1
|
Fan Y, Gan R, Zhang Z, Xu J, Liu S, Bu Y, Cao C, Liu Q, Xia X, Kong B, Sun F. Flavor effect, application status, and research trend of umami peptides based on microbial fermentation in food. Food Microbiol 2025; 130:104769. [PMID: 40210398 DOI: 10.1016/j.fm.2025.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Umami peptides are important non-volatile compounds produced by protein degradation, contributing to food umami flavor and enhancing product quality. Microbial fermentation promotes the production of taste peptides, including umami peptides, which act as key flavor substances and precursors. Microbial-derived umami peptides are cost-effective, easy to produce, and a major source of umami peptide production. Although microbial fermentation of umami peptides has been extensively studied in preparation, screening, and evaluation, a systematic review of microbial fermentation is still lacking. Therefore, this paper aims to address the following aspects: (1) umami peptide taste characteristics, influencing factors, and preparation methods; (2) microbial sources of umami peptides; (3) the current application status of microbial fermentation-derived umami peptides in various foods; and (4) future directions for microbial fermentation of umami peptides. Consequently, this literature review seeks to offer insights for advancing microbial fermentation in umami peptide production.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Renjie Gan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiayu Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sitong Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Bu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Liang X, Huang X, Li C, Kong B, Cao C, Sun F, Zhang H, Liu Q, Shen L. Effect of different natural antioxidants on the quality promotion of pork chip snacks during storage as revealed by lipid profiles and volatile flavor compounds. Food Chem 2025; 478:143716. [PMID: 40058256 DOI: 10.1016/j.foodchem.2025.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 03/01/2025] [Indexed: 04/06/2025]
Abstract
This study primarily investigated the effects of different natural antioxidants (ascorbic acid, rosemary extract, PostbioYDFF-3®, and NatuProtec®) on changes in the lipid profiles and volatile flavors of pork chip snacks (PCS) during storage via lipidomic techniques and SPME-GC-MS. Compared with the control, the PCS containing different natural antioxidants exhibited obvious reductions in TBARS, peroxide, and acid values after 90-day storage (P < 0.05). At the initial (0 d), middle (45 d), and final (90 d) stage, 30, 32, and 50 volatile compounds and 692, 937, and 1095 lipid molecules were detected, respectively, mainly enriched in the sphingolipid pathway. The lipid hydrolysis of PCS occurred obvious with storage. Correlation analysis revealed that the rosemary extract exhibited the most optimal prevention of oxidative rancidity and maintained the superior quality profiles of the PCS during long-term storage. The present work provided a theoretical basis for the retardation of lipid oxidation during PCS storage.
Collapse
Affiliation(s)
- Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinning Huang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cheng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Yang J, Zhang Y, Chen P, Zeng X, Bai W, Zhang Y, Sun B. Enhancing beef flavor profiles via Maillard reaction of γ-Glutamylated beef protein hydrolysates and xylose. Food Chem 2025; 476:143313. [PMID: 39977990 DOI: 10.1016/j.foodchem.2025.143313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Beef protein hydrolysates (BH) and their γ-glutamylated products (γ-BH and γ-GBH, 0 and 7 % L-Gln extra-addition) were prepared, followed by xylose-induced Maillard reaction. Maillard reaction products (MRPs) of γ-glutamylated products (γ-BH-MRP and γ-GBH-MRP) showed a higher degree of Maillard reaction and improved sensory characteristics (p < 0.05). Specifically, UV absorbances and fluorescence intensity of MRPs significantly increased (p < 0.05), and there were significant increases in kokumi, umami, saltiness, roast, and meaty flavors, and a reduction in bitterness (p < 0.05) after γ-glutamylation. In γ-BH-MRP and γ-GBH-MRP, the relative content of most flavor compounds increased significantly (p < 0.05), especially pyrazines and furans, and 8 and 10 new flavor compounds were also detected. 7 and 25 new γ-glutamyl peptides were identified, with their contents ranging 2.26-8.38 μM and 1.93-71.90 μM, respectively. These data illustrate that γ-glutamylation can promote the formation of MRPs, thereby improving the flavor characteristics of beef flavorings.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqiang Zhang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Peiwen Chen
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
4
|
Zhou H, Loo LSW, Ong FYT, Lou X, Wang J, Myint MK, Thong A, Seow DCS, Wibowo M, Ng S, Lv Y, Kwang LG, Bennie RZ, Pang KT, Dobson RCJ, Domigan LJ, Kanagasundaram Y, Yu H. Cost-effective production of meaty aroma from porcine cells for hybrid cultivated meat. Food Chem 2025; 473:142946. [PMID: 39864181 DOI: 10.1016/j.foodchem.2025.142946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing. Thermal reaction conditions were optimized to enhance aroma compound production. Chemical profiling demonstrates that myoblasts produce an aroma profile closer to pork meat than fibroblasts, although serum reduction decreased aroma yield. Sensory analysis supported these findings. Incorporating the optimized aroma extract - derived from just 1.2 % (w/w) cells - into plant proteins resulted in a hybrid cultivated meat with 78.5 % sensory similarity to pork meat, but with a significant 80 % reduction in production costs.
Collapse
Affiliation(s)
- Hanzhang Zhou
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore; Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Francesca Yi Teng Ong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xuanming Lou
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Jiahao Wang
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Matthew Khine Myint
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore
| | - Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Deborah Chwee San Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Shengyong Ng
- Ants Innovate Pte. Ltd., Temasek Boulevard, Singapore 038987, Singapore
| | - Yunbo Lv
- Nanyang Environment And Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Leng Gek Kwang
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Rachel Z Bennie
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kuin Tian Pang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Renwick C J Dobson
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; The Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Laura J Domigan
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; The Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Hanry Yu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore.
| |
Collapse
|
5
|
Wang H, Liu Z, Yang H, Bai Y, Li Q, Qi X, Li D, Zhao X, Ma Y. Integrated transcriptomics and metabolomics reveal the molecular characteristics and metabolic regulatory mechanisms among different muscles in Minxian black fur sheep. BMC Genomics 2025; 26:412. [PMID: 40301745 DOI: 10.1186/s12864-025-11607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Mammalian skeletal muscle is comprised of heterogeneous fibers with various contractile and metabolic properties that affect muscle flavor. Thus, it is of great significance to identify and characterize the potential molecular characteristics and metabolic regulatory mechanisms associated with muscle fiber properties. RESULTS In this study, the muscle samples (Biceps femoris; longissimus dorsi; and infraspinatus) from Minxian black fur sheep were used to perform transcriptome and metabolome analyses. Then, the key genes regulating the metabolism of important flavor precursors (amino acids and lipids) were explored by integrating transcriptome and metabolome. Consequently, we identified 432 differentially expressed genes, which were mainly involved in muscle development and function maintenance (e.g., myofibril, myocyte differentiation, etc.), metabolism (e.g., fatty acid metabolism, arachidonic acid metabolism, PPAR signaling pathway, and PI3K-Akt signaling pathway, etc.), and homeostasis (e.g., regulation of actin cytoskeleton, ECM-receptor interaction, calcium signaling pathway, etc.). A total of 58 key genes affecting muscle fiber properties, including MYL2, HOXA/C/D, MYBPH8, MYH8, etc., were screened, which characterized the molecular differences in muscle fiber metabolic properties between oxidative and glycolytic muscle. Meanwhile, we identified 463 differentially accumulated metabolites. Except for glycerophospholipids, most flavor metabolites were higher in oxidative muscle. Subsequently, key genes highly related to flavor amino acids were identified by weighted gene co-expression network analysis, such as ALDH6A1, BCKDHB, SLC16A7, LDHB, etc. Based on KEGG enrichment analysis, a regulatory network with both lipid metabolism and its crosstalk with other metabolic pathways was constructed. CONCLUSIONS In conclusion, this study provides an in-depth understanding of the molecular mechanism of differences in muscle fiber properties among different muscles of Minxian black fur sheep, and also lays a foundation for further exploration of the regulatory mechanism of key genes on flavor metabolites.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hai Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaqin Bai
- Animal Husbandry Technology Extension Station of Gansu Province, Lanzhou, 730030, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| |
Collapse
|
6
|
You L, Zhang Y, Ma Y, Wang Y, Wei Z. Effect of Boiling Time on the Color, Water, Protein Secondary Structure, and Volatile Compounds of Beef. Foods 2025; 14:1372. [PMID: 40282774 PMCID: PMC12027407 DOI: 10.3390/foods14081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
The influence of boiling time on the persistent changes in the surface color, water content and distribution, protein secondary structure, and the concentration of volatile compounds in beef were studied, in order to obtain quality short-term boiled beef slices. The results show that the water content of beef samples significantly decreased and migration occurred between the high-freedom water and the low-freedom water. On average, boiling for 1 min was a key point in the changes of color parameters (L*, a*, b*, w, ΔE, and BI) and partial protein secondary structure because of the change in the ambient temperature around beef. In six samples, 29 volatile compounds were confirmed by GC-MS, and 13 compounds were regarded as the potential key volatile compounds, including 1-heptanol, 1-octen-3-ol, octanal, hexanal, decanal, heptanal, nonanal, (E, E)-2,4-decadienal, (E, E)-2,4-nonadienal, dodecanal, (E)-2-undecenal, 2,3-octanedione, and 2-pentylfuran. The color, water, and protein secondary structure were closely correlated with some potential key volatile compounds. The results could be used to guide the consumers to better grasp the quality of hot-pot meat during gatherings and have a comfortable consumer experience.
