1
|
Ponticelli M, Esposito G, Labanca F, Scognamiglio P, Sinisgalli C, Milella L, Faraone I, Costantino V. Aglianico grape pomace as a source of antioxidant and anti-proliferative biomolecules: Eco-friendly extraction and HRMS/MS-based molecular networking. Food Chem 2025; 469:142573. [PMID: 39729654 DOI: 10.1016/j.foodchem.2024.142573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Grape pomace (GP), a by-product of the wine supply chain process, contains bioactive molecules with known healthy properties. This study examines the impact of different extraction techniques on three GPs of Aglianico cultivar [Cantine del Notaio, Barile, and Torrecuso]. Five eco-friendly extractive techniques [maceration (MAC), digestion (DIG), accelerated solvent extraction (ASE), microwaves (MW), and ultrasound (US)] were used with 50 % ethanol/water as solvent. Spectrophotometric assays showed that DIG and ASE extracts had the highest antioxidant activity and specialized metabolite content. Using the HRMS/MS-based molecular networking, DIG and ASE extract metabolome profiles were analyzed, identifying unknown compounds and known ones with validated antioxidant and chemopreventive effects. In vitro cell-based assay on HepG2 cells demonstrated that Barile GP DIG extract has the highest anti-proliferative activity. Hence, this work provides insight into the potential application of Barile GP DIG extract as a rich source of specialized metabolites with antioxidant and anti-proliferative activity.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Health Science, Universitá degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Department of Biochemical Pharmacology & Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria.
| | - Germana Esposito
- The Blue Chemistry Lab Group, Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - Fabiana Labanca
- Department of Health Science, Universitá degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Scognamiglio
- The Blue Chemistry Lab Group, Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - Chiara Sinisgalli
- Department of Health Science, Universitá degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Luigi Milella
- Department of Health Science, Universitá degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Immacolata Faraone
- Department of Health Science, Universitá degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy.
| | - Valeria Costantino
- The Blue Chemistry Lab Group, Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
2
|
Le Rose A, Panza O, Caro D, Conte A, Del Nobile MA. Cheesecake Customized Using Juice and By-Products from Prickly Pears: A Case Study of Recycling and Environmental Impact Evaluation. Foods 2025; 14:1159. [PMID: 40238312 PMCID: PMC11988937 DOI: 10.3390/foods14071159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Due to the increasing concern about the negative impact of the modern food system and the need to design foods to improve their healthiness and sustainability, in the current study, a fortified cheesecake was developed by using juice, peels, and pomace from prickly pears, which are fruit by-products rich in active compounds. After proper dehydration and being ground to produce a fine powder, some traditional ingredients were substituted with fruit juice and by-products. The water content loss during dehydration and the energy consumed per g of dehydrated by-product were assessed using a proper mathematical approach. A sensory evaluation was carried out using a panel test, thus verifying that the new dessert made with prickly pears was comparable to the traditional one; both recorded high scores of acceptability (sensory score ranged between 8 and 9). The centesimal composition of the two cheesecakes also demonstrated that the ingredient substitution did not affect the energetic value of the final product (290 vs. 248 kcal/100 g); on the contrary, it promoted an increase in carbohydrates (27.38 vs. 26.26 g/100 g), lipids (16.98 vs. 12.94 g/100 g), and total fibers (5.7 vs. 4.2 g/100 g). To demonstrate that the recycling of by-products from prickly pears could represent an advantage from an environmental point of view, a full Life Cycle Assessment (LCA) was carried out. In relation to this, three environmental impact categories, such as Global Warming Potential, Acidification and Eutrophication, which are associated with three different biowaste treatment options-such as composting, landfilling, and recycling-were assessed. The results from the LCA highlighted that recycling always emerged as the most sustainable biowaste management option. For all environmental impact categories analyzed, recycling resulted in an overall environmental saving (-7.63 kgCO2eq/kg biowaste; -0.116 kgSO2eq/kg biowaste; and -0.055 kgPO43-eq/kg biowaste). In addition, the comparison between the traditional cheesecake and the fortified one, in terms of impacts per kg of cheesecake, demonstrated that replacing food items with recycled biowaste may result in a general reduction in emissions and resources. Therefore, this case study represents a valid example of zero-waste production, offering a concrete suggestion as to how processed foods can be redesigned to make them healthier from a more sustainable perspective.
Collapse
Affiliation(s)
- Alessia Le Rose
- Ecodynamics Group, Department of Physical Sciences, Earth, Environment, University of Siena, Piazzetta Enzo Tiezzi, 1, 53100 Siena, Italy; (A.L.R.); (D.C.)
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Olimpia Panza
- Department of Humanistic Studies, Letters, Cultural Heritage, Educational Sciences, University of Foggia, Via Arpi, 71121 Foggia, Italy;
| | - Dario Caro
- Ecodynamics Group, Department of Physical Sciences, Earth, Environment, University of Siena, Piazzetta Enzo Tiezzi, 1, 53100 Siena, Italy; (A.L.R.); (D.C.)
| | - Amalia Conte
- Department of Humanistic Studies, Letters, Cultural Heritage, Educational Sciences, University of Foggia, Via Arpi, 71121 Foggia, Italy;
| | | |
Collapse
|
3
|
Otero DM, Perret B, Teixeira L, Gautério GV, Treichel H, Kalil SJ. Cryptococcus laurentii: a wild yeast for xylanase production from agricultural by-products. Int Microbiol 2025; 28:437-445. [PMID: 38970730 DOI: 10.1007/s10123-024-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The development of technologies that allow the production of enzymes at a competitive cost is of great importance for several biotechnological applications, and the use of agro-industrial by-products is an excellent alternative to minimize costs and reduce environmental impacts. This study aimed to produce endo-xylanases using agro-industrial substrates rich in hemicellulose as sources of xylan in culture media. For this purpose, the yeast Cryptococcus laurentti and five lignocellulosic materials (defatted rice bran, rice husk, corn cob, oat husks, and soybean tegument), with and without pretreatment, were used as a source of xylan for enzyme production. To insert the by-products in the culture medium, they were dried and treated (if applicable) with 4% (w.v-1) NaOH and then added in a concentration of 2% (w.v-1). The cultures were agitated for 96 h, and the aliquots were removed to determine the enzymatic activities. Among the by-products studied, the maximum activity (8.7 U. mL-1 at pH 7.3) was obtained where rice bran was used. In contrast, corn cob was the by-product that resulted in lower enzyme production (1.6 U.mL-1). Thus, the defatted rice bran deserves special attention in front of the other by-products used since it provides the necessary substrate for producing endo-xylanases by yeast.
Collapse
Affiliation(s)
- Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, 32 Araújo Pinho, Salvador, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Avenue Barão de Jeremoabo, Salvador, Brazil
| | - Bruno Perret
- School of Chemistry and Food, Federal University of Rio Grande, Avenue Italia Km 8, Rio Grande, Brazil
| | - Liliane Teixeira
- School of Chemistry and Food, Federal University of Rio Grande, Avenue Italia Km 8, Rio Grande, Brazil
| | - Gabrielle Vitória Gautério
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Avenue Athos da Silveira Ramos, Rio de Janeiro, 149, 2194, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, Erechim, Brazil.
| | - Susana Juliano Kalil
- School of Chemistry and Food, Federal University of Rio Grande, Avenue Italia Km 8, Rio Grande, Brazil
| |
Collapse
|
4
|
Hrelia S, Barbalace MC, Angeloni C. Agri-Food Wastes as Natural Source of Bioactive Antioxidants-Third Edition. Antioxidants (Basel) 2025; 14:198. [PMID: 40002384 PMCID: PMC11851701 DOI: 10.3390/antiox14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The current food systems are now unsustainable due to population growth, globalization, and climate change, contributing to environmental degradation and social inequalities [...].
