1
|
Mathatheeranan P, Lu TJ, Wongprasert T, Jhu YC, Chang HJ, Wu WY, Fang M, Assatarakul K, Suppavorasatit I. Impact of drying techniques on volatile aroma profiles and formation mechanisms of black soybean thua nao. Food Chem X 2024; 24:102040. [PMID: 39670256 PMCID: PMC11635709 DOI: 10.1016/j.fochx.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Thua nao, a traditional Thai fermented soybean, offers a unique aroma and nutritional value. However, fresh thua nao cannot be stored for long periods due to its high in water activity (aw). This study examined the effects of various drying methods, including natural sun drying and machine drying methods, namely hot air, microwave vacuum (MIC), and vacuum drying on the qualities of dried black soybean thua nao. Our findings showed that MIC-treated sample showed the lowest aw and highest crude fat and TVB-N contents. Volatile aroma compounds were categorized according to odor description and clustered using principal component analysis (PCA). Drying methods influenced volatile compounds associated with lipid oxidation (green-fatty attribute) and the Maillard reaction (nutty-roasted, sweet, sulfurous, and smoky attributes). PCA results indicated that volatile profiles of the sun-dried sample differed from the others. This research establishes a correlation between sugar and free fatty acid precursors and aroma attributes.
Collapse
Affiliation(s)
- Pakavit Mathatheeranan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayatai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Thanakorn Wongprasert
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayatai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Yi-Ci Jhu
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsin-Jo Chang
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Yuan Wu
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Mingchih Fang
- Department of Food Science, College of Live Science, National Taiwan Ocean University, Taiwan
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayatai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Inthawoot Suppavorasatit
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayatai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Pan L, Xu W, Gao Y, Ouyang H, Liu X, Wang P, Yu X, Xie T, Li S. Exploring the lipid oxidation mechanisms during pumpkin seed kernels storage based on lipidomics: From phenomena, substances, and metabolic mechanisms. Food Chem 2024; 455:139808. [PMID: 38897071 DOI: 10.1016/j.foodchem.2024.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The study investigated the lipid oxidation of pumpkin seed kernels (PSK) under different storage conditions (room temperature, vacuum-room temperature, refrigeration, and vacuum-refrigeration) using HPLC-MS and GC-MS. Experimental results found the vacuum-refrigeration group showed the lowest PV (0.24 g/100 g), diene (8.68), hexanal (356.64 ± 16.06 ng/g), and nonanal (132.05 ± 8.38 ng/g) after a 9-month storage. A total of 586 lipids, including 6 classes and 27 subclasses, were detected, 46 of which showed significant differences. Refrigeration samples had the highest diacylglycerol content, while room temperature samples demonstrated the highest triacylglycerol and phosphatidylcholine content. Differential lipid metabolite analyses indicated that storage conditions mainly affected glycerolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism pathways in PSK, while glycerolipid and glycerophospholipid metabolism were still dominant. It revealed that refrigeration was more effective than vacuum in inhibiting the oxidation of PSK. These findings could offer valuable references for the storage, transportation, preservation, and the development and utilization of PSK.