Collapse
Affiliation(s)
- Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (L.Y.)
- Specialty Food Nutrition and Health Innovation Team of Ningxia Hui Autonomous Region, North Minzu University, Yinchuan 750021, China
| | - Yanfeng Zhang
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yingjuan Ma
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (L.Y.)
- Specialty Food Nutrition and Health Innovation Team of Ningxia Hui Autonomous Region, North Minzu University, Yinchuan 750021, China
| | - Yongrui Wang
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhaojun Wei
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (L.Y.)
- Specialty Food Nutrition and Health Innovation Team of Ningxia Hui Autonomous Region, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
7
|
Lee M, Kim YS. Analysis of volatile and odor-active compounds in charcoal-grilled marinated beef using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Sci Biotechnol 2025; 34:1339-1349. [PMID: 40110406 PMCID: PMC11914630 DOI: 10.1007/s10068-024-01783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 03/22/2025] Open
Abstract
Charcoal-grilled marinated beef (CMB) is a popular Korean food that has garnered worldwide attention. In this study, volatile and odor-active compounds generated in CMB were analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Solvent-assisted flavor extraction and solid-phase micro extraction were employed to extract the volatile compounds before GC-MS and GC-O analyses. In total, 196 compounds were identified in CMB. Certain heterocyclic compounds, such as pyrazines and thiazoles, could be produced by grilling at high temperatures. The formation of benzene derivatives and phenols could be attributed to charcoal grilling and marinade used. In the GC-O results, 3-methylsulfanylpropanal, 2-methoxyphenol, 1,3-benzothiazole, furaneol, 3-methylphenol, prop-2-ene-1-thiol, 2-ethyl-3,5-dimethylpyrazine, and 2,5-dimethylpyrazine exhibited relatively high flavor dilution factors. Based on these findings, sulfur-containing compounds, pyrazines, phenols, and aldehydes primarily influence the characteristic flavor of CMB.
Collapse
Affiliation(s)
- Minjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
8
|
Zhang M, Zhou C, Su W, Tan R, Ma L, Pan W, Li W. Dynamic effects of ultrasonic treatment on flavor and metabolic pathway of pumpkin juice during storage based on GC-MS and GC-IMS. Food Chem 2025; 469:142599. [PMID: 39724703 DOI: 10.1016/j.foodchem.2024.142599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In this study, the dynamic effects of ultrasonic treatment (0-400 W) on the volatile flavor compounds of pumpkin juice under different storage periods were investigated systematically using a combination of headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) techniques. A total of 139 and 46 volatile organic compounds (VOCs) were identified by GC-MS and GC-IMS, respectively. The results indicated that complex changes in volatile components occurred during storage. It was found that the content of key volatile components, such as 2-ethylhexan-1-ol and 1-pentanol, decreased significantly, whereas the content of 1-nonanol and menthol increased in the early stage of storage, resulting in the gradual change of the aroma of pumpkin juice from an initial aromatic fruity aroma to an alcoholic and rancid aroma. In particular, it was noted that the 200 W ultrasonic treatment not only effectively promoted the release of volatile components, but also significantly slowed down the generation of undesirable flavor substances during storage, which had a positive effect on the retention of pumpkin juice flavor. Through multivariate statistical analysis and KEGG enrichment analysis, phenylalanine metabolism was found to play a key role in regulating the formation of volatile flavor compounds, further confirming the potential value of ultrasonic treatment in the preservation and processing of pumpkin juice. This provides important theoretical support and practical guidance for the commercial production and processing technology of pumpkin juice and other fruit and vegetable juices.
Collapse
Affiliation(s)
- Manjun Zhang
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Chunli Zhou
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China.
| | - Wei Su
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Renqin Tan
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Long Ma
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Wenhui Pan
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Wen Li
- School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| |
Collapse
|
9
|
Xie Y, Cai L, Ding S, Wang C, Wang J, Ibeogu IH, Li C, Zhou G. An Overview of Recent Progress in Cultured Meat: Focusing on Technology, Quality Properties, Safety, Industrialization, and Public Acceptance. J Nutr 2025; 155:745-755. [PMID: 39800312 DOI: 10.1016/j.tjnut.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND Cultured meat technology represents an innovative food production approach that enables the large-scale cultivation of animal cells to obtain muscle, fat, and other tissues, which are then processed into meat products. Compared with traditional meat production methods, cell-cultured meat may significantly reduce energy consumption by 7%-45%, greenhouse gas emissions by 78%-96%, land use by 99%, and water use by 82%-96%. This technology offers several advantages, including a shorter production cycle and enhanced environmental sustainability, resource efficiency, and overall sustainability. However, numerous technical challenges remain. OBJECTIVES The latest advancements in cultured meat research were reviewed such as the development of serum-free media, maintenance of seed cell functionality, large-scale cell culture techniques, 3-dimensional culture methods, and innovations in scaffold materials. METHODS Recent publications on cultured meat were examined. RESULTS These hurdles were addressed to achieve low-cost, high-efficiency industrial production in the cultivated meat sector. Furthermore, as a supplement or substitute for traditional meat, cultured meat products must possess similar sensory characteristics and nutritional value, ensure high food safety standards, and maintain low production costs to enhance market competitiveness. CONCLUSIONS Achieving the industrialization of cultured meat necessitates careful consideration of several additional challenges related to sensory attributes, nutritional quality, food safety, and consumer acceptance. This review systematically examines these aspects to provide a theoretical and practical foundation for the sustainable biomanufacturing of cultured meat.
Collapse
Affiliation(s)
- Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shijie Ding
- Nanjing Joes Future Food Technology Co., Ltd., Nanjing, China
| | - Chong Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jie Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Isaiah Henry Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Huang Y, Zheng Y, Huang Z, Zhao L, He W, Chen H, Li M, Liu B, Pan L. Evaluating the effect of different recycling frequencies on marinade quality, characteristics, and volatile constituents. Food Sci Biotechnol 2025; 34:893-904. [PMID: 39974871 PMCID: PMC11832956 DOI: 10.1007/s10068-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 09/20/2024] [Indexed: 02/21/2025] Open
Abstract
The quality of marinade is closely related to its recycling frequency, and affects the flavor and quality of leisure dried tofu. The changes in physicochemical parameters, oxidation indicators, and volatile constituents of marinade under different recycling frequencies (0, 3, 6, 9, 12, 15) were systematically investigated in this work. The results showed that the levels of amino acid nitrogen, viscosity, soluble solids, and salinity in the marinade were significantly increased with recycling frequency. The increase in marinade recycling frequency led also to a rise in the peroxide value and thiobarbituric acid reactive substances from 2.13 meq/kg and 0.17 mg/kg to 4.02 meq/kg and 0.94 mg/kg, respectively, suggesting slight oxidation. Marination yielded 101 volatile constituents, mainly including 35 alcohols, 21 hydrocarbons, 15 aldehydes, 9 aromatics. Pearson correlation analysis revealed that the levels of cedrene, cineole, and myrcene were closely related to the quality and flavor of marinade under different recycling times.
Collapse
Affiliation(s)
- Yanqi Huang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000 China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, 422000 China
| | - Yirou Zheng
- Department of Industry-University-Research Collaboration, Shenzhen Total-Test Technology Co. Ltd., Guangdong Engineering Research Center of High Specificity Biological Rapid Detection, Shenzhen, 518038 China
| | - Zhanrui Huang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000 China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, 422000 China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000 China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, 422000 China
| | - Wanying He
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000 China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, 422000 China
| | - Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000 China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, 422000 China
| | - Ming Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000 China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, 422000 China
| | - Binbin Liu
- Jinzai Food Group Co., Ltd, Yueyang, 414022 China
| | - Lianyun Pan
- Zhenyuan Ledoufang Food Co., Ltd, Zhenyuan, 557700 China
| |
Collapse
|
11
|
Yang F, Chen E, Fu A, Liu Y, Bi S. Formation of key aroma compounds in Agrocybe aegerita during hot air drying: Amino acids and reducing sugars identified as flavor precursors. Food Chem 2025; 465:141975. [PMID: 39541680 DOI: 10.1016/j.foodchem.2024.141975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Agrocybe aegerita is a type of mushroom widely popular among consumers for its unique flavor. In this study, aroma properties and key aroma-active compounds (AACs) in fresh and dried A. aegerita were identified by molecular sensory science. The flavor characteristics are more abundant in A. aegerita submitted to hot air drying (HAD), especially nutty, roasted, smoky and meaty, while raw mushroom and earthy were significantly reduced, which can be attributed to the shift of key AACs from aldehydes and ketones to heterocyclic and sulfur-containing compounds during HAD. Pearson correlation analysis and validation experiments showed that the Maillard reaction between methionine (Met) and ribose was the main pathway for producing "meaty" compounds like dimethyl trisulfide and 3-methylthiopropanal. Moreover, dimethyl trisulfide and 3-methylthiopropanal production showed a nonlinear fit with increasing Met and ribose contents. The study provides a theoretical basis for A. aegerita as a novel meat flavor condiment.