Collapse
Affiliation(s)
| | | | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (S.H.); (M.C.B.)
| |
Collapse
|
5
|
Vastolo A, Mora B, Kiatti DD, Nocerino M, Haroutounian S, Baka RD, Ligda P, Cutrignelli MI, Niderkorn V, Calabrò S. Assessment of the effect of agro-industrial by-products rich in polyphenols on in vitro fermentation and methane reduction in sheep. Front Vet Sci 2025; 12:1530419. [PMID: 39950086 PMCID: PMC11821959 DOI: 10.3389/fvets.2025.1530419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction This study aimed to evaluate, using the in vitro gas production technique, the effect of including eight agro-industrial by-products (carob, grape, two types of olive pomace, citrus pulp, tomato, and hazelnut skin) on fermentation end-products, ruminal degradability, and methane production in sheep diets. Methods The by-products were included at 10% dry matter in the control (CTR) diet, commonly adopted for adult sheep (80% natural grassland and 20% concentrate), and incubated at 39°C under anaerobic conditions. Result and discussion After 24 h of the incubation, the organic matter degradability (OMD24h) and methane production were assessed. After 120 h of the incubation, the organic matter degradability (OMD120h), volume of gas produced (OMCV), fermentation kinetics, pH, volatile fatty acids (VFAs), and ammonia were evaluated. Dunnett's test was used to compare the differences between the control and experimental diets, and multivariate analysis was performed to highlight the differences among the diets based on their in vitro characteristics. The results indicated that the inclusion of the by-products decreased the degradability and increased gas production after 120 h of the incubation. The by-products from the hazelnuts, citrus, grapes, and tomatoes significantly (p < 0.001) reduced the methane production, whereas the pomegranate, grape, 3-phase olive cake, tomato, and hazelnut by-products significantly (p < 0.001) increased the acetate production. The multivariate analysis showed that the butyrate concentration was a determining factor in the differences between the diets. The concentration of polyphenols in the selected agro-industrial by-products could modify fermentation parameters and metabolic pathways, leading to reduced methane production.
Collapse
Affiliation(s)
- Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Blandine Mora
- NRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Dieu donné Kiatti
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Martina Nocerino
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Serkos Haroutounian
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Rania D. Baka
- Veterinary Research Institute, Hellenic Agricultural Organization (ELGO) – DIMITRA, Thessaloniki, Greece
| | - Panagiota Ligda
- Veterinary Research Institute, Hellenic Agricultural Organization (ELGO) – DIMITRA, Thessaloniki, Greece
| | | | - Vincent Niderkorn
- NRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Serena Calabrò
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
6
|
Prates JAM. Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients. Foods 2025; 14:146. [PMID: 39856813 PMCID: PMC11764879 DOI: 10.3390/foods14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
This study explores the potential of novel feed ingredients for monogastric animals, such as pigs and poultry, to enhance meat quality and nutritional value while reducing the environmental footprint of production. Innovative feed options like black soldier fly larvae, Schizochytrium microalga, Laminaria seaweed, fermented soybean hulls, fortified flaxseed and grape pomace have significantly improved meat quality and nutritional traits. Results indicate that these ingredients enrich meat with omega-3 fatty acids, antioxidants, vitamins and minerals, enhancing nutritional value while improving sensory traits such as flavour, tenderness and colour. For instance, including Laminaria seaweed increased iodine content by up to 45%, while Schizochytrium microalga improved omega-3 deposition by over 70%. The inclusion of grape pomace enhanced oxidative stability and extended meat shelf life. This review also discusses the influence of ingredient composition, inclusion levels and processing techniques, alongside challenges such as regulatory constraints, ingredient cost and palatability. The alignment of these alternative feeds with circular economy principles and sustainability goals further emphasizes their role in reducing environmental impact. By summarising recent advancements, this paper underscores the transformative potential of novel feed ingredients in advancing monogastric meat production towards greater nutritional quality, sustainability and consumer acceptance.
Collapse
Affiliation(s)
- José A. M. Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Silla A, Punzo A, Bonvicini F, Perillo M, Malaguti M, Lorenzini A, Foltran I, Mercatante D, Mandrioli M, Rodriguez-Estrada MT, Hrelia S, Caliceti C. Anti-Inflammatory, Antioxidant and Antibacterial Properties of Tomato Skin and Pomegranate Peel Extracts: A Sustainable Approach for Oral Health Care. Antioxidants (Basel) 2025; 14:54. [PMID: 39857388 PMCID: PMC11762152 DOI: 10.3390/antiox14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Agricultural food waste and by-products could provide high-value compounds that positively affect human and environmental health, thus representing promising ingredients for cosmeceutical products. This study explores the biological activities of tomato skin (HP) and pomegranate peel (PPE) extracts on oral mucosa to evaluate their possible use in mouthwashes. The biological activities of the extracts and the mouthwash (MW) containing them were evaluated in Human Primary Gingival Epithelial cells (HGECs). The antioxidant and anti-inflammatory activities were analyzed in HGECs injured with lipopolysaccharides. After 24 h of treatment with PPE, HP, and MW, significant antioxidant activity and an increased Superoxide Dismutase 1 expression (p < 0.01) were observed. Additionally, the extracts significantly reduced the expression of tumor necrosis factor α (p < 0.05) and Monocyte Chemoattractant Protein 1 (p < 0.001), suggesting an anti-inflammatory role. Lastly, the antibacterial activity was assessed against Streptococcus mutans and Streptococcus sanguinis by the broth microdilution method and agar cup diffusion test for the extracts and the mouthwash, respectively, demonstrating strong effectiveness against both oral streptococcus species. Results demonstrate the potential of HP and PPE in reducing oxidative stress, inflammation, and bacterial proliferation within oral mucosa, highlighting food waste up-cycling as a resource for human health.
Collapse
Affiliation(s)
- Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (A.S.); (S.H.)
| | - Angela Punzo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (A.L.)
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (A.L.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (A.S.); (S.H.)
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (A.L.)
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy;
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (D.M.); (M.M.); (M.T.R.-E.)
| | - Mara Mandrioli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (D.M.); (M.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (D.M.); (M.M.); (M.T.R.-E.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy; (A.S.); (S.H.)
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.P.); (M.P.); (A.L.)
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy-CIRI FRAME, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research-CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
8
|
de Matos AC, Batista D, Pinheiro LGSD, Chiocchetti GDME, Berni PRDA, Macedo GA, Macedo JA. Bio-Guided Extraction of a Phenolic-Rich Extract from Industrial Peanut Skin with Antioxidant and Hypotensive Potential. Foods 2024; 13:3410. [PMID: 39517194 PMCID: PMC11545112 DOI: 10.3390/foods13213410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Peanut composition includes phenolic compounds, especially in the skins, which are often not consumed. High blood pressure affects more than one billion people worldwide and is considered a high-risk factor for cardiovascular diseases. Several studies have correlated antihypertensive activity with the total phenolic content present in the plants. This study evaluated the hydroethanolic extraction of phenolic compounds from the industrial residue of peanut skin and evaluated the antioxidant and antihypertensive capacity of these extracts using in vitro models. A rotational central composite design (DCCR) was proposed to study the influence of the variables: (1) the ethanol concentration on the hydroalcoholic extractor solution, and (2) the proportion of solid sample (waste) per liquid in the extraction (mass/volume) in a simple solid-a liquid extraction process. The optimal extraction conditions within this model were 50% ethanol in water, and the proportion of sample to extraction solution (m/v) equaled to 0.2. The extract obtained had significant antioxidant capacity, both in chemical (ORAC) and in cellular models, with potential for free radical scavenging. Significant levels of ACE inhibition were also found, indicating antihypertensive activity.
