1
|
Tantala J, Kaokham P, Boonsupthip W, Thumanu K, Rachtanapun P, Naksang P, Rachtanapun C. Cellulose casing impregnated with chitosan: Its antimicrobial activity and application in ready-to-eat sausage. Food Res Int 2025; 208:116108. [PMID: 40263777 DOI: 10.1016/j.foodres.2025.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 04/24/2025]
Abstract
Outbreaks of Listeria monocytogenes associated with ready-to-eat (RTE) sausages have occurred worldwide for many years. Their causes have been mainly due to post-processing contamination. Consequently, the current study developed an antimicrobial sausage casing to protect RTE sausages from recontamination after heat treatment throughout storage. The cellulose casing was impregnated with chitosan, a natural antimicrobial substance. The proper conditions of the vacuum impregnation technique to produce the antimicrobial-impregnated casing were 2 % v/v of chitosan solution, vacuum pressure at 74.66 kPa for 120 s, and a relaxation time of 30 s. When examined in broth media, the antimicrobial-impregnated casing obtained from these conditions decreased L. monocytogenes Scott A by 1.50 log CFU/g (∼96.8 %) within 24 h. The quantitative amount of chitosan released from the impregnated cellulose casing was 0.1180 % w/v, as determined using the ninhydrin test. The penetration of chitosan into the cellulose casing was evaluated using Fourier transform infrared microspectroscopy to monitor the distribution and intensity of chitosan's amino group (-NH2), nitrogen-containing groups (N), and the saccharide structure. The contour mapping of the impregnated casing presented the highest distribution of the chitosan functional groups in all casing areas that was determined based on the specific functional groups of chitosan (NH, CH) at 1406-1353 cm-1, as well as other dominant changes, including the wavelength ranges 1183-1140 cm-1 (CO stretching), 3658-3027 cm-1 (OH, NH, CH), 2997-2828 cm-1 (NH stretching, CH stretching, CH3 symmetric stretching, CH ring) and 1139-1009 cm-1 (CO stretching), respectively. In addition, application of the impregnated casing for sausage emulsion was evaluated. Under vacuum-packed conditions, the antimicrobial-impregnated casing retarded L. monocytogenes Scott A growth in the inoculated Vienna sausage at 4 and 10 °C throughout the storage for 28 and 5 days, respectively. In un-inoculated sausage, the antimicrobial-impregnated casing extended the shelf-life of fresh sausage at 4 and 10 °C for 63 and 14 days, respectively. It was concluded that cellulose casing impregnated with chitosan was suitable for use as an antimicrobial-impregnated casing to protect post-processing contamination on the food surface, to maintain wholesomeness of the product, and to extend the shelf-life of RTE sausage.
Collapse
Affiliation(s)
- Juthamas Tantala
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pongkwan Kaokham
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Waraporn Boonsupthip
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Porawan Naksang
- Department of Food Science and Technology, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand..
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Gaba ABM, Hassan MA, Abd El-Tawab AA, Al-Dalain SY, Abdelaziz M, Morsy OM, Sami R, Alsanei WA, Almehmadi AM, Bedaiwi RI, Kadi RH, Qari SH, Almasoudi SH, Bay DH, Morsy MK. Bioactive chitosan based coating incorporated with essential oil to inactivate foodborne pathogen microorganisms and improve quality parameters of beef burger. FOOD SCI TECHNOL INT 2025:10820132251323937. [PMID: 40084817 DOI: 10.1177/10820132251323937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The aim of this study is to assess the impacts of chitosan (CH) coating with oregano essential oil (OEO) and thyme essential oil (TEO) (0.5%-1.0%; v/w) on the foodborne pathogens and physicochemical parameters of beef burger during refrigerated storage. Preliminary experiment (in vitro) demonstrated that 0.5% OEO and TEO were inhibited all or some of S. aureus, S. Typhimurium, and E. coli O157:H7. On day 30, the E. coli O157:H7 of burger coated with CH + OEO and TEO (1%; w/v) declined by 4 and 5 log10 CFU g-1, respectively, S. Typhimurium and S. aureus decreases (4,5-6 log10 CFU g-1) when compared to the control sample. The quality parameters of beef burger were also enhanced after the coating treatment of CH and essential oils (EOs), including pH value, TBARS, and TVB-N in burger during storage (4 °C/30 d). Besides, CH + EOs coating also reduced the deterioration of the sensory attributes of beef burger, including color, odor, and overall acceptability. The chitosan coatings with EOs have superior mechanical qualities than the control sample, also, the structure of the films was evaluated by SEM. In conclusion, CH coating with EOs (OEO, ETO; 1%) regarded as a successful strategy to improve the quality and prolong the shelf life of beef burger.
Collapse
Affiliation(s)
- Abdul Basit M Gaba
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia, Egypt
- Department of Quality Systems and Sustainability, Kalustyan Corporation, Union, NJ, USA
| | - Mohamed A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia, Egypt
| | - Ashraf A Abd El-Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Qaluobia, Egypt
| | - Sati Y Al-Dalain
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Salt, Jordan
| | - Manal Abdelaziz
- Department of Microbiology, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agriculture Research Center, Giza, Egypt
| | - Osama M Morsy
- Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy of Science, Technology, and Maritime Transport, Cairo, Egypt
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Woroud A Alsanei
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awatif M Almehmadi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Roqayah H Kadi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Suad H Almasoudi
- Department of Biology, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Daniyah H Bay
- Department of Biology, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed K Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Qaluobia, Egypt
| |
Collapse
|
3
|
Wang H, Xu Z, Jin X, Hu J, Tao Y, Lu J, Xia X, Tan M, Du J, Wang H. Structurally robust chitosan-based active packaging film by Pickering emulsion containing tree essential oil for pork preservation. Food Chem 2025; 466:142246. [PMID: 39612857 DOI: 10.1016/j.foodchem.2024.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The unstable structure of Pickering emulsion caused the fast release of active substance from active packaging and failure food preservation. Herein, a novel in-situ condensation strategy was proposed to construct sustained released chitosan (CS)-based active packaging film, in which the soybean separation protein (SPI)-carboxymethyl cellulose (CMC) emulsion (SCCE) containing tea tree essential oil (TTO) was physically incorporated into CS matrix. Originating from the strong electrostatic interaction of negatively charged SPI-CMC emulsion and positively charged CS matrix, a robust shell was in-situ formed on the outermost layer and served as armor to boost the structural stability of emulsion. The optimized SCCE3 has a homogeneous texture even after long-term storage (14 day) and under extreme conditions (high and low temperature, strong acid and alkali environment). The lifespan of packaged pork can be effectively extended at least 6 days. Our findings provided a new perspective for structurally robust and sustained-release food packaging films.