Collapse
Affiliation(s)
- Fan Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Erbao Chen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Anzhen Fu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shuang Bi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
12
|
Sun P, Lin S, Li X, Li D. Effects of sterilization intensity on the flavor profile of canned Antarctic krill (Euphausia superba): Moderate vs. excessive. Food Chem 2025; 465:142067. [PMID: 39561596 DOI: 10.1016/j.foodchem.2024.142067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Selecting the appropriate sterilization intensity is crucial for the canning of Antarctic krill (Euphausia superba). This study investigated the effects of different sterilization intensities on volatile organic compounds (VOCs) of canned krill. Using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS), which identified 45 and 36 VOCs, respectively. As the sterilization intensity was increased, the flavor profile became more stabilized; however, excessive sterilization led to the generation of off-flavor compounds. Eight key flavor markers were identified at different sterilization intensities. Cluster analysis could distinguish between samples obtained from low (F = 6, 9) and high (F = 12, 15) sterilization intensities. Odor Activity Value (OAV) analysis revealed that higher sterilization intensities led to the generation of fishy, fatty, and earthy notes. The findings suggest that sterilization at F = 9 can best maintain the desired flavor characteristics. Overall, this work provides valuable insights into the optimization of the canning process of Antarctic krill.
Collapse
Affiliation(s)
- Peizi Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Xinran Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Dongmei Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Long Z, Yi X, Gao X, Wang Y, Guo J, Gao S, Xia G, Shen X. Combining Sensory Analysis and Flavoromics to Determine How the Maillard Reaction Affects the Flavors of Golden Pomfret Hydrolysates. Foods 2025; 14:560. [PMID: 40002004 PMCID: PMC11854427 DOI: 10.3390/foods14040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Enzymatic hydrolysis can enhance the flavor of aquatic products. Nevertheless, the strong fishy odor restricts its utilization in culinary applications. This study is centered on enhancing the flavor of golden pomfret samples by promoting the Maillard reaction (MR) between golden pomfret hydrolysate (GHES) and reducing sugars. The research results demonstrate that the Maillard reaction significantly improves the sensory characteristics of GHES. It prompts the formation of diverse volatile compounds, such as aldehydes, esters, and furans. Simultaneously, it reduces the relative amounts of substances associated with fishy odor, such as 1-Octen-3-ol and Hexanal. Moreover, the Maillard reaction increases the contents of amino acids contributing to umami and sweetness, as well as 5'-nucleotides in the samples, thus enriching their umami flavor profiles. After undergoing the Maillard reaction treatment, the antioxidant capacity of the samples is also significantly enhanced (p < 0.05). This research highlights the potential of the Maillard reaction in improving both the flavor and antioxidant properties of GHES, establishing a theoretical basis for elevating the quality of golden pomfret products.
Collapse
Affiliation(s)
- Zhengsen Long
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Yanchen Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Jingfeng Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Shuxin Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.L.); (X.Y.); (X.G.); (Y.W.); (J.G.); (S.G.); (G.X.)
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China
| |
Collapse
|
14
|
Wang X, Cui B, Lin H, Pan R, Zeng J, Fang X, Liu Y, Chen ZY, Chen Y, Zhu H. Research Progress in Saltiness Perception and Salty Substitutes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2745-2759. [PMID: 39843245 DOI: 10.1021/acs.jafc.4c10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Salty taste in foods is a key sensory attribute for appetite enhancement, however, consumption of a high salt diet is associated with a high risk of hypertension, stroke, and heart diseases. To address this issue, the World Health Organization (WHO) has recommended reducing the global per capita salt consumption by 30% by 2025, with adults optimally consuming less than 5 g/day of salt. Therefore, the search for new salty substitutes to reduce salt intake in foods has become a research hotspot. Despite the ongoing endeavors of global research, multiple studies have focused on the application of a single category of salty alternatives or food processing quality (such as preservative effects and process characteristics), and there is still little comprehensive evaluation of these alternatives in terms of nutritional value, health impact, and consumer acceptance in the literature. This review will first outline the urgency of global salt reduction, followed by thorough discussion of salty substitutes and associated mechanisms from the perspective of human salty taste perception. Second, the present review will explore the potential application of salty substitutes and highlight the interaction between taste and odor in foods. Additionally, the potential impacts of salty substitutes on human health will be discussed. The present review will provide a scientific basis for the development of low salt products by food industry.
Collapse
Affiliation(s)
- Xiaojun Wang
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Biyan Cui
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Huiqi Lin
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Rongzeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Jia Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Yanping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hanyue Zhu
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| |
Collapse
|
15
|
Zhou L, Ren Y, Shi Y, Zhao L, Tian H, Feng X, Li J, Yang Y, Xing W, Yu Y, Zhao Q, Zhang J, Tang C. Investigation on the pro-aroma generation effects of fatty acids in beef via thermal oxidative models. Food Chem X 2025; 26:102291. [PMID: 40083855 PMCID: PMC11905826 DOI: 10.1016/j.fochx.2025.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 03/16/2025] Open
Abstract
Fatty acids (FAs) in lipids are important precursors for the formation of meat aroma compounds. However, the specific roles of individual FAs and related reactions in beef aroma formation remain unclear. This study established thermal oxidation models to investigate the impact of different FAs on the formation of beef aroma compounds. The results revealed that thermal oxidation of seven FAs with different saturation produced 42 aroma compounds. Among them, unsaturated fatty acids (UFAs) participating in thermal oxidation degradation is the primary pathway for aroma compound formation, and the types of aroma compounds produced by C18:2n6 and C20:4n6 are similar. The addition of UFAs to lipid-free beef induces lipid oxidation-Maillard reaction interactions, producing more thiophenes, thiazoles, and pyridines, such as 2-acetyl-3-methylthiophene and 2-pentylpyridine, etc. The key aroma compounds in beef with odor characteristics such as fruity, green, fatty or milky are mainly produced by C18:1n9, C18:2n6 and C20:4n6.
Collapse
Affiliation(s)
- Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yimeng Ren
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Agricultural Sciences, Zhengzhou University, 450001, China
| | - Yujie Shi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Agricultural Sciences, Zhengzhou University, 450001, China
| | - Liyuan Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihui Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Agricultural Sciences, Zhengzhou University, 450001, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihai Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Yu X, Wu J, Qiu Z, Shi Y, Lin L, Wang X, Zhang L. Evaluation of edible quality and processing suitability of segmented products from silver carp under different thermal processing methods. Food Res Int 2025; 201:115623. [PMID: 39849778 DOI: 10.1016/j.foodres.2024.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study investigated the edible quality differences in muscle segments of silver carp (Hypophthalmichthys molitrix) and established an evaluation model for processing suitability. The results showed that steamed dorsal meat had the highest levels of total free amino acids, umami amino acids, and total volatile compounds. Fried tail meat exhibited the highest content of sweet amino acids and equivalent umami concentration (EUC) values, which were superior in all fried meat parts compared to those that were steamed. Key quality indicators for steaming included L*, crude protein, 5'-inosine monophosphate (IMP), (E)-2-Nonenal, and lysine, while IMP, moisture, 2-acetyl-1-pyrroline, and proline were key quality indicators for frying. The established processing suitability evaluation model accurately predicted overall sensory acceptability. Dorsal and belly portions of H. molitrix were best suited for steaming, whereas the tail was more suitable for frying.
Collapse
Affiliation(s)
- Xinlei Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Jingjing Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Yuyao Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China; Xiweijia Biotechnology Co., Ltd., Yueyang, Hunan 414024, PR China.
| |
Collapse
|
17
|
Nishimura K, Abe T. Effect of protease reaction conditions on volatile compounds generated in Maillard reaction products from soy protein hydrolysates. Food Chem 2025; 464:141599. [PMID: 39413596 DOI: 10.1016/j.foodchem.2024.141599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Maillard reaction products (MRPs) produced by heating protease-catalyzed soy protein hydrolysates (SPHs) with cysteine and ribose can generate meat-like flavors. However, the impact of protease reaction conditions on the volatile compound composition of MRPs has not been thoroughly investigated. In this study, seven SPHs were prepared using two proteases, flavourzyme and trypsin, over reaction times of 10, 120, and 1440 min. The volatile compound compositions, including sulfur-containing compounds, aldehydes, pyrazines, and furans, of the seven SPHs and the corresponding seven MRPs varied according to the protease reaction conditions and the Maillard reaction. Differences in pH, free amino acid composition, and peptide composition were responsible for these variations. Notably, soy-derived peptides containing unique cysteine sequences, such as PGCPST, DETICT, ECQIQK, and HCQR, were significantly reduced during the Maillard reaction, suggesting that these sequences may serve as precursors to volatile compounds.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Toyo Institute of Food Technology, 23-2, 4-Chome, Minami-Hanayashiki, Kawanishi City, Hyogo Prefecture 666-0026, Japan.