Collapse
Affiliation(s)
- Ana Carla de Matos
- Department of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (A.C.d.M.); (D.B.); (L.G.S.D.P.); (G.A.M.); (J.A.M.)
| | - Daniel Batista
- Department of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (A.C.d.M.); (D.B.); (L.G.S.D.P.); (G.A.M.); (J.A.M.)
| | - Luiza Gabriella Soares Dantas Pinheiro
- Department of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (A.C.d.M.); (D.B.); (L.G.S.D.P.); (G.A.M.); (J.A.M.)
| | - Gabriela de Matuoka e Chiocchetti
- Department of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (A.C.d.M.); (D.B.); (L.G.S.D.P.); (G.A.M.); (J.A.M.)
| | - Paulo Roberto de Araújo Berni
- Department of Food Science, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (A.C.d.M.); (D.B.); (L.G.S.D.P.); (G.A.M.); (J.A.M.)
| | - Juliana Alves Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (A.C.d.M.); (D.B.); (L.G.S.D.P.); (G.A.M.); (J.A.M.)
| |
Collapse
|
9
|
Abdelghani IG, Sheiha AM, Abdelnour SA, El-Maati MFA, El-Darawany AA, Al-Marakby KM. Dietary supplement guava leaf extract regulates growth, feed utilization, immune function, nutrient digestibility and redox regulation in growing rabbits. Trop Anim Health Prod 2024; 56:325. [PMID: 39361143 PMCID: PMC11450086 DOI: 10.1007/s11250-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
The use of agricultural waste in animal production has gained global interest. An eight-week trial was conducted to investigate the impacts of adding ethanolic guava leaf extract (GLE) as a feed supplement on the growth, feed utilization, immune response, nutrient digestibility, redox regulation, and blood health of growing rabbits. Ninety weaned growing rabbits were randomly assigned to three groups. The first group was fed a basal diet (GLE0), while the other two groups were fed the control diet fortified with 15 mg (GLE15) or 20 mg (GLE20) of GLE per kg of diet for 8 weeks. The HPLC analysis of GLE exhibited the presence of gallic acid, ferulic acid, catechin, and caffeic acid in significant amounts. The results indicated that final body weight, daily body weight, daily feed intake and nutrient digestibility were significantly higher in the GLE-treated groups compared to the un-treated group (p < 0.05). Dietary supplementation of GLE significantly reduced lipid contents including triglycerides, total cholesterol, LDL, HDL, and VLDL (P < 0.05), with the most significant results observed when adding 20 mg/kg to the diet. AST and ALT levels as well as cortisol hormone in rabbits fed GLE were lower than those in the GLE0 group (P < 0.05). Immunoglobulins (IgG and IgA), antioxidant biomarkers (SOD and TAC) and T3 hormone were significantly improved by GLE supplementation (P < 0.001). Rabbits fed with GLE had lower levels of ROS and MDA compared to those in the GLE0 group (P < 0.001). Moreover, the hepatic and intestinal architectures were maintained in all rabbits fed diets with GLE. The results suggest that GLE supplementation (20 mg/kg diet) in fattening rabbit diets could efficiently improve growth, health status, blood physiology, antioxidant capacity and tissue histology.
Collapse
Affiliation(s)
- Islam G Abdelghani
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa M Sheiha
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed F Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Abdelhalim A El-Darawany
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled M Al-Marakby
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
10
|
Fernandes DC, Dos Santos GF, Borges MO, Dias T, Naves MMV. Blend of Baru (Dipteryx alata Vog.) By-Products as Nutritive and Healthy Food Ingredients: Chemical Composition, Functional Properties and Application in Plant-Based Burger. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:578-585. [PMID: 38795267 DOI: 10.1007/s11130-024-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/27/2024]
Abstract
The chemical composition, antioxidant capacity and functional properties of mixtures of baru by-products, named baru food ingredients (BFI), were investigated and applied in a plant-based burger formulation. BFI were prepared from wasted baru by-products - partially defatted baru nut cake and baru pulp plus peel. A plant-based burger was developed and its chemical composition, antioxidant capacity, cooking and texture parameters were determined. BFI1 (50% partially defatted baru nut cake + 50% baru pulp plus peel) had the highest content of carbohydrate (31.9%), and dietary fibre (28.3%). BFI2 (75% partially defatted baru nut cake + 25% baru pulp plus peel) and BFI3 (90% partially defatted baru nut cake + 10% baru pulp plus peel) showed high concentration of protein and dietary fibre, and BFI3 had the highest protein content (29.5%). All BFI showed high concentration of total phenolics (402-443 mg GAE/100 g). Replacing textured pea protein of control burger (PPB) with 35% of BFI3 in the formulation of baru protein burger (BPB) resulted in a low-fat product (2.9%), with protein content (19.2%) comparable to the PPB (15.9%) and the commercial burger (mixed plant proteins - 16.3%). The BPB also showed a higher concentration of dietary fibre (4.9%) and phenolic compounds (128 mg GAE/100 g) than the control burger. BPB's cooking yield was the highest among the tested burgers. BPB had a softer texture when compared to other burgers. Baru food ingredients can be used as nutritive ingredients of health-promoting foods, especially in plant-based products, such as burger and meat analogues, or in hybrid meat products. BPB showed a healthy and nutritious profile.
Collapse
Affiliation(s)
- Daniela Canuto Fernandes
- School of Social and Health Sciences, Pontifical Catholic University of Goiás (PUC-GOIÁS), 74605-010, Goiânia, Brazil
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Geovana Ferreira Dos Santos
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Mariana Oliveira Borges
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Tiago Dias
- Laboratory of Food Analysis, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil
| | - Maria Margareth Veloso Naves
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080, Goiânia, Brazil.
| |
Collapse
|
11
|
Darko HSO, Ismaiel L, Fanesi B, Pacetti D, Lucci P. Current Trends in Food Processing By-Products as Sources of High Value-Added Compounds in Food Fortification. Foods 2024; 13:2658. [PMID: 39272424 PMCID: PMC11394074 DOI: 10.3390/foods13172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Along the food production chain of animal, fish, and vegetable products, a huge amount of by-products are generated every year. Major nutritional, financial, and environmental advantages can be achieved by transforming them into functional ingredients for food formulation and fortification. In this review, we investigated various conventional and emerging treatments recently employed to obtain functional ingredients rich in proteins, fibers, and bioactive compounds from vegetables, fish, meat, and dairy by-products. The optimal enrichment level in food as well as the nutritional, techno-functional, and sensory properties of the final food were also discussed. Novel technologies such as ultrasounds, microwaves, and high pressure have been successfully adopted to enhance the extraction of target compounds. The functional ingredients, added both in liquid or powder form, were able to improve the nutritional quality and antioxidant potential of food, although high levels of fortification may cause undesired changes in texture and flavor. This review provides important considerations for further industrial scale-up.
