1
|
Tomita KM, Manlick PJ, Makoto K, Fujii S, Hyodo F, Miyashita T, Tsunoda T. The underappreciated roles of aboveground vertebrates on belowground communities. Trends Ecol Evol 2025; 40:364-374. [PMID: 39814653 DOI: 10.1016/j.tree.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
In recent decades, evidence of interactions between aboveground and belowground (i.e., soil) subsystems has accumulated. The effects of aboveground vertebrates on belowground communities have traditionally focused on plant-mediated pathways, but we show that aboveground vertebrates impact belowground communities and ecological functions without plant-mediated pathways via both consumptive and non-consumptive processes. We then show that mobile, aboveground vertebrates have significant but often unrealized potential to structure soil communities from local to macroecological scales by linking aboveground and belowground food webs across habitats and ecosystems. Collectively, this synthesis of aboveground vertebrate effects on belowground communities integrates multiple ecological disciplines to advance a more comprehensive understanding of aboveground-belowground linkages across space and time.
Collapse
Affiliation(s)
- Kanji M Tomita
- Faculty of Agriculture and Marine Science Kochi University, Kochi, Japan.
| | - Philip J Manlick
- Pacific Northwest Research Station, USDA Forest Service, Juneau, AK, USA
| | - Kobayashi Makoto
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Saori Fujii
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Ibaraki, Japan
| | - Fujio Hyodo
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | - Tadashi Miyashita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomonori Tsunoda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
2
|
Kong ZH, Liu T, Burdon FJ, Truchy A, Futter M, Bundschuh M, Hurley R, Bertilsson S, Mckie BG. Microplastics in freshwaters: Comparing effects of particle properties and an invertebrate consumer on microbial communities and ecosystem functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117697. [PMID: 39805198 DOI: 10.1016/j.ecoenv.2025.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/01/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kgsediment), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene. These effects included increases in microbial abundance, consumer biomass and ecosystem respiration, as well as decreases in microbial enzyme activity and water chlorophyll-a. MP presence was also associated with increased relative abundance of microbial taxa reported to degrade plastics. However, consumer presence mostly had stronger effects (effect sizes ranging from ± 11 -313 %) than MP exposure (effect sizes ranging from ± 1-89 %) on microbial communities and ecosystem functions. Furthermore, several MP effects were only detected when chironomid consumers were absent. Overall, our findings suggest that MP effects on microbes and ecosystem functions are often relatively small and variable, depending on particle properties and consumer presence. Nevertheless, the number of MP effects detected highlights the need for further investigations of interactions between MPs and other environmental drivers, to more thoroughly assess the risks of MP pollution for freshwater ecosystems.
Collapse
Affiliation(s)
- Ze Hui Kong
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Tong Liu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francis J Burdon
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; Te Aka Mātuatua ‑ School of Science, University of Waikato, Hamilton, New Zealand
| | - Amélie Truchy
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; UR RiverLy, Centre Lyon‑Grenoble Auvergne‑Rhône‑Alpes, French National Institute for Agriculture, Food, and Environment (INRAE), Lyon, France
| | - Martyn Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstrasse 7, 76829 Landau, Germany
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Norway
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Brendan G Mckie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
4
|
Robinson JM, Barnes AD, Fickling N, Costin S, Sun X, Breed MF. Food webs in food webs: the micro-macro interplay of multilayered networks. Trends Ecol Evol 2024; 39:913-922. [PMID: 38960756 DOI: 10.1016/j.tree.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Food webs are typically defined as being macro-organism-based (e.g., plants, mammals, birds) or microbial (e.g., bacteria, fungi, viruses). However, these characterizations have limits. We propose a multilayered food web conceptual model where microbial food webs are nested within food webs composed of macro-organisms. Nesting occurs through host-microbe interactions, which influence the health and behavior of host macro-organisms, such that host microbiomes likely alter population dynamics of interacting macro-organisms and vice versa. Here, we explore the theoretical underpinnings of multilayered food webs and the implications of this new conceptual model on food web ecology. Our framework opens avenues for new empirical investigations into complex ecological networks and provides a new lens through which to view a network's response to ecosystem changes.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Andrew D Barnes