| | - Tatsuya Abe
- Toyo Institute of Food Technology, 23-2, 4-Chome, Minami-Hanayashiki, Kawanishi City, Hyogo Prefecture 666-0026, Japan.
| |
Collapse
|
18
|
Park H, Cho IH. Sensorial flavor characteristics and volatile Maillard reaction products of Tenebrio molitor mealworm based-reaction flavors with beef broth-like flavor. Food Sci Biotechnol 2025; 34:645-651. [PMID: 39958171 PMCID: PMC11822161 DOI: 10.1007/s10068-024-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 02/18/2025] Open
Abstract
This study analyzed the sensorial flavor characteristics and volatile Maillard reaction products of Tenebrio molitor mealworm based-reaction flavors (M-RFs) optimized in our previous study; it also explored the main contributors to M-RFs with a desirable beef broth-like flavor. Seven flavor characteristics (i.e., sweet, sour, meaty, sulfur-like, boiled soy sauce-like, baked potato-like, and dried shrimp-like flavors) were profiled in the M-RFs by sensory evaluation; when the baked potato-like, boiled soy sauce-like, sweet, and meaty flavor attributes were intensified, the M-RFs had beef broth-like flavor. Also, pyrazines, pyrroles, and pyrans were strongly associated with them in the partial least-squares regression plot. Those M-RFs were reacted with a small amount of cysteine and a large amount of methionine compared to other M-RFs and it was revealed that cysteine and methionine significantly influenced the desirable beef broth-like flavor characteristics of M-RFs. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01681-2.
Collapse
Affiliation(s)
- Hyeyoung Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538 Korea
| | - In Hee Cho
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538 Korea
| |
Collapse
|
19
|
Hao J, Zhang X, Wang Z, Zhao Q, Zhang S, Li Y. Maillard reaction products of soybean protein hydrolysates and reducing sugar: Structure and flavor insights. Food Res Int 2025; 202:115790. [PMID: 39967121 DOI: 10.1016/j.foodres.2025.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Maillard reaction products (MRPs) were prepared at high temperatures using soybean protein hydrolysates (SPH) and reducing pentose (xylose and arabinose), hexose (galactose and glucose), and disaccharide (maltose), and their potential as flavoring in plant protein foods was evaluated. The results indicated that, after sugar was involved in the reaction, the unfolding of proteins enabled aromatic amino acid residues to enter a more hydrophobic environment, contributing to the reduction of bitterness in MRPs and formation of caramelization. This effect was partially attributed to the interaction forces, hydrogen bonds and van der Waals forces, that existed between the sugars and SPH involved in Maillard reaction. More basic amino acid residues interacted with pentose during the reaction, which exhibited faster reaction rate and promoted the formation of pyrazines and oxygen containing compounds, thereby contributing to meaty, roasted and caramelized flavors. Trimethyl pyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-methylpyrazine, and 2-heptanone were the most abundant in pentose MRPs, and these volatile compounds were positively correlated with umami and richness. Overall, MRPs prepared with arabinose may serve as a potential meaty flavoring with notable umami, and hexose contributed to the enrichment of nutty flavor profiles, while the MRPs formed by disaccharide exhibited the characteristics of superior fruity aromas. MRPs from different reducing sugar may be used to develop different food ingredients.
Collapse
Affiliation(s)
- Jiaqi Hao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziwei Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
Bolchini S, Nardin T, Morozova K, Scampicchio M, Larcher R. Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation. Foods 2025; 14:450. [PMID: 39942042 PMCID: PMC11817201 DOI: 10.3390/foods14030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The Maillard reaction (MR) is a key process in food science, producing bioactive compounds with antioxidant properties. This study evaluates the antioxidant potential of MR products (MRPs) from different dairy byproducts-cow cheese whey, goat cheese whey, and cow yoghurt whey-highlighting their applicability in food preservation and waste valorisation. Whey samples were subjected to the MR at 140 °C for 90 min, showing significant amino acid and sugar consumption, particularly arginine, histidine, and lactose. Using a library of potential antioxidant MRPs (molecular weight < 250 Da), 28 key compounds, including 2-pyrrolecarboxaldehyde and maltol isomer, were identified, primarily in cow cheese whey. A complementary high-molecular-weight MRP library (≥250 Da) identified 72 additional antioxidant compounds, with distinct production patterns linked to whey type. Multivariate analyses confirmed that whey type strongly influences MRP profiles. These results highlight the potential of MR to transform whey by-products into valuable sources of natural antioxidants. This approach offers sustainable strategies for enhancing food preservation, reducing food waste, and supporting the targeted use of MRPs in the food industry.
Collapse
Affiliation(s)
- Sara Bolchini
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Tiziana Nardin
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Roberto Larcher
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| |
Collapse
|
21
|
Sarkisyan V, Bilyalova A, Vorobyeva V, Vorobyeva I, Malinkin A, Zotov V, Kochetkova A. Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method. Foods 2025; 14:116. [PMID: 39796406 PMCID: PMC11719869 DOI: 10.3390/foods14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method. The study investigated the effects of sugar type, concentration, and reaction temperature on the Maillard reaction products, sensory characteristics, and volatile organic compounds. The thermal process flavors were obtained from the flavor precursor by heating in a laboratory microwave station at 30 bar for 15 min. The variable factors were the type of sugar (fructose, glucose, xylose), its concentration (25, 50, and 100 mM), and the temperature of the reaction (140, 150, and 160 °C). The study's findings indicated that temperature emerged as the predominant factor influencing the formation of Maillard reaction products and the sensory characteristics of the flavorings. Specifically, 25 mM xylose-based flavorings prepared at 140 °C demonstrated the most notable meat flavor and the highest level of acceptability. Moreover, the analysis of volatile organic compounds revealed the presence of a diverse array of substances, including aldehydes, ketones, and alcohols, that are characteristic of meat flavor. A heat map of the volatile content was constructed to facilitate a comparison of the samples. The study demonstrates the effectiveness of the Taguchi method in optimizing the production process of meat flavorings for plant-based products and provides valuable insights for the development of more balanced odor profiles.
Collapse
Affiliation(s)
- Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Anastasiya Bilyalova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Valentina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Irina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alexey Malinkin
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Vladimir Zotov
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| |
Collapse
|
22
|
Tao X, Zhao P, Li Y, Ao X. Impact of Slaughter Weight on Flavor Metabolites in Longissimus Dorsi Muscle of Tianfu Finishing Pigs. Anim Sci J 2025; 96:e70045. [PMID: 40099363 DOI: 10.1111/asj.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025]
Abstract
In order to investigate the flavor compounds in the muscles of Tianfu finishing (TF) pigs with different slaughter weight (SW), 12 TF pigs were selected for the experiment. The volatile metabolic profiles of meat specimens from the longissimus dorsi (LD) muscle of TF pigs with different SW were studied by untargeted liquid chromatography-mass spectrometry. Our data revealed that the three types of TF pork showed significantly different profiles of hydrocarbons, alcohols, esters, heterocyclic compounds, and others, which could underpin the nuances of their flavors. A total of 118 differentially expressed metabolites (DEMs) were identified (2 upregulated DEMs and 116 downregulated DEMs). Among the volatile flavor compounds, hydrocarbons, alcohols, ester, and heterocyclic compound in the three groups accounted for 26.71%, 13.01%, 13.01%, and 13.70%, respectively, and their contents decreased with increasing SW. The contents of alcohols, aldehydes, and hydrocarbons in the 150-kg group was significantly higher than those in the 125-kg and 100-kg groups (p < 0.05). Taken together, raising SW to 125 kg, or more, decreased the flavor of TF pork and had no benefits to pork quality attributes. Our results provided insights into the molecular basis for sensory variations among different SW of TF pork.
Collapse
Affiliation(s)
- Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Pinyao Zhao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, Sichuan, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
- Sichuan Higher Education Engineering Research Center for Agri-food Standardization and Inspection, Yibin, China
| | - Yuanfeng Li
- School of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xiang Ao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
23
|
Park MK, Choi YS. Effective Strategies for Understanding Meat Flavor: A Review. Food Sci Anim Resour 2025; 45:165-184. [PMID: 39840241 PMCID: PMC11743833 DOI: 10.5851/kosfa.2024.e124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025] Open
Abstract
This review provides an effective strategy for understanding meat flavor. Understanding the taste of meat is essential for improving meat quality, and the taste should be analyzed based on complex chemical research to identify various factors that impact the composition, formation, and development of meat. To address flavor chemistry in meat, the discussion focuses on the major compounds responsible for the characteristic flavors of different meats, such as lipids, proteins, and Maillard reaction products. Meat flavor is largely based on heat-induced chemical reactions that convert flavor precursors, such as sugars, proteins, and lipids, into volatile compounds. The flavor of meat is influenced by animal species, sex, age, feed, and processing, and in this respect, flavor is one of the representative quality indicators of meat. Research on meat flavor uses omics technology to study the molecular mechanisms that affect meat quality, including flavor, tenderness, and fat composition. Therefore, this review provides a comprehensive understanding of the complex processes governing meat flavor and provides avenues for further research and industrial applications to advance the meat industry.