Collapse
Affiliation(s)
- Hanxu Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihang Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingming Jin
- Beijing Shieldry Technology co., Ltd., Beijing 100004, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China..
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China..
| |
Collapse
|
4
|
Wang Y, Wu C, Yang W, Gong Y, Zhang X, Li J, Wu D. Dual cross-linking with tannic acid and transglutaminase improves microcapsule stability and encapsulates lemon essential oil for food preservation. Food Chem 2025; 465:142173. [PMID: 39581080 DOI: 10.1016/j.foodchem.2024.142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The microencapsulation of essential oils by complex coacervation technology has attracted considerable attention. This paper deals with the preparation of gelatin-chitosan microcapsules through dual cross-linking using transglutaminase (TGase) and tannic acid (TA). Lemon essential oil (LEO) was successfully encapsulated with 82.5 % encapsulation efficiency. Compared to single cross-linking microcapsules (TG), dual cross-linking microcapsules (TG-TA) exhibit superior thermal stability and swell stability. In vitro release studies demonstrated that TG-TA exhibited better controlled-release behavior with a longer duration of action. Meanwhile, the lipid oxidation of TG-TA was 1.45 mg MDA/kg that of control group was 2.23 mg MDA/kg which showed their excellent antioxidant effects. Moreover TG-TA have higher antibacterial rate, more inhibition zone diameters and better effect for preventing the growth of total viable count than TG and LEO. This study has theoretical implications for the use of TG-TA ideal carriers for protecting various active substances, thus facilitating their applications in food preservation.
Collapse
Affiliation(s)
- Yansong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Wei Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yuxi Gong
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| |
Collapse
|
5
|
Karnwal A, Kumar G, Singh R, Selvaraj M, Malik T, Al Tawaha ARM. Natural biopolymers in edible coatings: Applications in food preservation. Food Chem X 2025; 25:102171. [PMID: 39897970 PMCID: PMC11786859 DOI: 10.1016/j.fochx.2025.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Edible coatings are revolutionizing food preservation by offering a sustainable and effective solution to key industry challenges. Made from natural biopolymers such as proteins, polysaccharides, and lipids, these coatings form a thin, edible layer on food surfaces. This barrier reduces moisture loss, protects against oxidative damage, and limits microbial growth, thereby extending shelf life while preserving food quality. Enhanced with natural additives like essential oils and antioxidants, these coatings offer antimicrobial benefits and contribute to health. Applications span from fresh produce, where they control respiration and moisture, to meat, dairy, and bakery products, maintaining sensory and nutritional properties. Innovations in coating technologies-such as composite materials, nano-emulsions, and bio-nanocomposites-are improving their mechanical strength, barrier properties, and compatibility with other preservation methods like modified atmosphere packaging. Although challenges remain in cost, consumer acceptance, and regulation, edible coatings represent a significant stride towards sustainable food systems and reduced dependence on synthetic packaging.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248009, Uttarakhand, India
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| | | |
Collapse
|
6
|
Pu Y, Chen L, Jiang W. Antimicrobial guar gum films optimized with Pickering emulsions of zein-gum arabic nanoparticle-stabilized composite essential oil for food preservation. Int J Biol Macromol 2024; 278:134911. [PMID: 39173796 DOI: 10.1016/j.ijbiomac.2024.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
In this study, composite essential oil Pickering emulsion stabilized with zein-gum arabic (GA) nanoparticles (ZGCEO) was prepared to improve the characteristics of guar gum (GG) films. ZGCEO exhibited commendable stability and compatibility with GG, while leading to a noticeable improvement in the light barrier (from 3.98 A mm-1 to 17.09 A mm-1) and water vapor barrier characteristics of GG films, concomitantly mitigating their hydrophilic nature, with decreasing moisture content (from 17.70 % to 10.50 %), water solubility (from 84.41 % to 71.79 %), water vapor permeability (from 5.64 × 10-11 g (m s Pa)-1 to 4.97 × 10-11 g (m s Pa)-1), and an increasing water contact angle (from 69.8° to 94.2°). The addition of 2 % ZGCEO yielded a notable increase in the tensile strength of the GG-ZGCEO films, but the elongation at break decreased with increasing ZGCEO concentration. Moreover, the incorporated ZGCEO demonstrated outstanding antioxidant and antimicrobial characteristics, featuring a slow-release behavior of essential oil. The GG-ZGCEO coating also showed an excellent preservation effect in pork and "Huangguan" pears during storage. Collectively, we substantiated the efficacy of ZGCEO in augmenting the functional attributes of GG films, thereby establishing their potential utility as antimicrobial packaging materials conducive to food preservation.