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Nicole Fickling
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Sofie Costin
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Xin Sun
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
5
|
Yan X, White JC, He E, Peijnenburg WJGM, Zhang P, Qiu H. Temporal Dynamics of Copper-Based Nanopesticide Transfer and Subsequent Modulation of the Interplay Between Host and Microbiota Across Trophic Levels. ACS NANO 2024; 18:25552-25564. [PMID: 39171664 DOI: 10.1021/acsnano.4c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
During agricultural production, significant quantities of copper-based nanopesticides (CBNPs) may be released into terrestrial ecosystems through foliar spraying, thereby posing a potential risk of biological transmission via food chains. Consequently, we investigated the trophic transfer of two commonly available commercial CBNPs, Reap2000 (RP) and HolyCu (HC), in a plant-caterpillar terrestrial food chain and evaluated impacts on host microbiota. Upon foliar exposure (with 4 rounds of spraying, totaling 6.0 mg CBNPs per plant), leaf Cu accumulation levels were 726 ± 180 and 571 ± 121 mg kg-1 for RP and HC, respectively. HC exhibited less penetration through the cuticle compared to RP (RP: 55.5%; HC: 32.8%), possibly due to size exclusion limitations. While caterpillars accumulated higher amounts of RP, HC exhibited a slightly higher trophic transfer factor (TTF; RP: 0.69 ± 0.20; HC: 0.74 ± 0.17, p > 0.05) and was more likely to be transferred through the food chain. The application of RP promoted the dispersal of phyllosphere microbes and perturbed the original host intestinal microbiota, whereas the HC group was largely host-modulated (control: 65%; RP: 94%; HC: 34%). Integrating multiomics analyses and modeling approaches, we elucidated two pathways by which plants exert bottom-up control over caterpillar health. Beyond the direct transmission of phyllosphere microbes, the leaf microbiome recruited upon exposure to CBNPs further influenced the ingestion behavior and intestinal microbiota of caterpillars via altered leaf metabolites. Elevated Proteobacteria abundance benefited caterpillar growth with RP, while the reduction of Proteobacteria with HC increased the risk of lipid metabolism issues and gut disease. The recruited Bacteroidota in the RP phyllosphere proliferated more extensively into the caterpillar gut to enhance stress resistance. Overall, the gut microbes reshaped in RP caterpillars exerted a strong regulatory effect on host health. These findings expand our understanding of the dynamic transmission of host-microbiota interactions with foliar CBNPs exposure, and provide critical insight necessary to ensure the safety and sustainability of nanoenabled agricultural strategies.
Collapse
Affiliation(s)
- Xuchen Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven06511, Connecticut, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300RA, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Williams J, Pettorelli N, Hartmann AC, Quinn RA, Plaisance L, O'Mahoney M, Meyer CP, Fabricius KE, Knowlton N, Ransome E. Decline of a distinct coral reef holobiont community under ocean acidification. MICROBIOME 2024; 12:75. [PMID: 38627822 PMCID: PMC11022381 DOI: 10.1186/s40168-023-01683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/28/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. RESULTS We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. CONCLUSIONS We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.
Collapse
Affiliation(s)
- Jake Williams
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Aaron C Hartmann
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Laetitia Plaisance
- Laboratoire Evolution Et Diversité Biologique, CNRS/UPS, Toulouse, France
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Michael O'Mahoney
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Chris P Meyer
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | | | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Emma Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY, UK.
| |
Collapse
|
7
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Manlick PJ, Cook JA, Newsome SD. The coupling of green and brown food webs regulates trophic position in a montane mammal guild. Ecology 2023; 104:e3949. [PMID: 36495220 DOI: 10.1002/ecy.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above- and belowground systems were historically compartmentalized into "green" and "brown" food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ13 C, δ15 N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems.
