0.05 mg/mL, respectively. AO significantly suppressed hydrogen peroxide (H2O2)-stimulated oxidative damage by improving cell viability. This happened via suppressing apoptosis by scavenging intracellular reactive oxygen species (ROS). Furthermore, the in vivo results displayed that AO protected zebrafish against H2O2-stimulated oxidative damage by reducing the levels of intracellular ROS, cell death, and lipid peroxidation in a dose-dependent manner. These results indicate that AO effectively alleviated in vitro and in vivo oxidative damage stimulated by H2O2, and suggest the potential of AO in the cosmetic and functional food industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (X.F.); (Y.-J.J.)
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
- Correspondence: (X.F.); (Y.-J.J.)
| |
Collapse
|
19
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Natural antimicrobial oligosaccharides in the food industry. Int J Food Microbiol 2023; 386:110021. [PMID: 36462348 DOI: 10.1016/j.ijfoodmicro.2022.110021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Long J, Ye Z, Li X, Tian Y, Bai Y, Chen L, Qiu C, Xie Z, Jin Z, Svensson B. Enzymatic preparation and potential applications of agar oligosaccharides: a review. Crit Rev Food Sci Nutr 2022; 64:5818-5834. [PMID: 36547517 DOI: 10.1080/10408398.2022.2158452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligosaccharides derived from agar, that is, agarooligosaccharides and neoagarooligosaccharides, have demonstrated various kinds of bioactivities which have been utilized in a variety of fields. Enzymatic hydrolysis is a feasible approach that principally allows for obtaining specific agar oligosaccharides in a sustainable way at an industrial scale. This review summarizes recent technologies employed to improve the properties of agarase. Additionally, the relationship between the degree of polymerization, bioactivities, and potential applications of agar-derived oligosaccharides for pharmaceutical, food, cosmetic, and agricultural industries are discussed. Engineered agarase exhibited general improvement of enzymatic performance, which is mostly achieved by truncation. Rational and semi-rational design assisted by computational methods present the latest strategy for agarase improvement with greatest potential to satisfy future industrial needs. Agarase immobilized on magnetic Fe3O4 nanoparticles via covalent bond formation showed characteristics well suited for industry. Additionally, albeit with the relationship between the degree of polymerization and versatile bioactivities like anti-oxidants, anti-inflammatory, anti-microbial agents, prebiotics and in skin care of agar-derived oligosaccharides are discussed here, further researches are still needed to unravel the complicated relationship between bioactivity and structure of the different oligosaccharides.
Collapse
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ziying Ye
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Yang R, Ma J, Hu J, Sun H, Han Y, Meng D, Wang Z, Cheng L. Formation of ferritin-agaro oligosaccharide-epigallocatechin gallate nanoparticle induced by CHAPS and partitioned by the ferritin shell with enhanced delivery efficiency. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Dan M, Shen J, Zhao G, Wang D. Complete conversion of agarose into water soluble agaro-oligosaccharides by microwave assisted hydrothermal hydrolysis. Food Chem 2022; 395:133622. [DOI: 10.1016/j.foodchem.2022.133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
|
23
|
Xia Q, Zhao Q, Zhu H, Cao Y, Yang K, Sun P, Cai M. Physicochemical characteristics of Ganoderma lucidum oligosaccharide and its regulatory effect on intestinal flora in vitro fermentation. Food Chem X 2022; 15:100421. [PMID: 36211736 PMCID: PMC9532794 DOI: 10.1016/j.fochx.2022.100421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/01/2022] Open
Abstract
G. lucidum oligosaccharide was obtained by ultrasonic enzymatic hydrolysis and Sephadex G25. GLO was a chain-like homogeneous oligosaccharide with a molecular weight of 1280 Da. GLO could not be easily degraded by digestion in the mouth, gastric and small intestine. GLO could be utilized and had good regulatory effects on intestinal flora.