Collapse
Affiliation(s)
- Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Yuan J, Wang Z, Li H, Xu B. Effects of temperature fluctuations on the quality and microbial diversity of beef meatballs during simulated cold chain distribution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7704-7712. [PMID: 38860511 DOI: 10.1002/jsfa.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cold chain distribution with multiple links maintains low temperatures to ensure the quality of meat products, whereas temperature fluctuations during this are often disregarded by the industry. The present study simulated two distinct temperatures cold chain distribution processes. Quality indicators and high-throughput sequencing were employed to investigate the effects of temperature fluctuations on the quality and microbial diversity of beef meatballs during cold chain distribution. RESULTS Quality indicators revealed that temperature fluctuations during simulated cold chain distribution significantly (P < 0.05) exacerbated the quality deterioration of beef meatballs. High-throughput sequencing demonstrated that temperature fluctuations affected the diversity and structure of microbial community. Lower microbial species abundance and higher microbial species diversity were observed in the temperature fluctuations group. Proteobacteria and Pseudomonas were identified as the dominant phylum and genus in beef meatballs, respectively, exhibiting faster growth rates and greater relative abundance under temperature fluctuations. CONCLUSION The present study demonstrates that temperature fluctuations during simulated cold chain distribution can worsen spoilage and shorten the shelf life of beef meatballs. It also offers certain insights into the spoilage mechanism and preservation of meat products during cold chain distribution. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Huale Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
9
|
Jung Y, Oh S, Kim D, Lee S, Lee HJ, Shin DJ, Choo HJ, Jo C, Nam KC, Lee JH, Jang A. Effect of cinnamon powder on quality attributes and off-flavor in fried chicken drumsticks made from long-term thawed Korean native chicken. Poult Sci 2024; 103:103583. [PMID: 38471231 PMCID: PMC11067767 DOI: 10.1016/j.psj.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The effect of cinnamon powder on the quality and mitigation of off-flavor in fried chicken drumsticks made from long-term thawed Korean native chicken (Woorimatdag No. 1, WRMD1) was investigated. The WRMD1 drumsticks were categorized into 5 groups: conventional thawing (16 h, CT), long-term thawing (48 h, LT), cinnamon powder added into 'LT' as marinade (0.03%, CM) or incorporated into the batter (1.35%, CB), and long-term thawing with cinnamon powder incorporated both in the marinade and batter (0.03% + 1.35%, CMB). The crude fat content was significantly higher in the CT and CMB than that of the CB. The CM, CB, and CMB showed significantly lower levels of 2-thiobarbituric acid reactive substance compared with the CT and LT. The predominant fatty acids in all treatments were C18:1n9, C18:2n6, and C16:0. The LT displayed lower total unsaturated fatty acid content than the CT (P < 0.05). The CM effectively decreased lipid oxidative volatiles, such as 1-octanol, 1-octen-3-ol, and 2-octen-1-ol, (E), in the LT (P < 0.05). Both the CM and CB showed an inclination to increase specific pyrazines associated with pleasant notes compared with the LT, and showed higher levels of pyrazines, such as pyrazine, 2-ethyl-6-methyl-, and pyrazine, 3-ethyl-2,5-dimethyl-, than those of the CMB (P < 0.05). The CM contained higher levels of 2,3-butanedione when compared with the other groups (P < 0.05). Multivariate analysis demonstrated that cinnamon had an effect in discriminating the treatment groups with cinnamon addition from both the CT and LT, whereas the CM, CB, and CMB formed distinct clusters. The CM and CMB received significantly higher aroma scores from panelists in comparison to the other groups. These findings suggest that the CM (0.03% cinnamon powder) can be used to enhance the aroma in fried WRMD1 drumsticks by reducing or masking the off-flavor volatiles associated with long-term thawing.
Collapse
Affiliation(s)
- Yousung Jung
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Soomin Oh
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Dongwook Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sangrok Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Jeong Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Jin Shin
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Jun-Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
10
|
Fernando SS, Jo C, Mudannayake DC, Jayasena DD. An overview of the potential application of chitosan in meat and meat products. Carbohydr Polym 2024; 324:121477. [PMID: 37985042 DOI: 10.1016/j.carbpol.2023.121477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Chitosan is considered the second most ubiquitous polysaccharide next to cellulose. It has gained prominence in various industries including biomedicine, textile, pharmaceutical, cosmetic, and notably, the food industry over the last few decades. The polymer's continual attention within the food industry can be attributed to the increasing popularity of greener means of packaging and demand for foods incorporated with natural alternatives instead of synthetic additives. Its antioxidant, antimicrobial, and film-forming abilities reinforced by the polymer's biocompatible, biodegradable, and nontoxic nature have fostered its usage in food packaging and preservation. Microbial activity and lipid oxidation significantly influence the shelf-life of meat, resulting in unfavorable changes in nutritional and sensory properties during storage. In this review, the scientific studies published in recent years regarding potential applications of chitosan in meat products; and their effects on shelf-life extension and sensory properties are discussed. The utilization of chitosan in the form of films, coatings, and additives in meat products has supported the extension of shelf-life while inducing a positive impact on their organoleptic properties. The nature of chitosan and its compatibility with various materials make it an ideal biopolymer to be used in novel arenas of food technology.
Collapse
Affiliation(s)
- Sandithi S Fernando
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| | - Deshani C Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Dinesh D Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| |
Collapse
|
11
|
Arcot Y, Mu M, Lin YT, DeFlorio W, Jebrini H, Kunadu APH, Yegin Y, Min Y, Castillo A, Cisneros-Zevallos L, Taylor TM, Akbulut ME. Edible nano-encapsulated cinnamon essential oil hybrid wax coatings for enhancing apple safety against food borne pathogens. Curr Res Food Sci 2024; 8:100667. [PMID: 38292343 PMCID: PMC10825335 DOI: 10.1016/j.crfs.2023.100667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
Post-harvest losses of fruits due to decay and concerns regarding microbial food safety are significant within the produce processing industry. Additionally, maintaining the quality of exported commodities to distant countries continues to pose a challenge. To address these issues, the application of bioactive compounds, such as essential oils, has gained recognition as a means to extend shelf life by acting as antimicrobials. Herein, we have undertaken an innovative approach by nano-encapsulating cinnamon-bark essential oil using whey protein concentrate and imbibing nano-encapsulates into food-grade wax commonly applied on produce surfaces. We have comprehensively examined the physical, chemical, and antimicrobial properties of this hybrid wax to evaluate its efficacy in combatting the various foodborne pathogens that frequently trouble producers and handlers in the post-harvest processing industry. The coatings as applied demonstrated a static contact angle of 85 ± 1.6°, and advancing and receding contact angles of 90 ± 1.1° and 53.0 ± 1.6°, respectively, resembling the wetting properties of natural waxes on apples. Nanoencapsulation significantly delayed the release of essential oil, increasing the half-life by 61 h compared to its unencapsulated counterparts. This delay correlated with statistically significant reductions (p = 0.05) in bacterial populations providing both immediate and delayed (up to 72 h) antibacterial effects as well as expanded fungal growth inhibition zones compared to existing wax technologies, demonstrating promising applicability for high-quality fruit storage and export. The utilization of this advanced produce wax coating technology offers considerable potential for bolstering food safety and providing enhanced protection against bacteria and fungi for produce commodities.