Collapse
Affiliation(s)
- Helen Stephanie Ofei Darko
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lama Ismaiel
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
12
|
Gao Y, Wang C, Wu T, Ma Z, Chen W, Chang H, Jing Y, Tao H, Yu W, Jiang H, Farag MA, Zhang Z, Wu J, Song L. Multiplex approach of metabolite and transcript profiling identify a biosynthetic mechanism for kayaflavone biosynthesis in Torreya grandis. INDUSTRIAL CROPS AND PRODUCTS 2024; 214:118482. [DOI: 10.1016/j.indcrop.2024.118482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
13
|
Girón-Hernández J, Rodríguez YB, Corbezzolo N, Blanco DO, Gutiérrez CC, Cheung W, Gentile P. Exploiting residual cocoa biomass to extract advanced materials as building blocks for manufacturing nanoparticles aimed at alleviating formation-induced oxidative stress on human dermal fibroblasts. NANOSCALE ADVANCES 2024; 6:3809-3824. [PMID: 39050955 PMCID: PMC11265571 DOI: 10.1039/d4na00248b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
The global adoption of by-product valorisation processes aligns with the circular economy framework, ensuring sustainability in the agricultural sector. In cocoa production, residual biomass can offer the opportunity to extract advanced materials, contributing to nanotherapeutic solutions for biomedical applications. This study explores extraction processes for valorising cocoa pod husks (CPHs) and optimising valuable cocoa-derived biocompounds for enhanced health benefits. Various extraction processes are compared, revealing the significant influence of CPH powder amount and extraction time. Furthermore, metabolic analysis identifies 124 compounds in the metabolite mix, including tartaric acid, gluconic acid and bioactive agents with antioxidant properties, resulting in a high total phenolic content of 3.88 ± 0.06 mg g-1. Moreover, the extracted pectin, obtained through alkaline and enzymatic routes, shows comparable yields but exhibits superior antioxidant capacity compared to commercial pectin. The study progresses to using these extracted biocompounds to develop Layer-by-Layer multifunctionalised nanoparticles (LbL-MNPs). Physico-chemical characterisation via ζ-potential, FTIR-ATR, and XPS confirms the successful multilayer coating on mesoporous silica nanoparticles (MNPs). TEM analysis demonstrates a uniform and spherical nanoparticle morphology, with a size increase after coating. In vitro biological characterisation with neo-dermal human fibroblast cells reveals enhanced metabolic activity and biocompatibility of LbL-MNPs compared to bare MNPs. Also, the engineered nanoparticles demonstrate a protective effect against H2O2-induced intracellular oxidative stress on human dermal fibroblast cell lines, showcasing their potential as antioxidant carriers for biomedical applications.
Collapse
Affiliation(s)
- Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University NE1 8ST Newcastle Upon Tyne UK
| | - Yeison Barrios Rodríguez
- i-Food, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València 46021 Valencia Spain
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana 410010 Neiva Colombia
| | - Noemi Corbezzolo
- School of Engineering, Newcastle University NE1 7RU Newcastle Upon Tyne UK
| | - Dayana Orozco Blanco
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana 410010 Neiva Colombia
| | - Carlos Carranza Gutiérrez
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta a Distancia 111511 Bogotá Colombia
| | - William Cheung
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University NE1 8ST Newcastle Upon Tyne UK
| | | |
Collapse
|
14
|
Fernández-Fernández AM, Dellacassa E, Curbelo R, Nardin T, Larcher R, Medrano-Fernandez A, del Castillo MD. Health-Promoting Potential of Mandarin Pomace Extracts Enriched with Phenolic Compounds. Nutrients 2024; 16:2370. [PMID: 39064813 PMCID: PMC11280356 DOI: 10.3390/nu16142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this work was to assess the effect of in vitro human digestion on the chemical composition (carbohydrates and phenolic compounds) and bioactivity of hydro-alcoholic-acid pomace extracts from two mandarin varieties (Clemenule and Ortanique) by measuring their antioxidant, antidiabetic, anti-glycative, hypolipidemic, and anti-inflammatory properties. The phenolic compound profile showed that nobiletin was the main flavonoid found in the extracts and digests of Clemenule pomace and extract, while isosinensetin/sinensetin/tangeretin were the ones in the Ortanique samples. The digests of Clemenule and Ortanique extracts showed Folin reaction values of 9.74 and 9.20 mg gallic acid equivalents (GAE)/g of sample, ABTS values of 83.2 and 91.7 µmol Trolox equivalents (TE)/g of sample, and ORAC-FL values of 142.8 and 891.6 µmol TE/g of sample, respectively. Extracts (50-500 µg/mL) inhibited intracellular reactive oxygen species (ROS) formation in CCD-18Co cells under physiological and oxidative-induced conditions. Clemenule and Ortanique extract digests showed IC50 values of 13.50 and 11.07 mg/mL for α-glucosidase, 28.79 and 69.64 mg/mL for α-amylase, and 16.50 and 12.77 mg/mL for AGEs, and 2.259 ± 0.267 and 0.713 ± 0.065 mg/mL for pancreatic lipase inhibition, respectively. Ortanique extract (250-1000 µg/mL) inhibited the production of nitric oxide in RAW264.7 macrophages under inflammation-induced conditions, and intracellular ROS formation. In conclusion, altogether, the results supported the potential of mandarin extracts to be used as health promoters by reducing the risk of non-communicable chronic diseases.
Collapse
Affiliation(s)
- Adriana Maite Fernández-Fernández
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (A.M.-F.)
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay
| | - Eduardo Dellacassa
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (E.D.); (R.C.)
| | - Romina Curbelo
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (E.D.); (R.C.)
| | - Tiziana Nardin
- Dipartimento Alimenti e Trasformazione, Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all’Adige, Via E. Mach, 1 38010 Trento, Italy; (T.N.); (R.L.)
| | - Roberto Larcher
- Dipartimento Alimenti e Trasformazione, Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all’Adige, Via E. Mach, 1 38010 Trento, Italy; (T.N.); (R.L.)
| | - Alejandra Medrano-Fernandez
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (A.M.-F.)
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
15
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
16
|
Scarano P, Prigioniero A, Tartaglia M, Zuzolo D, Maisto M, Ranauda MA, Schicchi R, Geraci A, Sciarrillo R, Guarino C. Rhus coriaria L. in tradition and innovation like natural dye. Sci Rep 2024; 14:12068. [PMID: 38802505 PMCID: PMC11130214 DOI: 10.1038/s41598-024-62528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Nowadays, secondary raw materials (SRM) obtained from plant matrices are of great interest for circular economy, suitable for sustainable measures to reduce environmental impact. This work focused on the extraction, characterization and quantification of compounds obtained from leaves and fruits of the Sicilian sumac, Rhus coriaria L. and their application as natural dyes on textile fibres. Extractions were performed with Extractor Naviglio®, maceration and ultrasound assisted methods and food-grade solvents (aqueous and hydroalcoholic) to evaluate the yields for dye compounds. The presence of colouring molecules was evaluated by UV-Vis spectrophotometer, and the extracts selected for colouring were quantified and characterized by LC-MS. The results showed that Extractor Naviglio® achieved the best extraction yield, and the ethanol-water mixture extracts had a higher amount of total phenolic compounds (TPC) and a higher content of total colouring compounds (TCC). These extracts were selected for subsequent applications as dyes for linen, cotton and wool. The chemical profile of selected extracts was rich in compounds such as gallotannin and anthocyanin class. Fibre dyeing was verified by recording CIELAB colouring coordinates. The results suggest that the dyes obtained from R. coriaria can be of great interest for artisanal and industrial processes, in accordance with environmental sustainability.
Collapse
Affiliation(s)
- Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy.
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale Delle Scienze, Ed. 4, 90128, Palermo, Italy
| | - Anna Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| |
Collapse
|
17
|
Parra-Pacheco B, Cruz-Moreno BA, Aguirre-Becerra H, García-Trejo JF, Feregrino-Pérez AA. Bioactive Compounds from Organic Waste. Molecules 2024; 29:2243. [PMID: 38792105 PMCID: PMC11123749 DOI: 10.3390/molecules29102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reuse and reincorporation of waste are the principles of circular economies. Compost, biofuels, animal feed, dyes, and bioactive compounds can be obtained from the revaluation of organic waste. Research on this subject is scarce and limited to specific sectors, such as agriculture and agroindustry, leaving aside others that generate large quantities of organic waste, such as floriculture. The remains of these sectors have a low decomposition rate compared to other organic wastes. They are a source of bioactive compounds (e.g., essential oils, pigments, phenols) that can be reincorporated into the production chain of various industries. This review describes the composition of waste from agroindustry, agriculture, and floriculture, analyzing their potential revalorization as a source of bioactive compounds and an alternative supply source.