Collapse
Affiliation(s)
- Li Pan
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Weijian Xu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Ouyang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiaolong Liu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ping Wang
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, Tarim University, Alar, 843300, China
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | | | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
3
|
Cao H, Dong X, Wang C, Song H, Huang K, Zhang Y, Lu J, Guan X. Refining quinoa storage stability through microwave-induced structural alterations and activity suppression of key enzymes. Food Chem 2024; 446:138786. [PMID: 38422637 DOI: 10.1016/j.foodchem.2024.138786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
This study investigated the effects of microwave on preserving the quality of quinoa during storage. Quinoa treated with 9W/60s exhibited a significant decrease in fatty acid values compared to hot air treatment. Microwave effectively delayed lipid oxidation during quinoa storage by suppressing the increase in peroxide values. MDA gradually accumulated from peroxides during storage, reaching its peak at 0.423 μmol/L in the second week. Microwave disrupted the original hydrogen bonds in lipase, causing the unwinding of the α-helix and resulting in the loss of its regular structure. Microwave reduced the stability of the β-sheet structure in lipoxygenase, breaking the natural secondary structure composition. The observed fluorescence and UV spectra features were similar, indicating that microwave alter the peptide chain of the enzyme's skeletal structure, increasing the exposure of hydrophobic chromophores. These results indicated the potential of microwave to enhance the stability of quinoa during storage.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiaowei Dong
- Sensient Technologies Corp. (China) Limited, Shanghai 201100, PR China
| | - Chong Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jun Lu
- Auckland Bioengineering Institute, the University of Auckland, Auckland 1142, New Zealand
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Lin LY, Chen CW, Chen HC, Chen TL, Yang KM. Developing the procedure-enhanced model of ginger-infused sesame oil based on its flavor and functional properties. Food Chem X 2024; 21:101227. [PMID: 38420504 PMCID: PMC10900433 DOI: 10.1016/j.fochx.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Ginger-infused sesame oil enriches the nutrition and provides enhanced flavor for the foods. An original processing procedure and module for evaluation were established in this study, using different raw materials (Guangdong and Chu ginger) and treatments (ginger powder, extract, and both). The quality, functionality, and flavor of the infused oils were evaluated. Ginger-infused sesame oil contained 0.58-3.22 µg/g of 6-gingerol, 0.21-0.88 µg/g of 6-shogaol. The number range of volatile compounds from 48 to 55 identified by gas chromatography-mass spectrometry varies depending on different process procedures. Agglomerative hierarchical clustering analysis revealed the flavor profiles were clustered by different varieties, while gingerol and phytosterol was by different treatments. In conclusion, sesame oil was an appropriate carrier for gingerol and phytosterol, which are characterized by higher antioxidant capacities (p < 0.05). These results show the benefits of developing infused oil products with enhanced functional and sensory properties.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food Science and Technology, Hung Kuang University, Taichung 433, Taiwan
| | - Chih-Wei Chen
- Bachelor Degree Program in Food Safety/Hygiene and Laboratory Science, Chang Jung Christian University, Tainan City 711, Taiwan
| | - Hsin-Chun Chen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Tai-Liang Chen
- Department of Food Science and Technology, Hung Kuang University, Taichung 433, Taiwan
| | - Kai-Min Yang
- Department of Food Science, National Quemoy University, Kinmen 892, Taiwan
| |
Collapse
|
5
|
Han Q, Chen Y, Liu X, Bi J, Zhang W, Zeng X, Wang P, Shu Z. Quality attributes of paddy rice during storage as affected by accumulated temperature. Front Nutr 2024; 10:1337110. [PMID: 38235442 PMCID: PMC10791794 DOI: 10.3389/fnut.2023.1337110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
In actual storage processes of rice, environment temperatures fluctuate rather than remain constant. Accumulated temperature is the sum of temperature during the storage period. In this research, six different temperature-varied conditions with two accumulated temperatures (low intensity: 7200°C⸱d; high intensity: 9000°C⸱d) were designed to store rice for 12 months and the stored rice samples were compared in quality. Three low-accumulated temperature conditions were set as follows: No. 4-15°C for 6 months followed by 25°C; No. 5-25°C for 6 months followed by 15°C; No. 8-alternating between 15°C and 25°C every 2 months. Similarly, three high-intensity conditions, No. 6, No. 7, and No. 9, were set with a temperature change from 25°C to 35°C. Three constant temperature conditions, No. 1, No. 2, and No. 3, with storage temperature of 15, 25, and 35°C, respectively, were used as controls. Under temperature-varied conditions, rice demonstrated a decline in germination rate (GR), catalase (CAT) and peroxidase (POD) activities, and an increase in fatty acid value (FAV) as storage time increased. After storage, rice exhibited higher water absorption rate (WAR) and volume expansion rate (VER), but reduced stickiness and sensory scores for appearance, taste and overall quality. Generally, three batches at high-accumulated temperature conditions had lower GR and sensory scores, and higher FAV, WAR, and VER compared to those under low-intensity conditions. Furthermore, variations in the sequence of temperature also affected quality parameters, even at the same accumulated temperature. These findings indicate that under temperature-varied conditions, increased accumulated temperature exacerbates rice deterioration, and different temperature sequences can influence quality at a given accumulated temperature.