Collapse
Affiliation(s)
- Yashwanth Arcot
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Minchen Mu
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Ting Lin
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - William DeFlorio
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Haris Jebrini
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | | | - Yagmur Yegin
- Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Younjin Min
- Depart of Chemical and Environmental Engineering, University of California, Riverside, CA, USA, 92521
| | - Alejandro Castillo
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas M. Taylor
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Mustafa E.S. Akbulut
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Kim YJ, Kim J, Kim TK, Cha JY, Shin DM, Jung S, Choi YS. Effects of konjac glucomannan as a freeze-denaturation inhibitor or binder on the physiochemical properties of heat-induced gel of freeze-dried duck blood. J Food Sci 2024; 89:450-459. [PMID: 38051012 DOI: 10.1111/1750-3841.16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
During freeze-drying, the degradation or eutectic melting of duck blood proteins can reduce the quality of duck blood gels. However, the interaction between proteins and polysaccharides during drying can improve protein-based gel quality. Therefore, here, we investigated the physicochemical properties of heat-induced gels of freeze-dried duck blood (FDB) and FDB with different proportions of the polysaccharide konjac glucomannan (KG), which serves as a freeze-denaturation inhibitor agent (FDA) or binder (BG). The pH and water-holding capacity (WHC) of FDB + KG gels were higher than those of FDB gel without KG (control). Especially, the WHC increased from 11.00% for control to 55.65% for FDB gel with 1% KG as a BG. Consequently, cooking loss and texture parameters of FDB + KG gels decreased. The hardness of control was 2.14 kg, which significantly reduced to 0.12-0.87 kg with KG addition. The highest carbonyl content was observed in control gel, and the thiobarbituric acid reactive substance content was reduced by the addition of 1% KG as an FDA (T1) or 0.8% KG as an FDA with 0.2% KG as a BG (T2) (p < 0.05). These changes might be induced by the alteration of tertiary structure and thermodynamic stability of gels. In conclusion, 1% KG can be used as an FDA to improve the quality and physicochemical properties of heat-induced gels of FDB. Optimized FDB gels with KG can be used as an innovative food ingredient to fortify nutrition and develop special dietary purposes.
Collapse
Affiliation(s)
- Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, South Korea
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Jake Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, South Korea
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, South Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, South Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju, South Korea
- Department of Food Science and Technology, Keimyung University, Daegu, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, South Korea
| |
Collapse
|
13
|
Zomorodian N, Javanshir S, Shariatifar N, Rostamnia S. The effect of essential oil of Zataria multiflora incorporated chitosan (free form and Pickering emulsion) on microbial, chemical and sensory characteristics in salmon ( Salmo trutta). Food Chem X 2023; 20:100999. [PMID: 38144780 PMCID: PMC10740042 DOI: 10.1016/j.fochx.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
The objective of current research was to prepare a new biodegradable coating containing chitosan (Ch) and zataria multiflora essential oil (ZMEO) (free and Pickering emulsion (PEO) forms), in order to enhance the Salmo trutta shelf life. Our results showed, the mean of films thickness, mechanical properties (elastic modulus (EM) and tensile strength (TS) analysis) and WVP in different treatments were ranged from 0.103 ± 0.003 (for Ch) to 0.109 ± 0.003 (for Ch-PEO (2.5 %)) µm for thickness, from 3.2 ± 1.6 (for Ch) to 8.15 ± 2.3 (for Ch-EO) MPa for EM, from 1.3 ± 0.5 (for Ch-EO) to 1.6 ± 0.06 (for Ch) Mpa for TS and from 0.1 ± 0.02 (for Ch) to 0.8 ± 0.05 (for Ch-EO) (×10 - 11(g m/m2 s Pa) for WVP. In current research, the lowest and highest total viable counts (TVC) was related to Ch-PEO (1.7 log CFU/g) and control treatments (4.65 log CFU/g). The lowest and highest of pH was related to the Ch-PEO (6.45) and the control (7.1), the lowest and highest of PV (peroxide value) was related to Ch-PEO (0.34 meq/kg) and control treatment (1.37 meq/kg), the lowest and highest of TBARS (thiobarbituric acid reactive substances) was related to Ch-PEO (0.37 mg/kg) and control treatment (2.23 mg/kg) and also the lowest and highest of TVB-N (total volatile base nitrogen) was related to Ch-PEO (17.7 mg) and control (59 mg). Also, Ch-PEO showed the best sensory properties after sixteen days. Among all the treatments in all the tests, the best maintenance property was related to the Ch-PEO, therefore, chitosan coatings containing ZM Pickering emulsion should be considered as a potential active coating in the fish industry.