Collapse
Affiliation(s)
| | | | | | - Juan Fernando García-Trejo
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Querétaro, Mexico; (B.P.-P.); (B.A.C.-M.); (H.A.-B.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Querétaro, Mexico; (B.P.-P.); (B.A.C.-M.); (H.A.-B.)
| |
Collapse
|
18
|
Ceniti C, Di Vito A, Ambrosio RL, Anastasio A, Bria J, Britti D, Chiarella E. Food Safety Assessment and Nutraceutical Outcomes of Dairy By-Products: Ovine Milk Whey as Wound Repair Enhancer on Injured Human Primary Gingival Fibroblasts. Foods 2024; 13:683. [PMID: 38472796 DOI: 10.3390/foods13050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The valorization of milk whey appears to be a promising strategy for managing by-products from dairy food industries, which incur demanding economic costs for treatment and/or disposal. Thanks to its numerous bioactive components, whey is expected to be increasingly incorporated into foods in the future. We investigated the safety of ovine milk whey through in vitro experiments on human primary gingival fibroblast (HGF-1) proliferation and wound healing. Fibroblasts play a crucial role in the repair processes from the late inflammatory phase until the final stages. Cells treated with varying concentrations of ovine whey (0.01%, 0.1%, 1%, and 10%) were able to close wounds more rapidly than vehicle-treated cells. Time- and dose-dependent responses were observed in cell populations exposed to ovine whey. Specifically, wounds treated with 0.1% and 10% milk whey showed better migratory capabilities compared to those treated with 0.01% and 1% milk whey after 24 and 48 h. In addition, ovine milk whey stimulates extracellular matrix deposition, as evidenced by the increasing levels of CD44 antigen density evaluated through FACS analysis, as well as COL1A1 expression measured both via RT-qPCR and immunofluorescence. This phenomenon was particularly evident at concentrations of 0.01% and 10%. Ensuring quality and safety has become a major concern for health authorities in the food industry. Our findings suggest that ovine milk whey is safe and possesses regenerative properties. It facilitates tissue re-establishment following exposure to environmental stress, particularly accelerating gingival wound closure.
Collapse
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Di Vito
- Laboratory of Morphology and Tissue Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rosa Luisa Ambrosio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Jessica Bria
- Laboratory of Morphology and Tissue Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health (CISVetSUA), University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
19
|
Bonin AMF, Ávila S, Etgeton SAP, de Lima JJ, Dos Santos MP, Grassi MT, Krüger CCH. Ripening stage impacts nutritional components, antiglycemic potential, digestibility and antioxidant properties of grumixama (Eugenia brasiliensis Lam.) fruit. Food Res Int 2024; 178:113956. [PMID: 38309876 DOI: 10.1016/j.foodres.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to determine the nutritional components (macronutrients ans minerals) and α-amylase inhibition capacity of freeze-dried grumixama (Eugenia brasiliensis Lam) seeds (S) and pulp/peel (P) portions, at ripe and mid-ripe stages. In vitro digestion was also performed on S and P from grumixama to assess the bioaccessibility of total phenolic compound (TPC), flavonoids (TFC), and anthocyanins (TAC), as well as to examine their impact on antioxidant activity (DPPH, ABTS, FRAP). The ripening process impacts the bioactive compounds and individual phenolics of S and P portions. The ripe S was source of myricetin and exhibited higher antioxidant activity, while mid-ripe S was high in flavonoids and cinnamic acid with higher antiglycemic potential. Ripe P showed higher soluble fiber, carbohydrate, TAC, and caffeic acid content, whereas mid-ripe P had increased mineral content (calcium, potassium, manganese), catechin, and TPC. After in vitro digestion, the P portion showed a bioaccessibility of total phenolic content (TPC) and total flavonoid content (TFC) exceeding 40% at intestinal phase. In contrast, the S portions had better release of TPC and TFC and antioxidant activity at gastric phase. Considering the outstanding nutritional and biological properties of grumixama fruit, freeze-dried S and P portions from both ripening stages possess could be explored as valuable sources of nutrients and antioxidant compounds.
Collapse
Affiliation(s)
- Anna Maria Forcelini Bonin
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil.
| | - Suelen Ávila
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil.
| | - Schaina Andriela Pontarollo Etgeton
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| | - Jair José de Lima
- Postgraduate Program in Food and Nutrition, Nutrition Department, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| | - Mayara Padovan Dos Santos
- Postgraduate Program in Chemistry, Federal University of Paraná, Polytechnic Center, 81531-980 Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Chemistry Department, Federal University of Paraná, Polytechnic Center, 81530-000 Curitiba, Paraná, Brazil
| | - Claudia Carneiro Hecke Krüger
- Postgraduate Program in Food and Nutrition, Nutrition Department, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| |
Collapse
|
20
|
Colombo R, Moretto G, Barberis M, Frosi I, Papetti A. Rice Byproduct Compounds: From Green Extraction to Antioxidant Properties. Antioxidants (Basel) 2023; 13:35. [PMID: 38247461 PMCID: PMC10812773 DOI: 10.3390/antiox13010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, rice (Oryza sativa L.) production and consumption is increasing worldwide, and many efforts to decrease the substantial impact of its byproducts are needed. In recent years, the interest in utilizing rice kernels, husk, bran, and germ for the recovery of different molecules, from catalysts (to produce biodiesel) to bioactive compounds, has grown. In fact, rice byproducts are rich in secondary metabolites (phenolic compounds, flavonoids, and tocopherols) with different types of bioactivity, mainly antioxidant, antimicrobial, antidiabetic, and anti-inflammatory, which make them useful as functional ingredients. In this review, we focus our attention on the recovery of antioxidant compounds from rice byproducts by using innovative green techniques that can overcome the limitations of traditional extraction processes, such as their environmental and economic impact. In addition, traditional assays and more innovative methodologies to evaluate the antioxidant activity are discussed. Finally, the possible molecular mechanisms of action of the rice byproduct antioxidant compounds (phenolic acids, flavonoids, γ-oryzanol, and vitamin E) are discussed as well. In the future, it is expected that rice byproduct antioxidants will be important food ingredients that reduce the risk of the development of several human disorders involving oxidative stress, such as metabolic diseases, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Marta Barberis
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Ilaria Frosi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
- Center for Colloid and Surface Science (C.S.G.I.), Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
21
|
Anaya-Esparza LM, Aurora-Vigo EF, Villagrán Z, Rodríguez-Lafitte E, Ruvalcaba-Gómez JM, Solano-Cornejo MÁ, Zamora-Gasga VM, Montalvo-González E, Gómez-Rodríguez H, Aceves-Aldrete CE, González-Silva N. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023; 28:7752. [PMID: 38067479 PMCID: PMC10707804 DOI: 10.3390/molecules28237752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Edward F. Aurora-Vigo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Ernesto Rodríguez-Lafitte
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Mexico;
| | - Miguel Ángel Solano-Cornejo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Victor Manuel Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - César Eduardo Aceves-Aldrete
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Napoleón González-Silva
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| |
Collapse
|
22
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
23
|
Dulf FV, Vodnar DC, Dulf EH. Solid-state fermentation with Zygomycetes fungi as a tool for biofortification of apple pomace with γ-linolenic acid, carotenoid pigments and phenolic antioxidants. Food Res Int 2023; 173:113448. [PMID: 37803774 DOI: 10.1016/j.foodres.2023.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
In the last few years, there has been a growing interest in the more efficient utilization of agricultural and food by-products. Apples are among the most processed fruits in the world that generate huge quantities of processing waste biomasses. Therefore, the objective of this study was to improve the nutritional value of apple pomaces with γ-linolenic acid (GLA) and carotenoid pigments by solid-state fermentation (SSF) using two Zygomycetes fungi (Actinomucor elegans and Umbelopsis isabellina). The impact of fermentation periods on the polyphenol content and antioxidant capacity of the bioprocessed apple pomace was also investigated. The accumulated lipids were composed primarily of neutral fractions (mostly triacylglycerols). SSF with U. isabellina yielded a 12.72% higher GLA content than with A. elegans (3.85 g GLA/kg DW of pomace). Contrary to the lipogenic capacity, A. elegans showed higher carotenoids and phenolic antioxidants productivity than U. isabellina. The maximum concentrations for β-carotene (433.11 μg/g DW of pomace-SSF with A. elegans and 237.68 μg/g DW of pomace-SSF with U. isabellina), lutein (374.48 μg/g DW- A. elegans and 179.04 μg/g DW- U. isabellina) and zeaxanthin (247.35 μg/g DW- A. elegans and 120.41 μg/g DW- U. isabellina) were registered on the 12th day of SSFs. In the case of SSF with A. elegans, the amount of total phenolics increased significantly (27%) by day 4 from the initial value (2670.38 μg of gallic acid equivalents/g DW) before slowly decreasing for the remaining period of the fungal growth. The experimental findings showed that a prolonged fermentation (between 8 and 12 days) should be applied to obtain value-added apple pomaces (rich in GLA and carotenoids) with potential pharmaceutical and functional food applications. Moreover, the SSF processes of simultaneous bioaccumulation of valuable fatty acids, carotenoids and phenolic antioxidants proposed in the present study may open up new challenges for biotechnological production of industrially important biomolecules using abundant and unexploited apple pomaces.