Collapse
Affiliation(s)
- Min Kyung Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Yun-Sang Choi
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
24
|
Lee D, Lee S, Jo C. Application of Animal Resources into the Maillard Reaction Model System to Improve Meat Flavor. Food Sci Anim Resour 2025; 45:303-327. [PMID: 39840239 PMCID: PMC11743841 DOI: 10.5851/kosfa.2024.e133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Simulating meat flavor via Maillard reaction model systems that contain a mixture of amino acids and reducing sugars is an effective approach to understanding the reaction mechanism of the flavor precursors. Notably, animal resources such as fish, beef, chicken, pork hydrolysates, and fats are excellent precursors in promoting favorable meaty and roasted flavors and umami tastes of Maillard reaction products. The experimental conditions and related factors of the model systems for sensory enhancements, debittering, and off-flavor reduction with meat and by-products are summarized in this review. The review also highlights the flavor precursors in the animal resources and their participation in the Maillard reaction. This review provides a basis for a better understanding of the model systems, especially those prepared with animal resources.
Collapse
Affiliation(s)
- Dongheon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Seokjun Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
25
|
Yang C, Liu L, Cui C, Cai H, Dai Q, Chen G, McClements DJ, Hou R. Towards healthier low-sugar and low-fat beverages: Design, production, and characterization. Food Res Int 2025; 200:115457. [PMID: 39779115 DOI: 10.1016/j.foodres.2024.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Many consumers are adopting low-sugar and low-fat beverages to avoid excessive calories and the negative impact of high trans- and/or saturated fat on health and wellbeing. This article reviews strategies to reduce sugar, fat, and high trans- and/or saturated fat content in beverages while maintaining their desirable physicochemical and sensory attributes. It assesses the impact of various sugar and fat replacers on the aroma, taste, texture, appearance, and nutritional profile of beverages. Combinations of natural sugar replacers and protein or polysaccharide-based fat replacers have shown partial success in mimicking the qualities of sucrose and fat. Future strategies for designing low-sugar and low-fat beverages include developing novel replacers and using odorants to enhance sensory profiles. The article also highlights methods for flavor detection and oral tribology methods, emphasizing their role in development of low-sugar and low-fat beverages. The information presented in this review article is intended to stimulate research into the design of healthier low-sugar and low-fat beverages in the future.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, Zhejiang Province, China
| | - Chuanjian Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China
| | | | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
26
|
He FY, Zhu XT, Liu H, Chong YQ, Wu ZP, Ye LJ, Chen YW, Fu JJ. Structural and sensory characteristics of ultrasonic assisted wet-heating Maillard reaction products of Giant salamander protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9462-9471. [PMID: 39056251 DOI: 10.1002/jsfa.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Chinese giant salamander protein hydrolysates (CGSPH) are beneficial to human health as a result of their high content of amino acids and peptides. However, the formation of bitter peptides in protein hydrolysates (PHs) would hinder their application in food industry. The ultrasound assisted wet-heating Maillard reaction (MR) is an effective way to improve the flavor of PHs. Thus, the effect of ultrasonic assisted wet-heating MR on the structure and flavor of CGSPH was investigated in the present study. RESULTS The results indicated that the ultrasound assisted wet-heating MR products (MRPs) exhibited a higher degree of graft and more significant changes in the secondary and tertiary structures of CGSPH compared to traditional wet-heating MRPs. Moreover, ultrasound assisted wet-heating MR could significantly increase the content of small molecule peptides and reduce the content of free amino acids of CGSPH, which resulted in more significant changes in flavor characteristics. The changed in flavor properties after MR (especially ultrasound assisted wet-heating MRPs) were mainly manifested by a significant reduction in bitterness, as well as a significant increase in the content of aromatic aldehyde ester compounds such as furan-2-carbaldehyde, butanal, benzaldehyde, furfural, etc. CONCLUSIONS: Ultrasound assisted wet-heating MR between CGSPH and xylose could be a promising way to improve the sensory characteristics of CGSPH. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Xing-Tong Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Yun-Qing Chong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Zhi-Ping Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, China
| | - Lu-Jun Ye
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
27
|
Cao H, Yang Z, Wang L, Li X, Bian Y, Zhao H, Zhao M, Li X, Wang J, Sun G, Ren S, Yu J, Gao H, Huang X, Wang J. Diversity analysis, nutrition, and flavor evaluation of amino acids in Chinese native geese germplasms. Vet World 2024; 17:2932-2943. [PMID: 39897365 PMCID: PMC11784048 DOI: 10.14202/vetworld.2024.2932-2943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim As living standards improve and consumption patterns shift, the market for goose meat continues to grow because of its exceptional dietary quality and distinctive flavor. The composition and content of amino acids are critical for determining the nutritional value and flavor of meat. This study aimed to evaluate the nutritional value and flavor of 10 Chinese native geese germplasms based on their amino acid content and composition. Materials and Methods A total of 568 geese from 10 Chinese native geese germplasms reared under identical conditions were slaughtered at 10 weeks of age. The pectoralis and thigh muscles (thighs) were collected to determine the amino acid content using an amino acid analyzer. Subsequently, diversity, variance, cluster, and principal component analyses were performed to identify superior germplasm with improved nutrition and flavor. Results The results revealed 17 amino acids in goose meat, with Glutamate and Aspartate being the most abundant. The amino acid scores of goose meat exceeded the values recommended by the Food and Agriculture Organization/World Health Organization. The Shannon-Wiener Diversity Index (1.72-2.07) indicated a high degree of diversity in amino acid content among geese germplasms. The pectoralis exhibited significantly higher amino acid content (p < 0.05 or p < 0.01) than the thigh, except for the essential amino acids to total amino acids ratio (p < 0.05 or p < 0.01). The 10 germplasms were categorized into four clusters, with Wanxi (WX) and Taizhou (TZ) geese grouped in Cluster I, displaying significantly higher nutritional value and flavor (p < 0.05 or p < 0.01) than other germplasms. Conclusion Germplasms with superior nutritional value and flavor (WX and TZ) were identified among 10 Chinese native geese germplasms, providing valuable insights for the conservation of existing germplasms and the cultivation of new goose breeds with improved meat quality.
Collapse
Affiliation(s)
- Haiyue Cao
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Zhenfei Yang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Ligang Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xin Li
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Yuanyuan Bian
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Hongchang Zhao
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| | - Mengli Zhao
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| | - Xiaoming Li
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| | - Jun Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| | - Guobo Sun
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| | - Shanmao Ren
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Jun Yu
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| | - Huizhen Gao
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xuan Huang
- Department of Animal Science and Technology, College of Animal Science, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- Department of Waterfowl Genetics and Breeding, National Waterfowl Gene Pool, Taizhou, 225511, China
| |
Collapse
|
28
|
Prajapati P, Garg M, Singh N, Chopra R, Mittal A, Sabharwal PK. Transforming plant proteins into plant-based meat alternatives: challenges and future scope. Food Sci Biotechnol 2024; 33:3423-3443. [PMID: 39493399 PMCID: PMC11525364 DOI: 10.1007/s10068-024-01683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
The global transition towards sustainable living has led to a growing demand for innovative food products that enhance environmental sustainability. Traditional meat production is known for its high energy consumption and significant carbon emissions, necessitating alternative approaches. Plant-based meat (PBM) offers a promising solution to reduce the ecological footprint of animal agriculture. This paper examines various challenges in PBM development, including nutritional equivalence, industrial scalability, organoleptic properties, and digestibility. Addressing these challenges requires interdisciplinary collaboration to ensure consumer acceptance, regulatory compliance, and environmental stewardship. Advanced technologies like nanotechnology, fermentation, and enzymatic hydrolysis, along with automation and repurposing cattle farms, offer solutions to enhance PBM's quality and production efficiency. By integrating these innovations, PBM has the potential to revolutionize the food industry, offering sustainable and nutritious alternatives that meet global dietary needs while significantly reducing environmental impact. Graphical abstract
Collapse
Affiliation(s)
- Priyanka Prajapati
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Meenakshi Garg
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Neha Singh
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Rajni Chopra
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| | - Avneesh Mittal
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Prabhjot K. Sabharwal
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| |
Collapse
|
29
|
Wang Y, Zhuang D, Munawar N, Zan L, Zhu J. A rich-nutritious cultured meat via bovine myocytes and adipocytes co-culture: Novel Prospect for cultured meat production techniques. Food Chem 2024; 460:140696. [PMID: 39111042 DOI: 10.1016/j.foodchem.2024.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/06/2024]
Abstract
Cultured meat, an emerging meat production technology, has reduced environmental burden as well as provide healthier and more sustainable method of meat culture. Fat in cultured meat is essential for enhancing texture, taste, and tenderness. However, current cultured meat production method is limited to single-cell type. To meet the consumer demands for cultured meat products, it is crucial to develop new methods for producing cultured meat products that contain both muscle and fat. In this study, cell viability and differentiation were promoted by controlling the ratio and cultivation conditions of myocytes and adipocytes. The total digestibility of cultured meat exceeded 37%, higher than that of beef (34.7%). Additionally, the texture, appearance, and taste of the co-cultured meat were improved. Collectively, this research has great promise for preparing rich-nutritious and digestion cultured meat.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China..