Collapse
Affiliation(s)
- Nooshin Zomorodian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Shahrzad Javanshir
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
14
|
Cao Y, Song Z, Dong C, Yu Q, Han L. Chitosan coating with grape peel extract: A promising coating to enhance the freeze-thaw stability of beef. Meat Sci 2023; 204:109262. [PMID: 37356417 DOI: 10.1016/j.meatsci.2023.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
This study investigated the effect of chitosan coating with grape peel extracts (CH + GPE) on the physiochemical properties, protein and lipid oxidation, microstructure, and bacterial community diversity of beef during freeze-thaw (F-T) cycles. The results indicated that the CH + GPE groups had lower pH values, total aerobic count, total volatile base nitrogen, and thiobarbituric acid reactive substance values and better protection against color, water holding capacity, and sensory quality after five F-T cycles. The CH + GPE coating effectively inhibited beef microstructure destruction during the F-T cycles. High-throughput sequencing analysis revealed that the CH + GPE coating contributed to a decline in the bacterial diversity of beef and inhibited the growth of pathogenic bacteria. Interestingly, the CH + GPE coating affected the correlation between quality parameters and bacteria in beef. Consequently, the CH + GPE coating can be used as a novel packaging for preventing the loss of frozen meat quality due to temperature fluctuations.
Collapse
Affiliation(s)
- Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Chunjuan Dong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Hu J, Zhu H, Feng Y, Yu M, Xu Y, Zhao Y, Zheng B, Lin J, Miao W, Zhou R, Cullen PJ. Emulsions containing composite (clove, oregano, and cinnamon) essential oils: Phase inversion preparation, physicochemical properties and antibacterial mechanism. Food Chem 2023; 421:136201. [PMID: 37105117 DOI: 10.1016/j.foodchem.2023.136201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/05/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Natural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs. These EOFs mainly contained cinnamaldehyde, carvacrol and eugenol and exhibited excellent post-storage stability. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability of EOFs (at 15.880 μL/mL) was > 88%, and the Ferric reducing antioxidant power (FRAP) was 1.8 mM FeSO4·7H2O. The minimum inhibitory concentration (MIC) of EOFs against E. coli and S. aureus was ∼7.940 μL/mL. The EOFs could cause quick deterioration of bacterial structures, demonstrating high efficacy in bacteria-killing and anti-biofilm formation.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Hangxin Zhu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yuwei Feng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Mijia Yu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yueqiang Xu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yadong Zhao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bin Zheng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jiheng Lin
- Zhoushan Institute for Food and Drug Control, 316022 Zhoushan, China
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China.
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia.
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Effect of sustained-release tea tree essential oil solid preservative on fresh-cut pineapple storage quality in modified atmospheres packaging. Food Chem 2023; 417:135898. [PMID: 36934707 DOI: 10.1016/j.foodchem.2023.135898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The quality and safety of fresh-cut pineapple deteriorate during handling and storage due to physicochemical and microbial changes, so its preservation has attracted extensive attention. This study prepared sustained-release tea tree essential oil (TTO) solid preservative (SP) with an encapsulation efficiency of 71.45% and applied it on fresh-cut pineapple in modified atmospheres packaging (MAP). Results showed that TTO adsorbed on nano silicon dioxide (SiO2) was embedded in the starch-carboxymethyl cellulose network structure by extrusion. The hydrogen bond and hydrophobic interaction resulted in compact structure and good sustained-release performance of SP. The SP improved sensory quality and reduced nutrient loss and microbial spoilage of fresh-cut pineapple, which extended its shelf-life to four days. In addition, antioxidant capacity was enhanced with increasing antioxidant enzyme activity, antioxidant content, and 2,2-diphenyl-1-picrylhydrazine scavenging capacity and decreasing MDA accumulation. Therefore, sustained-release TTO solid preservative has potential for the preservation of fresh-cut pineapple.
Collapse
|
17
|
Cinnamon: An antimicrobial ingredient for active packaging. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Li L, Liu D, Li X, Zhang B, Li C, Xiao Z, Liu M, Fang F, Deng N, Wang J. The dynamic changes of microbial diversity and biogenic amines in different parts of bighead carp (Aristichthys nobilis) head during storage at -2℃. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
19
|
Li H, Qu S, Ma P, Zhang J, Zhao K, Chen L, Huang Q, Zou G, Tang H. Effects of chitosan coating combined with thermal treatment on physicochemical properties, bacterial diversity and volatile flavor of braised duck meat during refrigerated storage. Food Res Int 2023; 167:112627. [PMID: 37087226 DOI: 10.1016/j.foodres.2023.112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
The current study aimed to assess the impact of chitosan coating (0.005 g/mL) combined with thermal treatment (85 °C for 30 min) on tenderness, lipid and protein oxidation, bacterial diversity, and volatile flavor compounds in braised duck leg meat under vacuum packaging during refrigerated storage (4 °C for 15 days). The findings revealed that the three preserved treatments significantly increased tenderness from days 1 to 3. There was a substantial decrease from days 6 to 12 compared to the control, but no significant differences were observed on day 15. Compared with the control, the three preserved treatments reduced TBARS values by 25.8%-78.6% (from days 6 to 12) and total sulfhydryl concentrations by 24.1%-75.7% (from days 3 to 9). The combination treatment had the lowest values (carbonyl concentration, TVC, and TEC) compared to the chitosan coating and thermal treatment, indicating a significant synergistic effect. The proportions of the four primary spoilage organisms, Brochothrix, Weissella, Acinetobacter, and Pseudomonas, were 74.8%, 76.3%, 70.7%, and 49.7% in control, chitosan coating, thermal treatment, and combination treatment, respectively. The combination treatment produced the most volatile flavor compounds (38 compounds) at the end of storage (15 days). Hexanal, 1-nonanal, 1-octen-3-ol, and 2, 3-octanedione were the main volatile flavor compounds, and the average relative peak area was above 80. Therefore, chitosan coating and thermal treatment could be developed as synergistic methods to preserve braised duck meat.