Collapse
Affiliation(s)
- Francisc Vasile Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Eva-Henrietta Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania; Department of Automation, Technical University of Cluj-Napoca, Romania
| |
Collapse
|
24
|
de Oliveira NMT, Schneider VS, Bueno LR, de Mello Braga LLV, da Silva KS, Malaquias da Silva LC, Souza ML, da Luz BB, Lima CD, Bastos RS, de Paula Werner MF, Fernandes ES, Rocha JA, Gois MB, Cordeiro LMC, Maria-Ferreira D. CPW partially attenuates DSS-induced ulcerative colitis in mice. Food Res Int 2023; 173:113334. [PMID: 37803644 DOI: 10.1016/j.foodres.2023.113334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the gastrointestinal tract. The etiology is not fully understood, but environmental, microbial, and immunologic factors, as well as a genetic predisposition, play a role. UC is characterized by episodes of abdominal pain, diarrhea, bloody stools, weight loss, severe colonic inflammation, and ulceration. Despite the increase in the frequency of UC and the deterioration of the quality of life, there are still patients who do not respond well to available treatment options. Against this background, natural products such as polysaccharides are becoming increasingly important as they protect the intestinal mucosa, promote wound healing, relieve inflammation and pain, and restore intestinal motility. In this study, we investigated the effect of a polysaccharide isolated from the biomass of Campomanesia adamantium and Campomanesia pubescens (here referred to as CPW) in an experimental model of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS). CPW reversed weight loss, increased disease activity index (DAI), bloody diarrhea, and colon shortening. In addition, CPW reduced visceral mechanical hypersensitivity, controlled oxidative stress and inflammation, and protected the mucosal barrier. CPW is not absorbed in the intestine, does not inhibit cytochrome P450 proteins, and does not exhibit AMES toxicity. These results suggest that CPW attenuates DSS-induced acute and chronic colitis in mice and may be a potential alternative treatment for UC.
Collapse
Affiliation(s)
- Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Vanessa S Schneider
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Maria Luiza Souza
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Cleiane Dias Lima
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ruan Sousa Bastos
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Jefferson Almeida Rocha
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Marcelo Biondaro Gois
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | | | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
25
|
Gumul D, Ziobro R, Korus J, Surma M. Pulp from Colored Potatoes ( Solanum tuberosum L.) as an Ingredient Enriching Dessert Cookies. Foods 2023; 12:3735. [PMID: 37893628 PMCID: PMC10606129 DOI: 10.3390/foods12203735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Freeze-dried pulp from colored potatoes, obtained after starch isolation, is a rich source of polyphenols. Therefore, it can be used to fortify cookies, contributing to a reduction in industrial waste, aligning with the zero-waste technology. The purpose of this study was to analyze the effects of adding 5% and 10% pulp from two varieties of colored potatoes on the content of polyphenols, antioxidant activity, physical characteristics, nutritional composition, and the levels of hydroxymethylfurfural and acrylamide of the fortified cookies. The findings revealed that colored potato pulp is an outstanding additive for fortifying cookies with polyphenols, flavonoids, anthocyanins, and flavonols (even two to four times in comparison to control). Cookies containing pulp exhibited even two times higher fiber and protein content (up to 17% more), while the fat and ash content remained unchanged compared to control cookies. Furthermore, they contained 30% less HMF and 40% more acrylamide. These cookies also exhibited good physical properties in the final products. The study demonstrated that pulp from the "Magenta Love" potato variety was significantly more effective in enriching cookies with health-promoting compounds and nutrition value compared to pulp from Marleta Blue.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (R.Z.); (J.K.)
| | - Rafał Ziobro
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (R.Z.); (J.K.)
| | - Jarosław Korus
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (R.Z.); (J.K.)
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland;
| |
Collapse
|
26
|
Akter T, Bulbul MRH, Sama-ae I, Azadi MA, Nira KN, Al-Araby SQ, Deen JI, Rafi MKJ, Saha S, Ezaj MMA, Rahman MA. Sour Tamarind Is More Antihypertensive than the Sweeter One, as Evidenced by In Vivo Biochemical Indexes, Ligand-Protein Interactions, Multitarget Interactions, and Molecular Dynamic Simulation. Nutrients 2023; 15:3402. [PMID: 37571339 PMCID: PMC10420995 DOI: 10.3390/nu15153402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
This research investigated the antihypertensive effects of tamarind products and compared their potentials based on an animal model's data verified by molecular docking, multitarget interactions, and dynamic simulation assays. GC-MS-characterized tamarind products were administered to cholesterol-induced hypertensive albino rat models. The two-week-intervened animals were dissected to collect their serum and organs and respectively subjected to analyses of their hypertension-linked markers and tissue architectures. The lead biometabolites of tamarinds interacted with eight target receptors in the molecular docking and dynamic simulation studies and with multitarget in the network pharmacological analyses. The results show that the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), C-reactive protein (CRP), troponin I, and lipid profiles were maximally reinstated by the phenolic-enriched ripened sour tamarind extract compared to the sweet one, but the seed extracts had a smaller influence. Among the tamarind's biometabolites, ϒ-sitosterol was found to be the best ligand to interact with the guanylate cyclase receptor, displaying the best drug-likeliness with the highest binding energy, -9.3 Kcal. A multitargeted interaction-based degree algorithm and a phylogenetic tree of pathways showed that the NR3C1, REN, PPARG, and CYP11B1 hub genes were consistently modulated by ϒ-sitosterol to reduce hypertension and related risk factors. The dynamic simulation study showed that the P-RMSD values of ϒ-sitosterol-guanylate cyclase were stable between 75.00 and 100.00 ns at the binding pocket. The findings demonstrate that ripened sour tamarind extract may be a prospective antihypertensive nutraceutical or supplement target affirmed through advanced preclinical and clinical studies.
Collapse
Affiliation(s)
- Taslima Akter
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | | | - Imran Sama-ae
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - M. A. Azadi
- Department of Zoology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Kamrun Nahar Nira
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Salahuddin Quader Al-Araby
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Jobaier Ibne Deen
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Md. Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
| | - Md. Muzahid Ahmed Ezaj
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; (T.A.); (K.N.N.); (S.Q.A.-A.); (J.I.D.); (M.K.J.R.); (S.S.)