| |
Collapse
|
30
|
Yan W, Chen Z, Zhang C, Xu Y, Han C, Yue L, Kong Q, Zheng Q, Tian W, Xu B. Multi-frequency power ultrasound (MFPU) pretreatment of crayfish (Procambarus clarkii): Effect on the enzymatic hydrolysis process and subsequent Maillard reaction. ULTRASONICS SONOCHEMISTRY 2024; 111:107140. [PMID: 39488066 PMCID: PMC11567950 DOI: 10.1016/j.ultsonch.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Crayfish, as a new consumer trend, has become one of the most popular freshwater aquatic foods in China, and its processed product output has been increasing year by year. In this study, the effect of multi-frequency power ultrasound (MFPU) pretreatment in various working modes including mono-, dual- and tri-frequency on the enzymatic hydrolysis and Maillard reaction of crayfish was investigated. Additionally, the underlying mechanism was also explored. Results showed that the degree of hydrolysis (DH) of crayfish was 23.89 %, while it increased to 40.78 % after MFPU pretreatment at 20/40 kHz dual-frequency, indicating that MFPU pretreatment significantly (p < 0.05) enhanced the enzymatic hydrolysis of crayfish. The crayfish protein after MFPU pretreatment exhibited a decrease in α-helix and increase in β-fold content, and the occurrence in the unfolding of the protein structure and alteration of tertiary structure. According to scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses, the MFPU pretreatment resulted in the fragmentation of crayfish protein. During the analyses of subsequent Maillard reaction, the composition and quantity of volatiles detected by the electronic nose and GC-MS indicated that MFPU pretreatment enhanced flavor of the Maillard reaction products. In conclusion, MFPU pretreatment is a promising technology for improving the degree of hydrolysis of crayfish protein and enhancing the flavor of Maillard reaction products.
Collapse
Affiliation(s)
- Weiqiang Yan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhijun Chen
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chao Zhang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Yao Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Chang Han
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Ling Yue
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qiulian Kong
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qi Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wenhui Tian
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
31
|
Chang J, Liu R, Zheng B, Gao X, Li B, Zhang Y, Wang T, Wang H. Amelioration of myofibrillar protein emulsion gel properties by mildly oxidized sunflower oil. Food Chem 2024; 467:142253. [PMID: 39644651 DOI: 10.1016/j.foodchem.2024.142253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Different oxidation states of oil affect the emulsion stablility and gel properties of emulsified meat products. Emulsified chicken gels were prepared using sunflower oil (SFO) with different oxidation levels (0, 20, 40, and 60 min, 120 °C). The pre-oxidation treatment of oils was investigated for emulsification and gelation of myofibrillar protein (MP). The results showed that MP emulsion gels with mildly oxidized (20 min) SFO had higher elastic modulus (G') and more homogeneous water distribution, which were due to increased hydrophobic interactions between MP and lipids, and improved emulsification stability. However, the addition of highly oxidized (60 min) SFO resulted in aggregation of proteins, increased emulsion particle size, significantly reduced hardness and chewiness (P > 0.05), and exhibited large pores in the network microstructure. The results suggested that mildly oxidized SFO has an ameliorating effect on MP emulsion gelation, which facilitates better comprehension of the protein oxidation process in oil-loaded meat systems.
Collapse
Affiliation(s)
- Jinyang Chang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - BeiBei Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xinzhu Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Baorui Li
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan 256600, PR China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
32
|
Duan S, Tian Z, Zheng X, Tang X, Li W, Huang X. Characterization of flavour components and identification of lipid flavour precursors in different cuts of pork by phospholipidomics. Food Chem 2024; 458:139422. [PMID: 38959797 DOI: 10.1016/j.foodchem.2024.139422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 07/05/2024]
Abstract
The lipids and volatile compounds in pork from different parts, including the loin, belly, shoulder and hind leg were analyzed by triple quadrupole tandem time-of-flight mass spectrometer (Q-TOF/MS) and gas chromatography-olfactometry-mass spectrometry (GC-O-MS), respectively. Partial least squares regression (PLSR) and Pearson correlation analysis were utilized to establish the relationship between the lipids and volatile compounds. A total of 8 main flavour substances, 38 main phospholipids, and 32 main fatty acids were identified. The results showed that the key flavour compounds were mainly derived from unsaturated fatty acids and phospholipids containing unsaturated fatty acids, including oleic acid (C18:2n6c), α-Linolenic acid (C18:3n3), arachidonic acid (C20:4n6), PE O (18:1/20:4), PE O (18:2/20:4), and PE O (18:2/18:2), etc. Understanding the relationship between flavour compounds and lipids of pork will be helpful to control the quality of pork.
Collapse
Affiliation(s)
- Shengnan Duan
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhiqing Tian
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xin Zheng
- Shimadzu (China) Co., Ltd, Beijing Branch, Beijing 100020, PR China.
| | - Xiaoyan Tang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wusun Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xinyuan Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
33
|
Yang Z, Guo Q, Kong X, Li Y, Li F. Effects of Flavonoids in Fructus Aurantii Immaturus on Carcass Traits, Meat Quality and Antioxidant Capacity in Finishing Pigs. Antioxidants (Basel) 2024; 13:1385. [PMID: 39594527 PMCID: PMC11591327 DOI: 10.3390/antiox13111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This experiment aimed to explore the effects of flavonoids in Fructus Aurantii Immaturus (FFAI) on carcass traits, meat quality, and the antioxidant capacity of finishing pigs. The results indicated that the addition of an appropriate amount of FFAI into their diet could significantly reduce the backfat thickness and perirenal fat percentage of finishing pigs, as well as the drip loss, water-holding capacity, shear force, and the levels of lactate, glucose-6-phosphate, glucose, ATP, phosphofructokinase, and pyruvate in the longissimus dorsi (LD) muscle. It also elevated the levels of flavor amino acids such as glutamate, serine, and threonine, and enriched the composition of flavor substances, including benzene and octanal, which significantly contributed to the enhancement of pork flavor. Furthermore, it enhanced the expression levels of MyHC I and MyHC IIa. In summary, the appropriate addition of FFAI to the diet could improve the carcass traits, meat quality, and antioxidant capacity of finishing pigs. The optimal level of FFAI supplementation is 0.12%.
Collapse
Affiliation(s)
- Zekun Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
| | - Qiuping Guo
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Fengna Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Wang Q, Gao H, Fu Y, Chen Y, Song G, Jin Z, Zhang Y, Yin J, Yin Y, Xu K. Comprehensive characterization of the differences in metabolites, lipids, and volatile flavor compounds between Ningxiang and Berkshire pigs using multi-omics techniques. Food Chem 2024; 457:139807. [PMID: 38964207 DOI: 10.1016/j.foodchem.2024.139807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024]
Abstract
This study was conducted to comprehensively characterize, metabolites, lipids, and volatile flavor compounds of NingXiang (NX) pigs, Berkshire (BKS) pigs, and their crossbred (Berkshire × Ningxiang, BN) pigs using multi-omics technique. The results showed that NX had high intramuscular fat (IMF) content and meat redness. The metabolite and lipid compositions were varied greatly among three pig breeds. The NX pigs exhibited distinctive sweet, fruity, and floral aroma while BN pigs have inherited this flavor profile. 2-pentylfuran, pentanal, 2-(E)-octenal, and acetic acid were the key volatile flavor compounds (VOC) of NX and BKS pork. The VOCs were influenced by the composition and content of metabolites and lipids. The NX pigs have excellent meat quality traits, unique flavor profiles, and high degree of genetic stability regarding flavor. The study deepens our understanding of the flavor of Chinese indigenous pigs, providing theoretical basis to understand the meat flavor regulation under different feeding conditions.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Hunan, Changsha 410219, China
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Hunan, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Hunan, Changsha 410219, China.
| |
Collapse
|
35
|
Wang Z, Deng Q, Zhou Y, Qi X, Lau L, He Y, He Z, Zeng M, Chen Q, Chen J, Ye H. Effects of cricket powder on structural and mechanical properties of soy protein isolate extrudates. Curr Res Food Sci 2024; 9:100911. [PMID: 39569006 PMCID: PMC11577128 DOI: 10.1016/j.crfs.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024] Open
Abstract
This study investigated the impact of cricket powder (CP) incorporation on the structural and mechanical properties of soy protein isolate (SPI) extrudates. The physicochemical properties of CP, rheological properties of SPI-CP blends and their potential structuring properties were evaluated. The results showed that CP had a high protein content (72.10 ± 0.61%) and a notable amount of dietary fiber. Rheological analysis revealed that the complex modulus (G∗) of SPI-CP blends decreased over time at 140 °C, with the rate of decrease accelerating with higher CP content. Structural and mechanical analysis indicated that the addition of CP enhanced anisotropic structure formation, with optimal anisotropy observed at 10% CP, while higher concentrations reduced mechanical strength and coherence due to the presence of insoluble components and the formation of large cracks. Flavor analysis showed that CP contributed pyrazines and ethers, imparting a desirable burnt and baked flavor to the extrudates. These findings suggested that CP can be effectively used to improve the textural properties and flavor of SPI-based extrudates at optimal concentrations. However, excessive CP incorporation can compromise structural integrity.