This study explored the structure characteristics of an oligosaccharide from Ganoderma lucidum (GLO) and its regulatory functions on intestinal flora fermentation in vitro. GLO was extracted by ultrasonic-assisted enzymatic hydrolysis, and purified with a dextran gel column. Digestion properties and intestinal flora regulation effects of GLO were investigated by both simulation models. Results showed that GLO was a chain-like homogeneous oligosaccharide, composed of → 6)-β-d-Glcp-(1→, →4)-α-d-Glcp-(1→, β-d-Glcp-(1→, α-d-Manp-(1 →. Its structure could not be easily degraded by digestion in the mouth, gastric and small intestine. Accordingly, they can be utilized by the intestinal flora in large intestine. By evaluating the gas, short chain fatty acids, pH and flora abundance in vitro fermentation, it indicated that GLO had good regulatory effects on intestinal flora. Accordingly, GLO might be a potential prebiotic applied in functional foods.
Collapse
|
24
|
Gu X, Zhao L, Tan J, Zhang Q, Fu L, Li J. Characterization of a novel β-agarase from Antarctic macroalgae-associated bacteria metagenomic library and anti-inflammatory activity of the enzymatic hydrolysates. Front Microbiol 2022; 13:972272. [PMID: 36118221 PMCID: PMC9478344 DOI: 10.3389/fmicb.2022.972272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
An agarase gene (aga1904) that codes a protein with 640 amino acids was obtained from the metagenomic library of macroalgae-associated bacteria collected from King George Island, Antarctica. Gene aga1904 was expressed in Escherichia coli BL21 (DE3) and recombinant Aga1904 was purified by His Bind Purification kit. The optimal temperature and pH for the activity of Aga1904 were 50°C and 6.0, respectively. Fe3+ and Cu2+ significantly inhibited the activity of Aga1904. The Vmax and Km values of recombinant Aga1904 were 108.70 mg/ml min and 6.51 mg/ml, respectively. The degradation products of Aga1904 against agarose substrate were mainly neoagarobiose, neoagarotetraose, and neoagarohexaose analyzed by thin layer chromatography. The cellular immunoassay of enzymatic hydrolysates was subsequently carried out, and the results showed that agaro-oligosaccharides dominated by neoagarobiose significantly inhibited key pro-inflammatory markers including, nitric oxide (NO), interleukins 6 (IL-6), and tumor necrosis factor α (TNF-α). This work provides a promising candidate for development recombinant industrial enzyme to prepare agaro-oligosaccharides, and paved up a new path for the exploitation of natural anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Luying Zhao
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiaojiao Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Liping Fu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiang Li
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Jiang Li,
| |
Collapse
|
25
|
Jiang C, Zhang T, Xu Y, Mao X. Characterization of a GH50 β-Agarase: A Biotechnological Tool for Preparing Oligosaccharides from Agarose and Porphyran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9931-9940. [PMID: 35866448 DOI: 10.1021/acs.jafc.2c02107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Agarase is of vital significance for functional agaro-oligosaccharides production from algal dived agarose. Especially, the exolytic agarases have the advantage of obtaining agaro-oligosaccharides with a specific degree of polymerization. Herein, we cloned and expressed a novel glycoside hydrolase (GH) 50 family β-agarase OUC-PgJC50 from Photobacterium gaetbulicola. The degradation pattern analysis indicated that OUC-PgJC50 not only showed an exolytic activity with main products of neoagarotetraose from hydrolyzing agarose but also show a hydrolytic activity to transform neoagarotetraose into neoagarobiose. This is the first time that the discovery of a neoagarotetraose-producing exolytic GH50 β-agarase possesses the activity to transform neoagarotetraose into neoagarobiose, which provided new insight into the recognition of the degradation mode of agarases. Molecular docking and sequence alignment analysis further revealed the His654 residue in OUC-PgJC50 may play a vital role in forming a strong force with l-AHG residue at -4 subsite that helps to produce neoagarotetraose from catalyzing agarose. Moreover, the catalytic ability of OUC-PgJC50 toward another agar polysaccharide porphyran was also described that could hydrolyze porphyran into sulfated oligosaccharides, in which the LA6S-d-Gal was the main products. This study is of vital significance for developing the application range of GH50 β-agarases.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tianyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuxian Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|