Collapse
Affiliation(s)
- Philip J Manlick
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Pacific Northwest Research Station, USDA Forest Service, Juneau, Alaska, USA
| | - Joseph A Cook
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
9
|
Iven H, Walker TWN, Anthony M. Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency. Curr Microbiol 2022; 80:13. [PMID: 36459292 PMCID: PMC9718865 DOI: 10.1007/s00284-022-02979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Microbial carbon use efficiency (CUE)-the balance between microbial growth and respiration-strongly impacts microbial mediated soil carbon storage and is sensitive to many well-studied abiotic environmental factors. However, surprisingly, little work has examined how biotic interactions in soil may impact CUE. Here, we review the theoretical and empirical lines of evidence exploring how biotic interactions affect CUE through the lens of life history strategies. Fundamentally, the CUE of a microbial population is constrained by population density and carrying capacity, which, when reached, causes species to grow more quickly and less efficiently. When microbes engage in interspecific competition, they accelerate growth rates to acquire limited resources and release secondary chemicals toxic to competitors. Such processes are not anabolic and thus constrain CUE. In turn, antagonists may activate one of a number of stress responses that also do not involve biomass production, potentially further reducing CUE. In contrast, facilitation can increase CUE by expanding species realized niches, mitigating environmental stress and reducing production costs of extracellular enzymes. Microbial interactions at higher trophic levels also influence CUE. For instance, predation on microbes can positively or negatively impact CUE by changing microbial density and the outcomes of interspecific competition. Finally, we discuss how plants select for more or less efficient microbes under different contexts. In short, this review demonstrates the potential for biotic interactions to be a strong regulator of microbial CUE and additionally provides a blueprint for future research to address key knowledge gaps of ecological and applied importance for carbon sequestration.
Collapse
Affiliation(s)
- Hélène Iven
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, 8006, Zurich, Switzerland.
| | - Tom W N Walker
- Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8006, Zurich, Switzerland
| | - Mark Anthony
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8006, Zurich, Switzerland
| |
Collapse
|
10
|
Mucci NC, Jones KA, Cao M, Wyatt MR, Foye S, Kauffman SJ, Richards GR, Taufer M, Chikaraishi Y, Steffan SA, Campagna SR, Goodrich-Blair H. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. mSystems 2022; 7:e0031222. [PMID: 35543104 PMCID: PMC9241642 DOI: 10.1128/msystems.00312-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.
Collapse
Affiliation(s)
- Nicholas C. Mucci
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Katarina A. Jones
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Mengyi Cao
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michael R. Wyatt
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Shane Foye
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Gregory R. Richards
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michela Taufer
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Japan
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- U.S. Department of Agriculture, Agricultural Research Service, Madison, Wisconsin, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Dharampal PS, Danforth BN, Steffan SA. Exosymbiotic microbes within fermented pollen provisions are as important for the development of solitary bees as the pollen itself. Ecol Evol 2022; 12:e8788. [PMID: 35414891 PMCID: PMC8986510 DOI: 10.1002/ece3.8788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Developing bees derive significant benefits from the microbes present within their guts and fermenting pollen provisions. External microbial symbionts (exosymbionts) associated with larval diets may be particularly important for solitary bees that suffer reduced fitness when denied microbe-colonized pollen.To investigate whether this phenomenon is generalizable across foraging strategy, we examined the effects of exosymbiont presence/absence across two solitary bee species, a pollen specialist and generalist. Larvae from each species were reared on either microbe-rich natural or microbe-deficient sterilized pollen provisions allocated by a female forager belonging to their own species (conspecific-sourced pollen) or that of another species (heterospecific-sourced pollen). Our results reveal that the presence of pollen-associated microbes was critical for the survival of both the generalist and specialist larvae, regardless of whether the pollen was sourced from a conspecific or heterospecific forager.Given the positive effects of exosymbiotic microbes for larval fitness, we then examined if the magnitude of this benefit varied based on whether the microbes were provisioned by a conspecific forager (the mother bee) or a heterospecific forager. In this second study, generalist larvae were reared only on microbe-rich pollen provisions, but importantly, the sources (conspecific versus heterospecific) of the microbes and pollen were experimentally manipulated.Bee fitness metrics indicated that microbial and pollen sourcing both had significant impacts on larval performance, and the effect sizes of each were similar. Moreover, the effects of conspecific-sourced microbes and conspecific-sourced pollen were strongly positive, while that of heterospecific-sourced microbes and heterospecific-sourced pollen, strongly negative.Our findings imply that not only is the presence of exosymbionts critical for both specialist and generalist solitary bees, but more notably, that the composition of the specific microbial community within larval pollen provisions may be as critical for bee development as the composition of the pollen itself.