Collapse
Affiliation(s)
- Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sijia Qu
- Xingzhi College of Zhejiang Normal University, Jinhua 321000, China
| | - Ping Ma
- Zhejiang Tiange Industrial Co., LTD
| | - Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lihong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
20
|
Qiu L, Zhang M, Chitrakar B, Adhikari B, Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Qiu M, Xiao X, Xiao Y, Ma J, Yang H, Jiang H, Dong Q, Wang W. Dynamic Changes of Bacterial Communities and Microbial Association Networks in Ready-to-Eat Chicken Meat during Storage. Foods 2022; 11:foods11223733. [PMID: 36429325 PMCID: PMC9689599 DOI: 10.3390/foods11223733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Ready-to-eat (RTE) chicken is a popular food in China, but its lack of food safety due to bacterial contamination remains a concern, and the dynamic changes of microbial association networks during storage are not fully understood. This study investigated the impact of storage time and temperature on bacterial compositions and microbial association networks in RTE chicken using 16S rDNA high-throughput sequencing. The results show that the predominant phyla present in all samples were Proteobacteria and Firmicutes, and the most abundant genera were Weissella, Pseudomonas and Proteus. Increased storage time and temperature decreased the richness and diversity of the microorganisms of the bacterial communities. Higher storage temperatures impacted the bacterial community composition more significantly. Microbial interaction analyses showed 22 positive and 6 negative interactions at 4 °C, 30 positive and 12 negative interactions at 8 °C and 44 positive and 45 negative interactions at 22 °C, indicating an increase in the complexity of interaction networks with an increase in the storage temperature. Enterobacter dominated the interactions during storage at 4 and 22 °C, and Pseudomonas did so at 22 °C. Moreover, interactions between pathogenic and/or spoilage bacteria, such as those between Pseudomonas fragi and Weissella viridescens, Enterobacter unclassified and Proteus unclassified, or those between Enterobacteriaceae unclassified and W.viridescens, were observed. This study provides insight into the process involved in RTE meat spoilage and can aid in improving the quality and safety of RTE meat products to reduce outbreaks of foodborne illness.
Collapse
Affiliation(s)
- Mengjia Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Q.D.); (W.W.)
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Q.D.); (W.W.)
| |
Collapse
|
22
|
Posgay M, Greff B, Kapcsándi V, Lakatos E. Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review. Heliyon 2022; 8:e10812. [PMID: 36247140 PMCID: PMC9562244 DOI: 10.1016/j.heliyon.2022.e10812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023] Open
Abstract
Since foodborne diseases are often considered as one of the biggest public health threats worldwide, effective preservation strategies are needed to inhibit the growth of undesirable microorganisms in food commodities. Up to now, several techniques have been adopted for the production of safe and high-quality products. Although the traditional methods can improve the reliability, safety, and shelf-life of food, some of them cannot be applied without rising health concerns. Thereby, the addition of various phytochemicals has gained much attention during the last decades, especially for meat products that may be contaminated with pathogenic and spoilage organisms. Thyme (Thymus vulgaris L.), as an important medicinal and culinary herb, is a promising source of bioactive compounds that have a great impact on the microbiological stability of meat by suppressing the undesirable microflora. However, the use of these antimicrobials is still facing difficulties due to their aromatic properties and variable efficacy against targeted species. In this paper, we provide an overview on the potential effects of thyme essential oil (EO) and thymol as bio-preservative agents in meat products. Furthermore, this paper provides insights into the limitations and current challenges of the addition of EOs and their constituents to meat commodities and suggests viable solutions that can improve the applicability of these phytochemicals.
Collapse
Affiliation(s)
- Miklós Posgay
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Viktória Kapcsándi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
23
|
He S, Wang Y. Antimicrobial and Antioxidant Effects of Kappa-Carrageenan Coatings Enriched with Cinnamon Essential Oil in Pork Meat. Foods 2022; 11:foods11182885. [PMID: 36141013 PMCID: PMC9498619 DOI: 10.3390/foods11182885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/23/2022] Open
Abstract
Fresh pork is susceptible to microbial contamination and lipid oxidation, which leads to food safety and quality issues. This study aimed to develop a kappa-carrageenan (KC) coating embedded with cinnamon essential oil (CEO) for antimicrobial and antioxidant purposes in pork meat. The uncoated controls and coated samples were subjected to microbial (total viable count, lactic acid bacteria, and H2S-producing bacteria), chemical (DPPH and pH), and physical (surface color) analyses during refrigerated storage at 4 °C for 7 days. It was observed that KC coatings exhibited a better preservation effect on pork meat after the addition of CEO. The KC−CEO coatings were effective in retarding the growth of total viable count, lactic acid bacteria, and H2S-producing bacteria. In a DPPH test, the level of lipid oxidation in pork meat was also significantly (p < 0.05) reduced by the KC−CEO coatings. Furthermore, these coatings displayed pronounced activity in inhibiting the adverse alterations of pH value and surface color. Practically, KC−CEO-coated samples still exhibited an attractive bright red color at the end of refrigerated storage. Taken together, the developed KC−CEO coatings exerted pronounced antimicrobial and antioxidant activities in pork, thus providing a potential approach to preserving perishable meat.