Collapse
Affiliation(s)
- Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qian Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Leehow Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Yuqiao He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
- Singapore Future Ready Food Safety Hub, 50 Nanyang Avenue, N1, B3C-41, 639798, Singapore
| |
Collapse
|
36
|
Fu Y. Yeast extract as a more sustainable food ingredient: Insights into flavor and bioactivity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:97-147. [PMID: 40155090 DOI: 10.1016/bs.afnr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Yeast extract (YE), a nutritious and sustainable food ingredient, primarily functions as a food flavor enhancer and bioactive ingredient in the food industry. Currently, there is a dearth of systematic reviews on the taste-active and bioactive activities of YE. This review provides a comprehensive review of preparation methods, taste-active and bioactive activities of YE as well as their applications in the food sector. Furthermore, the challenges and future perspectives of YE are discussed. YE can be obtained through the degradation and removal of yeast cell walls. Its extraction can be achieved through various methods, including physical, autolytic, enzymatic, and cell wall disruption techniques. YE comprises a range of components, including glucan, mannan, proteins, phospholipids, minerals, vitamins, and various functional factors. These components collectively contribute to its diverse bioactivities, such as antioxidant, ACE-inhibitory, antibacterial, immunomodulatory, diuretic and sedative effects. Furthermore, YE contains taste-active substances and aroma-active compounds, making it promising as a flavor enhancer. It is potent bioactivity also makes it applicable in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing, P.R. China.
| |
Collapse
|
37
|
Bolchini S, Larcher R, Morozova K, Scampicchio M, Nardin T. Screening of Antioxidant Maillard Reaction Products Using HPLC-HRMS and Study of Reaction Conditions for Their Production as Food Preservatives. Molecules 2024; 29:4820. [PMID: 39459189 PMCID: PMC11510528 DOI: 10.3390/molecules29204820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The Maillard reaction (MR) involves interactions between reducing sugars and amino acids or proteins during heating, producing Maillard reaction products (MRPs) that influence food flavour, aroma, and colour. Some MRPs exhibit antioxidant properties, prompting interest in their potential as natural food preservatives. This study aimed to develop a method for detecting and identifying antioxidant MRPs using high-pressure liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (HRMS). By improving chromatographic conditions, the separation of antioxidant MRPs was optimised using known antioxidant MRPs as reference signals. This work also examined the effects of pH, reaction time, and different sugar-amino acid combinations on the production and composition of antioxidant MRPs. Results indicated that neutral to basic pH facilitated faster reactions, with pH 7 selected as optimal. A library of 50 m/z signals for potential antioxidant MRPs was created, and the best combinations of amino acids and sugars for their production were identified. These findings pave the way for more precise analyses of antioxidant MRPs, with future research focusing on isolating and characterising specific MRPs to understand their structures and mechanisms, ultimately contributing to the development of functional foods with natural antioxidant properties.
Collapse
Affiliation(s)
- Sara Bolchini
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Roberto Larcher
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Tiziana Nardin
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| |
Collapse
|
38
|
Jafarzadeh S, Qazanfarzadeh Z, Majzoobi M, Sheiband S, Oladzadabbasabad N, Esmaeili Y, Barrow CJ, Timms W. Alternative proteins; A path to sustainable diets and environment. Curr Res Food Sci 2024; 9:100882. [PMID: 39958969 PMCID: PMC11827122 DOI: 10.1016/j.crfs.2024.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 02/18/2025] Open
Abstract
With a growing global population and the resulting pressure on natural resources, the supply of high-value protein has become increasingly limited. The rise of environmental and ethical concerns has led to the emergence of meat analogues as a credible alternative to traditional animal-derived meat. Growing demand for plant-based protein sources has gained attention as viable alternatives to conventional animal proteins. This article reviews commercially available plant proteins for meat replacement and evaluates recent research on producing meat analogues, highlighting their advantages and limitations. Beyond production, an examination of the physicochemical, textural, and structural attributes of the meat alternatives is conducted, highlighting the improvements made in achieving sensory and nutritional parallels with animal-derived meat. Furthermore, this article explores the current commercial applications of meat alternatives, highlighting the challenges faced in their widespread adoption and suggesting future research directions. The comparison of the environmental impacts of plant proteins and animal proteins is also presented. The ultimate goal is to develop meat substitutes that closely mimic the sensory, nutritional, and aesthetic qualities of real meat. Despite promising innovations in processing technologies, challenges remain that researchers are actively addressing to close the gap between plant-based meat analogues and animal-derived counterparts.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria, 3216, Australia
| | - Zeinab Qazanfarzadeh
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC, 3083, Australia
| | - Samira Sheiband
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Yasaman Esmaeili
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia
| | - Colin J. Barrow
- Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria, 3216, Australia
| | - Wendy Timms
- Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria, 3216, Australia
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia
| |
Collapse
|
39
|
Huang Y, Xu C, Huang X, Tan Y, Li S, Yin Z. Metabolome and Transcriptome Profiling Reveals Age-Associated Variations in Meat Quality and Molecular Mechanisms of Taihe Black-Bone Silky Fowls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21946-21956. [PMID: 39354852 DOI: 10.1021/acs.jafc.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-β signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.
Collapse
Affiliation(s)
- Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
40
|
Dou P, Wang K, Ding N, Zheng Y, Hong H, Liu H, Tan Y, Luo Y. Sensory improvement and antioxidant enhancement in silver carp hydrolysate using prebiotic oligosaccharides: insights from the Maillard reaction. Food Funct 2024; 15:9888-9902. [PMID: 39254213 DOI: 10.1039/d4fo01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Our previous studies have highlighted the potential of silver carp hydrolysate (SCH) in managing chronic diseases. Unfortunately, its fishy smell and bitter taste limited consumer acceptance. Prebiotic oligosaccharides are often used as dietary supplements, ignoring their role as carbonyl ligands in the Maillard reaction to enhance food's sensory and antioxidant properties. This study aimed to improve SCH's sensory attributes and investigate its physicochemical properties and antioxidant activities using prebiotic oligosaccharides via the Maillard reaction. The results showed that xylo-oligosaccharide (XOS) had the highest reactivity among the oligosaccharides tested, and it greatly enhanced the taste and flavor of SCH, as well as its antioxidant activities (0.45 to 16.5 times). Specifically, XOS effectively reduced the fishy smell and bitter taste, imparting a caramel-like flavor and overall acceptability to SCH. The improved flavor profile was attributed to the increased presence of sulfur-containing and nitrogen oxide volatile flavor compounds, such as benzothiazole, methional, and furans, which also contributed to antioxidant effects. Sensory evaluation results indicated that SCH obtained from papain exhibited a stronger bitter taste than that obtained from alcalase. Additionally, XOS imparted a reddish-brown color to SCH due to the higher browning intensity. This study is the first to demonstrate that XOS in the Maillard reaction can effectively improve the undesirable flavor and taste of SCH while enhancing its antioxidant activities, providing a theoretical basis for developing SCH as a market-acceptable functional food ingredient.
Collapse
Affiliation(s)
- Peipei Dou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kai Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ning Ding
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd, Xuancheng, Anhui 242100, China
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
41
|
Xing H, Yaylayan V. Mechanochemistry in Glycation Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20738-20751. [PMID: 39241158 DOI: 10.1021/acs.jafc.4c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Mechanochemistry by milling has recently attracted considerable interest for its ability to drive solvent-free chemical transformations exclusively through mechanical energy and at ambient temperatures. Despite its popularity and expanding applications in different fields of chemistry, its impact on Food Science remains limited. This review aims to demonstrate the specific benefits that mechanochemistry can provide in performing controlled glycation, and in "activating" sugar and amino acid mixtures, thereby allowing for continued generation of colors and aromas even after termination of milling. The generated mechanical energy can be tuned under specific conditions either to form only the corresponding Schiff bases and Amadori compounds or to generate their degradation products, as a function of the frequency of the oscillations in combination with the reactivity of the selected substrates. Similarly, its ability to initiate the Strecker degradation and generate pyrazines and Strecker aldehydes was also demonstrated when proteogenic amino acids were milled with glyoxal.
Collapse
Affiliation(s)
- Haoran Xing
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Varoujan Yaylayan
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Québec H9X 3 V9, Canada
| |
Collapse
|
42
|
Hu X, Zhang B, Li XA, Dai X, Kong B, Liu H, Chen Q. Myofibrillar protein hydrolysis under hydroxyl radical oxidative stress: Structural changes and their impacts on binding to selected aldehydes. Food Chem 2024; 452:139567. [PMID: 38718456 DOI: 10.1016/j.foodchem.2024.139567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
In this study, a hydroxyl radical oxidation system was established to simulate the oxidation process in fermented meat products. This system was employed to examine the structural changes in myofibrillar proteins (MPs) resulting from tryptic hydrolysis after a hydroxyl radical oxidative regime. The effect of these changes on the ability of MPs to bind selected aldehydes (3-methyl butanal, pentanal, hexanal, and heptanal) was also investigated. Moderate oxidation (H2O2 ≤ 1.0 mM) unfolded the structure of MPs, facilitating trypsin-mediated hydrolysis and increasing their binding capacity for the four selected aldehydes. However, excessive oxidation (H2O2 ≥ 2.5 mM) led to cross-linking and aggregation of MPs, inhibiting trypsin-mediated hydrolysis. The oxidised MPs had the best binding capacity for heptanal. The interaction of the oxidised trypsin-hydrolysed MPs with heptanal was driven by hydrophobic interactions. The binding of heptanal affected the structure of the oxidised trypsin-hydrolysed MPs and reduced their α-helix content.