Collapse
Affiliation(s)
- Qian Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yifan Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiuying Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Jie Bi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Pingping Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Zaixi Shu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| |
Collapse
|
6
|
Hu Q, Zhang J, He L, Wei L, Xing R, Yu N, Huang W, Chen Y. Revealing oxidative degradation of lipids and screening potential markers of four vegetable oils during thermal processing by pseudotargeted oxidative lipidomics. Food Res Int 2024; 175:113725. [PMID: 38129041 DOI: 10.1016/j.foodres.2023.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The oxidative degradation of lipids in vegetable oils during thermal processing may present a risk to human health. However, not much is known about the evolution of lipids and their non-volatile derivatives in vegetable oils under different thermal processing conditions. In the present study, a pseudotargeted oxidative lipidomics approach was developed and the evolution of lipids and their non-volatile derivatives in palm oil, rapeseed oil, soybean oil, and flaxseed oil under different thermal processing conditions was investigated. The results showed that thermal processing resulted in the oxidative degradation of TGs in vegetable oils, which generated oxTGs, DGs, and FFAs, as well as TGs with smaller molecular weights. The lower the fatty acid saturation, the more severe the oxidative degradation of vegetable oils and thermal processing at high temperatures should be avoided if possible. From the accumulation of oxTGs concentrations, the hazards during thermal processing at high temperatures were, in descending order, soybean oil, rapeseed oil, flaxseed oil, and palm oil. The non-volatile potential markers were screened in palm oil, rapeseed oil, soybean oil, and flaxseed oil for 1, 7, 5, and 2 markers related to thermal processing time, respectively. The study provided suggestions for the consumption of vegetable oils from multiple perspectives and identified markers for monitored oxidative degradation of vegetable oils.
Collapse
Affiliation(s)
- Qian Hu
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Lei He
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Liyang Wei
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ranran Xing
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ning Yu
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Wensheng Huang
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Key Laboratory for Food Authenticity identification of the State Administration for Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
7
|
Kang M, Guo Y, Ren Z, Ma W, Luo Y, Zhao K, Wang X. Volatile Fingerprint and Differences in Volatile Compounds of Different Foxtail Millet ( Setaria italica Beauv.) Varieties. Foods 2023; 12:4273. [PMID: 38231730 DOI: 10.3390/foods12234273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Aroma components in foxtail millet are one of the key factors in origin traceability and quality control, and they are associated with consumer acceptance and the corresponding processing suitability. However, the volatile differences based on the foxtail millet varieties have not been studied further. The present study was undertaken to develop the characteristic volatile fingerprint and analyze the differences in volatile compounds of 20 foxtail millet varieties by electronic nose (E-Nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). A total of 43 volatile compounds were tentatively identified in foxtail millet samples, 34 and 18 by GC-IMS and GC-MS, respectively. Aldehydes, alcohols, and ketones were the major volatile compounds, and the hexanal content was the highest. The characteristic volatile fingerprint of foxtail millet was successfully constructed. A total of 39 common volatile compounds were found in all varieties. The content of hexanal, heptanal, 1-pentanol, acetophenone, 2-heptanone, and nonanal were explored to explain the aroma characteristics among the different varieties, and different varieties can be separated based on these components. The results demonstrate that the combination of E-Nose, GC-IMS, and GC-MS can be a fast and accurate method to identify the general aroma peculiarities of different foxtail millet varieties.
Collapse
Affiliation(s)
- Miao Kang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yu Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiyuan Ren
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiwei Ma
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yuewei Luo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kai Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
8
|
Ma W, Zhu Y, Ma S, Shi J, Yan H, Lin Z, Lv H. Aroma characterisation of Liu-pao tea based on volatile fingerprint and aroma wheel using SBSE-GC-MS. Food Chem 2023; 414:135739. [PMID: 36827782 DOI: 10.1016/j.foodchem.2023.135739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Liu-pao tea (LPT) has unique aroma characteristics, and is a special microbial fermented tea produced using dark raw tea (LPM) as its raw material. In this study, stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS) was applied to investigate the volatiles of 16 LPTs and 6 LPMs. Moreover, variations in volatile profiles between LPTs and LPMs were explored. Results showed that a total of 132 volatile compounds were identified from LPTs. The volatile fingerprint was constructed with a similarity ranged from 0.85 to 0.99. Furthermore, twenty-six aroma compounds were selected to depict the molecular aroma wheel of LPT. Multivariate statistical analysis revealed that the contents of 24 aroma compounds changed significantly (P < 0.05) when LPMs were processed into LPTs. These results reveal the volatile profiles of LPTs and aroma composition changes during microbial fermentation process, which might provide chemical basis of the aroma quality of LPT.