Collapse
Affiliation(s)
- Shoukui He
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Wang
- Department of Food Science & Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- Correspondence:
| |
Collapse
|
24
|
Hu H, Yong H, Zong S, Jin C, Liu J. Effect of chitosan/starch aldehyde-catechin conjugate composite coating on the quality and shelf life of fresh pork loins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5238-5249. [PMID: 35301727 DOI: 10.1002/jsfa.11877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fresh pork is susceptible to oxidation and spoilage. Edible coating containing antioxidant and antimicrobial agents can create moisture and oxygen barriers around pork and inhibit oxidation and microbial growth in the pork. In this study, chitosan in combination with starch aldehyde-catechin conjugate (SACC) was used as a novel edible coating material for preserving fresh pork loins at chilled storage (4 ± 1 °C) for 14 days. Effect of chitosan/SACC composite coating on the quality of pork loins including weight loss, colour, pH value, microbial spoilage, lipid oxidation, protein oxidation, texture and sensory attributes during chilled storage was determined. RESULTS Chitosan and SACC had synergistic antioxidant and antimicrobial actions. As compared with uncoated and chitosan coated pork loins, chitosan/SACC coated pork loins showed lower weight loss (7.16%), pH value (5.99), total viable count (7.11 log CFU g-1 ), total volatile base nitrogen content (130.2 mg kg-1 ), lipid oxidation level (0.47 mg malondialdehyde kg-1 ), protein oxidation level (0.047 mmol free thiol group g-1 ) and shear force (27.40 N) on day 14. Meanwhile, chitosan/SACC composite coating effectively maintained the colour, micro-structure and sensory attributes of pork loins throughout chilled storage period. The shelf life of pork loins was extended from 8 days (uncoated samples) to 14 days by chitosan/SACC composite coating. CONCLUSION Chitosan/SACC composite coating effectively retarded the oxidation and spoilage of pork loins during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
25
|
Jiang F, Zhou L, Zhou W, Zhong Z, Yu K, Xu J, Zou L, Liu W. Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Cui H, Yang M, Shi C, Li C, Lin L. Application of Xanthan-Gum-Based Edible Coating Incorporated with Litsea cubeba Essential Oil Nanoliposomes in Salmon Preservation. Foods 2022; 11:foods11111535. [PMID: 35681285 PMCID: PMC9180108 DOI: 10.3390/foods11111535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/22/2023] Open
Abstract
Salmon is prone to be contaminated by Vibrio parahaemolyticus (V. parahaemolyticus), leading to the deterioration of salmon quality and the occurrence of food-borne diseases. In this study, we aimed to develop a novel xanthan-gum-based edible coating embedded with nano-encapsulated Litsea cubeba essential oil (LC-EO) for salmon preservation at 4 °C. First, the results of the growth curves and scanning electron microscopy (SEM) showed that LC-EO displayed potent antibacterial activity against V. parahaemolyticus; the optimal concentration of LC-EO in the liposomes was 5 mg/mL, and the maximal encapsulation efficiency (EE) was 37.8%. The particle size, polydispersity coefficient (PDI), and zeta potential of the liposomes were 168.10 nm, 0.250, and −32.14 mV, respectively. The rheological test results of xanthan-gum-based edible coatings incorporating liposomes showed that the prepared coating was suitable for applying on food surfaces. The results in the challenge test at 4 °C demonstrated that the treatment of 1:3 (liposome: xanthan gum, v/v) coating performed the best preservative properties, the coating treatment delayed the oxidation of salmon, and controlled the growth of V. parahaemolyticus. These findings suggest that the coatings formulated in this study could be used as a promising approach to control V. parahaemolyticus contamination and maintain salmon quality.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Mei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
- Correspondence: (C.L.); (L.L.)
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
- Correspondence: (C.L.); (L.L.)
| |
Collapse
|
27
|
Gaba ABM, Hassan MA, Abd EL-Tawab AA, Abdelmonem MA, Morsy MK. Protective Impact of Chitosan Film Loaded Oregano and Thyme Essential Oil on the Microbial Profile and Quality Attributes of Beef Meat. Antibiotics (Basel) 2022; 11:583. [PMID: 35625227 PMCID: PMC9137996 DOI: 10.3390/antibiotics11050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Edible films and essential oil (EO) systems have the potency to enhance the microbial quality and shelf life of food. This investigation aimed to evaluate the efficacy of chitosan films including essential oils against spoilage bacteria and foodborne pathogens associated with meat. Antimicrobial activity (in vitro and in vivo) of chitosan films (CH) incorporated with oregano oil (OO) and thyme oil (TO) at 0.5 and 1% was done against spoilage bacteria and foodborne pathogens, compared to the control sample and CH alone. Preliminary experiments (in vitro) showed that the 1% OO and TO were more active against Staphylococcus aureus compared to Escherichia coli O157:H7 and Salmonella Typhimurium. In in vivo studies, CH containing OO and TO effectively inhibited the three foodborne pathogens and spoilage bacteria linked with packed beef meat which was kept at 4 °C/30 days compared to the control. The total phenolic content of the EOs was 201.52 mg GAE L-1 in thyme and 187.64 mg GAE L-1 in oregano. The antioxidant activity of thyme oil was higher than oregano oil. The results demonstrated that the shelf life of meat including CH with EOs was prolonged ~10 days compared to CH alone. Additionally, CH-OO and CH-TO have improved the sensory acceptability until 25 days, compared to the control. Results revealed that edible films made of chitosan and containing EOs improved the quality parameters and safety attributes of refrigerated or fresh meat.
Collapse
Affiliation(s)
- Abdul Basit M. Gaba
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt; (A.B.M.G.); (M.A.H.)
- Department of Quality Systems and Sustainability, Kalustyan Corporation, 855 Rahway Ave, Union, NJ 07083, USA
| | - Mohamed A. Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt; (A.B.M.G.); (M.A.H.)
| | - Ashraf A. Abd EL-Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt;
| | - Mohamed A. Abdelmonem
- Agriculture Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals on Food, Food Microbiology Unit, Cairo 12311, Egypt;
| | - Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Qaluobia 13736, Egypt
| |
Collapse
|
28
|
Corrêa ANR, Ferreira CD. Essential oil for the control of fungi, bacteria, yeasts and viruses in food: an overview. Crit Rev Food Sci Nutr 2022; 63:8960-8974. [PMID: 35416734 DOI: 10.1080/10408398.2022.2062588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review begins with a general introduction to essential oils (EO) and their relation to food and microorganisms. Classification and characteristics of EO, addressing the major compounds with antimicrobial action. Subsequently, the main microorganisms followed by a collection of the main works published in recent years that approached the influence of the EO on the protection against microorganisms and food decontamination. At last, the major gaps and future perspectives on the subject. Using EO for fighting food contamination is a way of sustainably supplying the need for new antimicrobials to ensure microbial safety and is a viable source to solve the problem of current microbial resistance. Form of application, EO composition and microbiological load are reported as the responsible factors for the treatment's success. The EO's effects on fungi and bacteria are already well known, but its effect on viruses and yeasts is something to be explored.