Collapse
Affiliation(s)
- Xia Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Biying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiang-Ao Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinxin Dai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
43
|
Feng L, Yang Y, Xie YT, Yan WY, Ma YK, Hu S, Yu AN. The volatile organic compounds generated from the Maillard reaction between l-ascorbic acid and l-cysteine in hot compressed water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5764-5775. [PMID: 38385827 DOI: 10.1002/jsfa.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Hot compressed water (HCW), also known as subcritical water (SCW), refers to high-temperature compressed water in a special physical and chemical state. It is an emerging technology for natural product extraction. The volatile organic compounds (VOCs) generated from the Maillard reaction between l-ascorbic acid (ASA) and l-cysteine (Cys) have attracted significant interest in the flavor and fragrance industry. This study aimed to explore the formation mechanism of VOCs from ASA and Cys and examine the effects of reaction parameters such as temperature, time, and pH in HCW. RESULTS The identified VOCs were predominantly thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The findings indicated that thiophene derivatives were formed under various pH conditions, with polysulfide formation favored under acidic conditions and pyrazine derivative formation preferred under weak alkaline conditions, specifically at pH 8.0. CONCLUSION The Maillard reaction between ASA and Cys mainly produced thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The generation mechanism was significantly dependent on the surrounding pH conditions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Feng
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yan Yang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Ya-Ting Xie
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Wen-Yi Yan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Ying-Ke Ma
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Sheng Hu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| | - Ai-Nong Yu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
44
|
Zhang C, Wang X, Liu Y, Wang J, Xie J. Characteristics of meat flavoring prepared using hydrolyzed plant protein mix by three different heating processes. Food Chem 2024; 446:138853. [PMID: 38422645 DOI: 10.1016/j.foodchem.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.
Collapse
Affiliation(s)
- Chenping Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yang Liu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
45
|
Lee M, Choi W, Lee JM, Lee ST, Koh WG, Hong J. Flavor-switchable scaffold for cultured meat with enhanced aromatic properties. Nat Commun 2024; 15:5450. [PMID: 38982039 PMCID: PMC11233498 DOI: 10.1038/s41467-024-49521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Cultured meat is emerging as a new type of food that can provide animal protein in a sustainable way. Many previous studies employed various types of scaffolds to develop cultured meat with similar properties to slaughtered meat. However, important properties such as flavor were not discussed, even though they determine the quality of food. Flavor characteristics vary dramatically depending on the amount and types of amino acids and sugars that produce volatile compounds through the Maillard reaction upon cooking. In this study, a flavor-switchable scaffold is developed to release meaty flavor compounds only upon cooking temperature mimicking the Maillard reaction of slaughtered meat. By introducing a switchable flavor compound (SFC) into a gelatin-based hydrogel, we fabricate a functional scaffold that can enhance the aromatic properties of cultured meat. The temperature-responsive SFC stably remains in the scaffold during the cell culture period and can be released at the cooking temperature. Surprisingly, cultured meat fabricated with this flavor-switchable scaffold exhibits a flavor pattern similar to that of beef. This research suggests a strategy to develop cultured meat with enhanced sensorial characteristics by developing a functional scaffold which can mimic the natural cooking flavors of conventional meat.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Zhang Z, Chen J, Zheng L, Zhao J, Guo N, Fang X, Lu X, Zhang F, Zhu G. The potential meat flavoring derived from Maillard reaction products of rice protein isolate hydrolysate-xylose via the regulation of temperature and cysteine. Food Chem X 2024; 22:101491. [PMID: 38840727 PMCID: PMC11152652 DOI: 10.1016/j.fochx.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Maillard reaction products (MRPs) derived from rice protein isolate hydrolysate and D-xylose, with or without L-cysteine, were developed as a potential meat flavoring. The combined impact of temperature (80-140 °C) and cysteine on fundamental physicochemical characteristics, antioxidant activity, and flavor of MRPs were investigated through assessments of pH, color, UV-visible spectra, fluorescence spectra, free amino acids, volatile compounds, E-nose, E-tongue, and sensory evaluation. Results suggested that increasing temperature would reduce pH, deepen color, promote volatile compounds formation, and reduce the overall umami and bitterness. Cysteine addition contributed to the color inhibition, enhancement of DPPH radical-scavenging activity and reducing power, improvement in mouthfulness and continuity, reduction of bitterness, and the formation of sulfur compounds responsible for meaty flavor. Overall, MRPs prepared at 120 °C with cysteine addition could be utilized as a potential meat flavoring with the highest antioxidant activity and relatively high mouthfulness, continuity, umami, meaty aroma, and relatively low bitterness.
Collapse
Affiliation(s)
- Zuoyong Zhang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Jiayi Chen
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Li Zheng
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, Fengyang, 233100, Anhui Province, PR China
| | - Na Guo
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Xue Fang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Xuan Lu
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Fangyan Zhang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Guilan Zhu
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| |
Collapse
|
48
|
Yuan M, Cao Y, Zheng H, Chen K, Lu Y, Wang J, Zhu L, Chen M, Cai Z, Shen Y. Structural and functional properties of Maillard-reacted casein phosphopeptides with different carbohydrates. Food Sci Biotechnol 2024; 33:1603-1614. [PMID: 38623432 PMCID: PMC11016028 DOI: 10.1007/s10068-023-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
This study used glucose, fructose, maltose and dextran to explore the effects of different carbohydrates on the Maillard reaction of casein phosphopeptides (CPP). The color parameter results showed that heating time from 1 to 5 h led to brown color, which was consistent with the observed increased in browning intensity. Fourier transform infrared spectroscopy results verified that four carbohydrates reacted with CPP to produce Maillard conjugates. Fluorescence spectroscopy showed that the Maillard reaction changed the tertiary structure of CPP by decreasing the intrinsic fluorescence intensity and surface hydrophobicity compared with the CPP-carbohydrate mixture. At the same time, the Maillard reaction effectively improved the emulsifying properties, reducing power and DPPH radical scavenging activity of CPP. Furthermore, this study also found that glucose and fructose improved CPP more than maltose and dextran. Therefore, monosaccharides have good potential in modifying CPP via the Maillard reaction. Graphical Abstract
Collapse
Affiliation(s)
- Meng Yuan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yu Cao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Haoyang Zheng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Kunlin Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yuping Lu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jing Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Liqin Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Ming Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Zhipeng Cai
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yonggen Shen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
49
|
Su T, Le B, Zhang W, Bak KH, Soladoye PO, Zhao Z, Zhao Y, Fu Y, Wu W. Technological challenges and future perspectives of plant-based meat analogues: From the viewpoint of proteins. Food Res Int 2024; 186:114351. [PMID: 38729699 DOI: 10.1016/j.foodres.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bei Le
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Center for Sustainable Protein, DeePro Technology (Beijing) Co., Ltd., Beijing 101200, China
| | - Kathrine H Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Philip O Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
50
|
Hou K, Fu X, Chen H, Niu H. Characterization and emulsifying ability evaluation of whey protein-pectin conjugates formed by glycosylation. Carbohydr Polym 2024; 329:121790. [PMID: 38286557 DOI: 10.1016/j.carbpol.2024.121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Glycosylation is a method that enhances the functional properties of proteins by covalently attaching sugars to them. This study aimed at preparing three conjugates (WP-HG, WP-SBP, and WP-RGI) by dry heating method to research the influence of different pectin structures on the functional properties of WP and characterize properties and structures of these conjugates. The research results manifested that the degree of glycosylation (DG) of HG, SBP and RGI were 13.13 % ± 0.07 %, 23.27 % ± 0.3 % and 36.39 % ± 0.3 % respectively, suggesting that the increase of the number of branch chains promoted the glycosylation reaction. The formation of the conjugate was identified by the FT-IR spectroscopy technique. And SEM showed that WP could covalently bind to pectin, resulting in a smoother and denser surface of the conjugates. The circular dichroism analysis exhibited that the glycosylation reaction altered the secondary structure of WP and decreased the α-Helix content. This structural change in the protein spatial conformation led to a decrease in the hydrophobicity of protein surface. But the addition of pectin further regulated the hydrophilic-hydrophobic ratio on the surface of the protein, thus improving the emulsification properties of WP. In addition, the glycosylation could improve the stability of the emulsion, giving it a smaller droplet size, higher Zeta-potential and more stable properties. In a word, this study pointed out the direction for the application of different pectin structures in the development of functional properties of glycosylation products in food ingredients.
Collapse
Affiliation(s)
- Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China.
| |
Collapse
|