Collapse
Affiliation(s)
- Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Shicheng Ma
- Wuzhou Liu-pao Tea Research Association, Wuzhou 543000, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Han Yan
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
9
|
He L, Hu Q, Zhang J, Xing R, Zhao Y, Yu N, Chen Y. An integrated untargeted metabolomic approach reveals the quality characteristics of black soybeans from different geographical origins in China. Food Res Int 2023; 169:112908. [PMID: 37254343 DOI: 10.1016/j.foodres.2023.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Black soybeans are extensively planted and consumed in China due to their high nutritional value and numerous health benefits. However, very few is known about the characteristic metabolites of black soybeans from different geographical origins in China. In the present study, 31 black soybean samples were collected from 11 main producing provinces in China. A combined metabolomics approach using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatography coupled to an Orbitrap mass analyzer (GC-orbitrap-MS) was performed for the first time to comprehensively investigate the metabolite variability among the black soybeans from different geographical origins. A total of 48 differential non-volatile metabolites and 14 differential volatile metabolites were identified based on orthogonal partial least squares discriminant analysis (OPLS-DA) coupled with analysis of variance (ANOVA). Higher procyanidin B1, procyanidin B2, epicatechin, malonylated isoflavones, and β-pinene were observed in Gansu black soybeans. Guangxi black soybeans had higher amounts of linoleic acid and its oxidation products of hexanal and pentane. The black soybeans from Xinjiang and Yunnan were found to have higher delphinidin-derived anthocyanins, gamma-glutamyl peptides, and aromatic hydrocarbons. The characteristic metabolites of black soybeans from other geographical origins were also clarified. This study indicated that the integrated untargeted metabolomic approach can be a powerful tool to provide knowledge for developing specialty black soybeans.
Collapse
Affiliation(s)
- Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Yongsheng Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
10
|
Interfacial behavior of gallic acid and its alkyl esters in stripped soybean oil in combination with monoacylglycerol and phospholipid. Food Chem 2023; 413:135618. [PMID: 36753786 DOI: 10.1016/j.foodchem.2023.135618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
The effect of gallic acid alkyl esters and their combination with monoacylglycerol (MAG) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) on the formation of hydroperoxides and hexanal were determined during the oxidation of stripped soybean oil. Interfacial tension, water content, and droplet size were evaluated to monitor the physical properties of the oil system. Adding MAG and DOPC, especially MAG/DOPC, to the oil promoted the partitioning of antioxidants into the water-oil interfaces by further reducing the interfacial tension. The stripped oil containing methyl gallate (MG) accompanied by MAG/DOPC had lower values of the critical micelle concentration of hydroperoxides and larger micellar size at the induction period. This confirms that MG was able to more effectively reduce the free hydroperoxides concentration and inhibit them in an interfacial way. The conjunction of surfactants has been shown as a promising strategy to improve the interfacial and antioxidant activity of gallates in the oxidative stability of soybean oil.
Collapse
|
11
|
He L, Hu Q, Wei L, Ge X, Yu N, Chen Y. Unravelling dynamic changes in non-volatile and volatile metabolites of pulses during soaking: An integrated metabolomics approach. Food Chem 2023; 422:136231. [PMID: 37141754 DOI: 10.1016/j.foodchem.2023.136231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
An integrated metabolomics approach based on UPLC-QTOF-MS and HS-SPME-GC-orbitrap-MS was performed to investigate the dynamic changes of metabolite profiling in chickpeas, red speckled kidney beans, and mung beans during soaking. There were 23, 23, 16 non-volatile metabolites, and 18, 21, 22 volatile metabolites were identified as differential metabolites in chickpeas, red speckled kidney beans, and mung beans during soaking, respectively. These metabolites mainly included flavonoids, lysophosphatidylcholines (LPCs), lysophosphatidylethanolamines (LPEs), fatty acids, alcohols, aldehydes, and esters. The key time points responsible for the significant changes in metabolites and quality of the three pulses were 4, 8, and 24 h of soaking. Results revealed that the variations of some metabolites could attribute to oxidation and hydrolysis reactions. These results contribute to a better understanding of how soaking affects pulses quality, and provide useful information for determining soaking time according to nutritional and sensory requirements of their final products or dishes.