Collapse
Affiliation(s)
- Aldrey Nathália Ribeiro Corrêa
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Cristiano Dietrich Ferreira
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Fadilah NQ, Jittmittraphap A, Leaungwutiwong P, Pripdeevech P, Dhanushka D, Mahidol C, Ruchirawat S, Kittakoop P. Virucidal Activity of Essential Oils From Citrus x aurantium L. Against Influenza A Virus H1N1:Limonene as a Potential Household Disinfectant Against Virus. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211072713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work explored the compositions of a crude extract of peels of Citrus x aurantium using a gas chromatography-mass spectrometry (GC-MS) technique. The crude extract of peels of C. × aurantium was analyzed by GC-MS revealing the presence of limonene as the major compound, accounting for 93.7% of the total. Virucidal activity of the oil of C. x aurantium peels against influenza A virus H1N1 was evaluated by the ASTM E1053-20 method. Moreover, the virucidal activity was also investigated of D-limonene, the major terpene in essential oils of C. x aurantium, and its enantiomer L-limonene. The essential oil of the C. x aurantium peels produced a log reduction of 1.9 to 2.0, accounting for 99% reduction of the virus, while D- and L-limonene exhibited virucidal activity with a log reduction of 3.70 to 4.32 at concentrations of 125 and 250.0 µg/mL, thus reducing the virus by 99.99%. Previous work found that D-limonene exhibited antiviral activity against herpes simplex virus, but L-limonene, an enantiomer of D-limonene, has never been reported for antiviral activity. This work demonstrates the antiviral activity of L-limonene for the first time. Moreover, this work suggests that concentrations of 0.0125% to 0.025% of either D- or L-limonene can possibly be used as a disinfectant against viruses, probably in the form of essential oil sprays, which may be useful disinfectants against the airborne transmission of viruses, such as influenza and COVID-19.
Collapse
Affiliation(s)
- Nurul Q. Fadilah
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | | | - Darshana Dhanushka
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
- CHE, Ministry of Education, Bangkok, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
- CHE, Ministry of Education, Bangkok, Thailand
| |
Collapse
|
30
|
Huang B, Zhang Z, Ding N, Zhuang Y, Zhang G, Fei P. Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. Int J Biol Macromol 2022; 194:246-253. [PMID: 34875310 DOI: 10.1016/j.ijbiomac.2021.11.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022]
Abstract
To further improve the performance of chitosan in food processing and preservation, this study investigated the grafting of the caffeic acid onto the chitosan in non-enzymatic and enzymatic systems. Result suggested that the caffeic acid was successfully incorporated into the chitosan in the non-enzymatic system, and the grafting ratio of modified chitosan (CA@CTS-N) was 7.49%. Moreover, lipase had a significant positive effect on the grafting reaction of the chitosan, and the modified chitosan prepared in enzymatic system (CA@CTS-E) obtained a higher grafting ratio, which was 11.82%. In both systems, the carboxyl of the caffeic acid was bonded to the amino of the chitosan and formed carbonyl ammonia. After the introduction of foreign group, many changes occurred in the functional properties of the modified chitosan. First, the water solubility of the chitosan was significantly improved from 0.00285 (native chitosan, CTS) to 0.221 (CA@CTS-N) and 0.774 g/100 mL (CA@CTS-E). The caffeoyl had a significant impact on the emulsifying properties of the chitosan. Compared with those of CTS, the modified chitosan had stronger antioxidation and antibacterial activities against Escherichia coli, Staphylococcus aureus, and Candida albicans. Finally, the pork treated with the modified chitosan exhibited longer shelf life than that treated with CTS.
Collapse
Affiliation(s)
- Bingqing Huang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group Co., Ltd., Xiamen 361000, PR China
| | - Nengshui Ding
- Fujian Aonong Biological Science and Technology Group Co.,Ltd., Zhangzhou 363000, PR China
| | - Yuanhong Zhuang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
31
|
Chitosan nanoemulsion: Gleam into the futuristic approach for preserving the quality of muscle foods. Int J Biol Macromol 2021; 199:121-137. [PMID: 34953807 DOI: 10.1016/j.ijbiomac.2021.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Trend for consumption of healthy meat without synthetic additives is blooming globally and has attracted the interest of consumers and research sphere to look for enhancement of quality and safety of food. Chitosan is multi-functional marine biopolymer with several befitting properties such as non-toxicity, ease of modification, antimicrobial activity, biodegradability and bio-compatibility, making it suitable for use in meat based food systems, which are highly prone to putrescence due to availability of high level protein, micronutrients and moisture. Bioactive components from plant extracts on account of their natural lineage are exquisite determinants for meat preservation in association with chitosan to replace synthetic molecules, which are considered to evince toxicological effects. Nanoemulsions are viable systems for integrating a myriad of active constituents framed by microfluidization, high-pressure homogenization, ultra-sonication, phase inversion (PIC and PIT) and spontaneous-emulsification with benefits of droplet size reduction, improved solubility, stability and their biological activity. This article summarizes the most important information on formulation, fabrication and advancements in chitosan-based nanoemulsions highlighting their potential benefit for applications in the muscle food system. Supervising the all-around executions of chitosan nanoemulsions for various food systems, the current review has been framed to lay down understandings regarding improvements made in the production and functionality of chitosan nanoemulsions for quality retention of meat products. Furthermore, it highlights the novel trends in chitosan-nanoemulsions application in meat based food systems from a preservation and shelf-life prolongation perspective.
Collapse
|
32
|
Yu HH, Chin YW, Paik HD. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021; 10:2418. [PMID: 34681466 PMCID: PMC8535775 DOI: 10.3390/foods10102418] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products.
Collapse
Affiliation(s)
- Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|