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
27
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
28
|
Skoufos I, Nelli A, Venardou B, Lagkouvardos I, Giannenas I, Magklaras G, Zacharis C, Jin L, Wang J, Gouva E, Skoufos S, Bonos E, Tzora A. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023; 11:1723. [PMID: 37512895 PMCID: PMC10384456 DOI: 10.3390/microorganisms11071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to evaluate whether dietary supplementation with an innovative silage (IS) created using 60% olive mill waste, 20% grape pomace, and 20% deproteinised feta cheese waste solids can modulate the composition of the intestinal microbiota in weaned (Exp. 1) and finishing (Exp. 2) pigs. In Exp. 1 (40 day supplementation), forty-five crossbred weaned pigs were randomly assigned to the 0% (Control), 5%, or 10% IS groups (15 replicates/experimental diet). In Exp. 2 (60 day supplementation), eighteen finishing pigs from Exp. 1 were fed the control diet for 8 weeks before being re-assigned to their original experimental groups and fed with the 0% (Control), 5%, or 10% IS diets (six replicates/experimental diet). Performance parameters were recorded. Ileal and caecal digesta and mucosa were collected at the end of each experiment for microbiota analysis using 16S rRNA gene sequencing (five pigs/experimental diet for Exp. 1 and six pigs/experimental diet for Exp. 2). No significant effects on pig growth parameters were observed in both experiments. In Exp. 1, 5% IS supplementation increased the relative abundance of the Prevotellaceae family, Coprococcus genus, and Alloprevotella rava (OTU_48) and reduced the relative abundance of Lactobacillus genus in the caecum compared to the control and/or 10% IS diets (p < 0.05). In Exp. 2, 5% IS supplementation led to compositionally more diverse and different ileal and caecal microbiota compared to the control group (p < 0.05; p = 0.066 for β-diversity in ileum). Supplementation with the 5% IS increased the relative abundance of Clostridium celatum/disporicum/saudiense (OTU_3) in the ileum and caecum and Bifidobacterium pseudolongum (OTU_17) in the caecum and reduced the relative abundance of Streptococcus gallolyticus/alactolyticus (OTU_2) in the caecum compared to the control diet (p < 0.05). Similar effects on C. celatum/disporicum/saudiense and S. gallolyticus/alactolyticus were observed with the 10% IS diet in the caecum (p < 0.05). IS has the potential to beneficially alter the composition of the gastrointestinal microbiota in pigs.
Collapse
Affiliation(s)
- Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Brigkita Venardou
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Magklaras
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Christos Zacharis
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Lizhi Jin
- Meritech (Asia Pacific) Biotech Pte Ltd., Singapore 079903, Singapore
| | - Jin Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Evangelia Gouva
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Stylianos Skoufos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| |
Collapse
|
29
|
Machado M, Espírito Santo L, Machado S, Lobo JC, Costa ASG, Oliveira MBPP, Ferreira H, Alves RC. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023; 12:2354. [PMID: 37372564 DOI: 10.3390/foods12122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Processing the coffee cherry into roasted beans generates a large amount of by-products, which can negatively impact the environment. The aim of this study was to analyze the bioactive potential and chemical composition of different coffee by-products (pulp, husk, parchment, silverskin, defective beans, and green coffee sieving residue) having in mind their bioactive potential for health and well-being. The coffee by-products showed a distinct nutritional composition. The content of ash, protein, fat, and total dietary fiber was significantly higher (p < 0.05) in coffee pulp (10.72% dw), silverskin (16.31% dw), defective beans (8.47% dw), and parchment (94.19% dw), respectively. Defective beans and the sieve residue exhibited a higher content of total phenolics (6.54 and 5.11 g chlorogenic acid eq./100 g dw, respectively) as well as higher DPPH• scavenging activity (3.11 and 2.85 g Trolox eq./100 g, respectively) and ferric-reducing antioxidant power (17.68 and 17.56 g ferrous sulfate eq./100 g dw, respectively). All the coffee by-products considered in this study are sources of caffeine and chlorogenic acids, in particular 5-caffeoylquinic acid (5.36-3787.58 mg/100 g dw, for parchment and defective beans, respectively). Thus, they can be recycled as functional ingredients for food, cosmetic and/or pharmaceutical industries, contributing to the social, economic, and environmental sustainability of the coffee industry.
Collapse
Affiliation(s)
- Marlene Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Liliana Espírito Santo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana C Lobo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anabela S G Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Beatriz P P Oliveira
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Helena Ferreira
- Network of Chemistry and Technology/Unit on Applied Molecular Biosciences (REQUIMTE/UCIBIO/i4HB), Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita C Alves
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Núñez-Gómez V, González-Barrio R, Periago MJ. Interaction between Dietary Fibre and Bioactive Compounds in Plant By-Products: Impact on Bioaccessibility and Bioavailability. Antioxidants (Basel) 2023; 12:antiox12040976. [PMID: 37107351 PMCID: PMC10135553 DOI: 10.3390/antiox12040976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, around 31 million tonnes of food by-products are generated during primary production and trade. The management of these by-products may cause a negative impact, both at the economic and environmental levels, for both industry and society. In this regard, taking into consideration that these by-products retain the dietary fibre compositions and the bioactive compounds of the starting materials, plant food agro-industries have an interest in taking advantage of them, from a nutritional point of view. Therefore, this review evaluates the role of dietary fibre and bioactive compounds in these by-products as well as the potential interactions of both components and their implications for health, since the bioactive compounds associated with fibre may reach the colon, where they can be metabolised into postbiotic compounds, providing important health benefits (prebiotic, antioxidant, anti-inflammatory, etc.). Consequently, this aspect, on which there are few studies, is very relevant and must be considered in the revaluation of by-products to obtain new ingredients for food processing with improved nutritional and technological properties.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| | - María Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
31
|
Tomar GS, Gundogan R, Can Karaca A, Nickerson M. Valorization of wastes and by-products of nuts, seeds, cereals and legumes processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:131-174. [PMID: 37898538 DOI: 10.1016/bs.afnr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastes and by-products of nuts, seeds, cereals and legumes carry a unique potential for valorization into value-added ingredients due to their protein, dietary fiber, antioxidant, vitamin and mineral contents. The most crucial factor in the recovery of value-added ingredients and bioactives from the wastes and by-products is the utilization of the most efficient extraction technique. This work is an overview of the classification of wastes and by-products of nuts, seeds, cereals and legumes processing, the methods used in the extraction of valuable compounds such as proteins, dietary fibers, phenolics, flavonoids and other bioactives. This chapter provides insights on the promising applications of extracted ingredients in various end products. A special emphasis is given to the challenges and improvement methods for extraction of value-added compounds from wastes and by-products of nuts, seeds, cereals and legumes processing.
Collapse
Affiliation(s)
- Gizem Sevval Tomar
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Rukiye Gundogan
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
32
|
Grape, Pomegranate, Olive, and Tomato By-Products Fed to Dairy Ruminants Improve Milk Fatty Acid Profile without Depressing Milk Production. Foods 2023; 12:foods12040865. [PMID: 36832939 PMCID: PMC9957115 DOI: 10.3390/foods12040865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The continuous increase in the cost of feeds and the need to improve the sustainability of animal production require the identification of alternative feeds, such as those derived from the agro-industrial sector, that can be effectively used for animal nutrition. Since these by-products (BP) are sources of bioactive substances, especially polyphenols, they may play an important role as a new resource for improving the nutritional value of animal-derived products, being effective in the modulation of the biohydrogenation process in the rumen, and, hence, in the composition of milk fatty acids (FA). The main objective of this work was to evaluate if the inclusion of BP in the diets of dairy ruminants, as a partial replacement of concentrates, could improve the nutritional quality of dairy products without having negative effects on animal production traits. To meet this goal, we summarized the effects of widespread agro-industrial by-products such as grape pomace or grape marc, pomegranate, olive cake, and tomato pomace on milk production, milk composition, and FA profile in dairy cows, sheep, and goats. The results evidenced that substitution of part of the ratio ingredients, mainly concentrates, in general, does not affect milk production and its main components, but at the highest tested doses, it can depress the yield within the range of 10-12%. However, the general positive effect on milk FA profile was evident by using almost all BP at different tested doses. The inclusion of these BP in the ration, from 5% up to 40% of dry matter (DM), did not depress milk yield, fat, or protein production, demonstrating positive features in terms of both economic and environmental sustainability and the reduction of human-animal competition for food. The general improvement of the nutritional quality of milk fat related to the inclusion of these BP in dairy ruminant diets is an important advantage for the commercial promotion of dairy products resulting from the recycling of agro-industrial by-products.