Collapse
Affiliation(s)
- Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
12
|
Hu Q, Zhang J, He L, Xing R, Yu N, Chen Y. New insight into the evolution of volatile profiles in four vegetable oils with different saturations during thermal processing by integrated volatolomics and lipidomics analysis. Food Chem 2023; 403:134342. [DOI: 10.1016/j.foodchem.2022.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
13
|
Hu L, Chen D, Zhou W, Chen X, Zhang Q. Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010148. [PMID: 36615342 PMCID: PMC9821893 DOI: 10.3390/molecules28010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
(1) Background: Mulberry leaves have been widely consumed due to their richness in bioactive substances and high antioxidant activity. The choice of storage method to ensure the quality of mulberry leaves is a challenge in the supply process. (2) Methods: The differences in primary metabolites of freeze-dried mulberry leaf powder after 30 days of storage under different storage conditions (i.e., vacuum or non-vacuum, 4 °C or room temperature) were investigated. (3) Results: A low temperature and vacuum had better preservation effects on the types and activity of the primary metabolites of mulberry leaves, with vacuum preservation being the best. However, the types of primary metabolites in mulberry leaves were significantly reduced after non-vacuum storage at room temperature compared to those with other storage methods. Among the metabolites detected, including dehydroascorbic acid, various phenolic acids, amino acids, lipids, and carbohydrates showed a significant decrease in their contents of more than 40%, and there was a significant increase in the contents of various compounds of the muconic acid biosynthetic pathway compared to those in other storage methods. Moreover, the antioxidant activity of mulberry leaves stored at room temperature under non-vacuum conditions was also significantly reduced. (4) Conclusions: Vacuum storage is the most ideal storage method for preserving mulberry leaves.
Collapse
Affiliation(s)
- Lei Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.C.); (Q.Z.)
| | - Xiaoyang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.C.); (Q.Z.)
| | - Qing Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.C.); (Q.Z.)
| |
Collapse
|
14
|
Study on the quality change and deterioration mechanism of leisure dried tofu under different storage temperature conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2022; 11:foods11040552. [PMID: 35206029 PMCID: PMC8871176 DOI: 10.3390/foods11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3.
Collapse
|
16
|
Zhou X, Zheng Y, Zhong Y, Wang D, Xu J, Liu R, Deng Y. A novel protein bar formulated with hempseed protein and
Tenebrio molitor
larvae protein: Nutritional, sensory characterization and hardening, volatile profile changes assessment. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuefu Zhou
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology Shanghai Engineering Research Center of Dairy Biotechnology Dairy Research Institute Bright Dairy & Food Co., Ltd. Shanghai P.R. China
| | - Yu Zhong
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Danfeng Wang
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Jingyao Xu
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Ren Liu
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Yun Deng
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
17
|
Nunes MDGP, Pizzutti IR, Brackmann A, Reichert B, Zorzella Fontana ME, Duarte Dos Santos I, Cuti LK, Jänisch BD, Panciera MP, Ludwig V, Cardoso CD. Multimycotoxin Determination in Grains: A Comprehensive Study on Method Validation and Assessment of Effectiveness of Controlled Atmosphere Storage in Preventing Mycotoxin Contamination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11440-11450. [PMID: 34520209 DOI: 10.1021/acs.jafc.1c03208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two simple and low-cost QuEChERS approaches were optimized and validated for multimycotoxin determination in grains by UPLC-MS/MS and applied to assess effectiveness of controlled atmosphere (CA) storage in preventing mycotoxin contamination. Common bean, soybean, and maize samples were stored for 6 months. CA treatments were conducted varying O2 and CO2 partial pressures, temperatures, and moisture contents of the chambers. In the validation study for common bean and maize, 8 out of 11 mycotoxins were successfully validated. For soybean, 10 out of 11 mycotoxins were validated. Aflatoxin B1 was detected in all commodities. Statistical tests suggest that storage temperature played a key role in aflatoxin B1 concentrations in common bean and soybean, but had no influence on maize. Maize was also positive for fumonisins B1 and B2. Differences in fumonisin concentrations were not significant among different treatments. Concentrations of aflatoxin B1 in some samples exceeded legislation's maximum levels. Thus, some of the CA treatments applied were effective in preventing mycotoxin contamination in common bean and soybean but were not effective for maize.
Collapse
Affiliation(s)
- Maria da Graça Pereira Nunes
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Ionara Regina Pizzutti
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Auri Brackmann
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Bárbara Reichert
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Marlos Eduardo Zorzella Fontana
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Ingrid Duarte Dos Santos
- Department of Technology and Food Science, Federal University of Santa Maria (UFSM), 97015-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Lisandra Kopp Cuti
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Bárbara Daiana Jänisch
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Matheus Pelizzaro Panciera
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Vagner Ludwig
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Carmem Dickow Cardoso
- Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|