Collapse
|
33
|
Nutter J, Correa de Carvalho M, Zarbo Colombo AA, Jagus RJ, Agüero MV. Thermal and nonthermal sonication: Extraction of bioactive compounds from beet leaves and microbiological quality of extracts. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Julia Nutter
- Department of Food Science and Human Nutrition Iowa State University Ames USA
| | - Màrcia Correa de Carvalho
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - Antonella Ailín Zarbo Colombo
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - Rosa Juana Jagus
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - María Victoria Agüero
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| |
Collapse
|
34
|
Zeng X, Li J, Lyu X, Chen T, Chen J, Chen X, Guo S. Utilization of functional agro-waste residues for oyster mushroom production: Nutritions and active ingredients in healthcare. FRONTIERS IN PLANT SCIENCE 2023; 13:1085022. [PMID: 36684732 PMCID: PMC9846735 DOI: 10.3389/fpls.2022.1085022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 06/01/2023]
Abstract
A large amount of agro-industrial residues are produced from the planting, production and processing of traditional Chinese herbs. As a tonic, edible, and economical herb, Codonopsis pilosula root has been extensively developed into medicine and functional food. However, thousands of tons of aerial parts (stems, leaves, flowers and fruits) have been directly discarded after harvest each year. To utilise agro-wastes, Pleurotus ostreatus was cultivated on a basal substrate supplemented with C. pilosula stems and leaves (CSL). Physicochemical analyses revealed that the basal substrate mixed with CSL was more abundant in cellulose, hemicellulose, and most of micronutrients such as K, Ca, Mg, S, Fe, Zn and Mo. After the first flush, the fruit bodies in CSL group exhibited a higher fresh weight, a wider average pileus diameter and a lower moisture level. Nutrition analyses presented a higher protein content and a lower fat content in mushrooms from CSL group compared with control group. Interestingly, 14 amino acids (glutamine, arginine, valine, leucine, and etc.) and 3 micronutrients (Se, Fe and Zn) were increased after CSL addition to the substrate. Based on untargeted metabolomics, a total of 710 metabolites were annotated. Compared with control group, there were 142 and 117 metabolites significantly increased and decreased in the CSL group. Most of them were grouped into classes of amino acids and peptids, fatty acids, carbohydrates, terpenoids, and etc. Moreover, an abundance of phytometabolites from Codonopsis were detected in P. ostreatus from CSL group, including polyacetylenes or polyenes, flavonoids, alkaloids, terpenoids, organic acids, and etc. UPLC-MS/MS results demonstrated that lobetyolin content in the CSL group samples was 0.0058%. In summary, the aerial parts of C. pilosula processed for use in the production of edible mushroom is an emerging strategy to converting agricultural waste into functional foods.
Collapse
|
35
|
Cerqueira e Silva KF, Rabelo RS, Feltre G, Hubinger M. Bitter substances recovery from hot trub: A study of polymeric membranes performance in a sequential mode with fouling investigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
A comparative life cycle assessment of cross-processing herring side streams with fruit pomace or seaweed into a stable food protein ingredient. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
37
|
Drabińska N, Nogueira M, Ciska E, Jeleń H. Effect of Drying and Broccoli Leaves Incorporation on the Nutritional Quality of Durum Wheat Pasta. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
38
|
Comparative Study of Food-Grade Pickering Stabilizers Obtained from Agri-Food Byproducts: Chemical Characterization and Emulsifying Capacity. Foods 2022; 11:foods11162514. [PMID: 36010516 PMCID: PMC9407277 DOI: 10.3390/foods11162514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Natural Pickering emulsions are gaining popularity in several industrial fields, especially in the food industry and plant-based alternative sector. Therefore, the objective of this study was to characterize and compare six agri-food wastes/byproducts (lupin hull, canola press-cake, lupin byproduct, camelina press-cake, linseed hull, and linseed press-cake) as potential sources of food-grade Pickering stabilizers. The results showed that all samples contained surface-active agents such as proteins (46.71-17.90 g/100 g) and dietary fiber (67.10-38.58 g/100 g). Canola press-cake, camelina press-cake, and linseed hull exhibited the highest concentrations of polyphenols: 2891, 2549, and 1672 mg GAE/100 g sample, respectively. Moreover, the agri-food byproduct particles presented a partial wettability with a water contact angle (WCA) between 77.5 and 42.2 degrees, and they were effective for stabilizing oil-in-water (O/W) emulsions. The emulsions stabilized by Camelina press-cake, lupin hull, and lupin by-product (≥3.5%, w/w) were highly stable against creaming during 45 days of storage. Furthermore, polarized and confocal microscopy revealed that the particles were anchored to the interfaces of oil droplets, which is a demonstration of the formation of a Pickering emulsion stabilized by solid particles. These results suggest that agri-food wastes/byproducts are good emulsifiers that can be applied to produce stable Pickering emulsions.
Collapse
|
39
|
Drabińska N, Nogueira M, Szmatowicz B. Valorisation of Broccoli By-Products: Technological, Sensory and Flavour Properties of Durum Pasta Fortified with Broccoli Leaf Powder. Molecules 2022; 27:4672. [PMID: 35897847 PMCID: PMC9332216 DOI: 10.3390/molecules27154672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the effect of broccoli leaf powder (BLP) incorporation on the technological properties, sensory quality and volatile organic compounds (VOCs) of durum wheat pasta. Incorporation of BLP increased cooking loss; however, all pasta samples were found to be in the acceptable range of 8 g/100 g. The addition of BLP decreased optimal cooking time and water absorption but increased the swelling index. Firmness and total shearing force decreased with increased BLP content. The obtained pasta was greener than the control, with a higher content of minerals, and an increasing tendency with respect to protein was observed. The VOC profile of enriched pasta was richer and contained compounds typical of broccoli (e.g., dimethyl sulphide), affecting its aroma. The sensory evaluation results indicate that the addition of BLP did not affect the overall acceptance of pasta. Up to 5% BLP content afforded an interesting, more nutritious pasta without compromising its technological and sensory quality.
Collapse
Affiliation(s)
- Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Mariana Nogueira
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Faculty of Biotechnology, Catholic University of Portugal, 4169-005 Porto, Portugal
| | - Beata Szmatowicz
- Sensory Laboratory, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
40
|
Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr 2022; 9:854680. [PMID: 35571891 PMCID: PMC9097227 DOI: 10.3389/fnut.2022.854680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE). The leaves were prepared using two common drying methods, namely, hot air-drying and freeze-drying. A total of 33 bioactive compounds were identified in the olive leaves, namely, 19 flavonoids, 2 phenylethanoids, 2 coumarins, 2 hydroxycinnamic acids, 2 iridoids, and 6 triterpenic acids. Quantification of the bioactive compounds revealed high amounts of polyphenols, especially flavonoids [2,027–8,055 mg/kg dry weight (DW)], iridoids (566–22,096 mg/kg DW), and triterpenic acids (13,824–19,056 mg/kg DW) in the olive leaves. The hot air-dried leaves showed significantly (P < 0.05) higher iridoid (oleuropein and secoxyloganin) content than the fresh leaves, while freeze-drying resulted in significantly (P < 0.05) higher flavonoid aglycone and hydroxytyrosol content. Additionally, freeze-drying led to samples with the highest radical scavenging, α-amylase, α-glucosidase, and ACE inhibition abilities. The flavonoid (e.g., quercetin, luteolin, eriodictyol, kaempferol-7-O-glucoside, and luteolin-7-O-glucoside), hydroxytyrosol, and oleanolic acid contents in the olive leaves were positively correlated (P < 0.05) with their bioactive potentials.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|