Collapse
Affiliation(s)
| | | | - Shawn A. Steffan
- Department of EntomologyUniversity of WisconsinMadisonWisconsinUSA
- USDA‐ARSVegetable Crops Research UnitMadisonWisconsinUSA
| |
Collapse
|
12
|
Barceló G, Perrig PL, Dharampal P, Donadio E, Steffan SA, Pauli JN. More than just meat: Carcass decomposition shapes trophic identities in a terrestrial vertebrate. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gonzalo Barceló
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | - Paula L. Perrig
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
- Grupo de Investigaciones en Biología de la Conservación INIBIOMA (Universidad Nacional del Comahue ‐ CONICET) Bariloche Argentina
| | | | | | - Shawn A. Steffan
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
- USDA‐ARS Vegetable Crop Research Unit Madison WI USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
13
|
Arsenault ER, Liew JH, Hopkins JR. Substrate Composition Influences Amino Acid Carbon Isotope Profiles of Fungi: Implications for Tracing Fungal Contributions to Food Webs. Environ Microbiol 2022; 24:2089-2097. [PMID: 35229441 DOI: 10.1111/1462-2920.15961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Fungi link detrital resources and metazoan consumers through their role as decomposers. However, fungal contributions to metazoans may be misestimated in amino acid isotope studies because fungi are capable of both synthesizing amino acids (AAs) de novo and absorbing AAs from their environment. While fungi cultured in AA-free media have been used to represent fungi in studies of natural environments, fungi likely gain energetic benefits by taking up substrate AAs directly in situ. Consequently, fungi cultured on AA-free media may not be representative of the true variability of natural fungal δ13 CAA profiles. Therefore, the objective of this experiment was to determine the effect of substrate AA availability on yeast δ13 CAA profiles. We found that yeasts cultured in media of relatively higher AA content had different δ13 CAA profiles than fungi grown in AA-free media, in part because yeasts utilized two essential AAs (Leu and Val) directly from media substrates when available in sufficient amounts. Furthermore, these differences among yeast δ13 CAA profiles remained after normalization of δ13 CAA values. We recommend further characterization of the variation in fungal δ13 CAA profiles and the incorporation of this potential variability into interpretations of basal resource use by metazoans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emily R Arsenault
- Kansas Biological Survey and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA.,Program in Environmental Studies, Bates College, Lewiston, Maine, USA
| | - Jia Huan Liew
- Science Unit, Lingnan University, Tuen Mun, Hong Kong
| | - Jacob R Hopkins
- Kansas Biological Survey and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Hulsmans E, Peeters G, Honnay O. Soil Microbiomes in Apple Orchards Are Influenced by the Type of Agricultural Management but Never Match the Complexity and Connectivity of a Semi-natural Benchmark. Front Microbiol 2022; 13:830668. [PMID: 35250946 PMCID: PMC8888915 DOI: 10.3389/fmicb.2022.830668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Conversion of natural ecosystems into agricultural land may strongly affect the soil microbiome and the functioning of the soil ecosystem. Alternative farming systems, such as organic farming, have therefore been advocated to reduce this impact, yet the outcomes of different agricultural management regimes often remain ambiguous and their evaluations mostly lack a proper more natural benchmark. We used high-throughput amplicon sequencing, linear models, redundancy analyses, and co-occurrence network analyses to investigate the effect of organic and integrated pest management (IPM) on soil fungal and bacterial communities in both the crop and drive rows of apple orchards in Belgium, and we included semi-natural grasslands as a benchmark. Fungi were strongly influenced by agricultural management, with lower diversity indices and distinct communities in IPM compared to organic orchards, whereas IPM orchards had a higher AMF abundance and the most complex and connected fungal communities. Bacterial diversity indices, community composition, and functional groups were less affected by management, with only a higher network connectivity and abundance of keystone taxa in organic drive rows. On the other hand, none of the agricultural soil microbiomes matched the complexity and connectedness of our semi-natural benchmark, demonstrating that even more nature-friendly agricultural management practices strongly affect the soil microbiome and highlighting the essential role of (semi-)natural systems as a harbor of robust and functionally diverse fungal and bacterial communities.
Collapse
Affiliation(s)
- Eva Hulsmans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
15
|
Voigt E, Rall BC, Chatzinotas A, Brose U, Rosenbaum B. Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ 2021; 9:e12194. [PMID: 34760346 PMCID: PMC8572521 DOI: 10.7717/peerj.12194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial communities are often exposed to temporal variations in resource availability, which exceed bacterial generation times and thereby affect bacterial coexistence. Bacterial population dynamics are also shaped by bacteriophages, which are a main cause of bacterial mortality. Several strategies are proposed in the literature to describe infections by phages, such as "Killing the Winner", "Piggyback the loser" (PtL) or "Piggyback the Winner" (PtW). The two temperate phage strategies PtL and PtW are defined by a change from lytic to lysogenic infection when the host density changes, from high to low or from low to high, respectively. To date, the occurrence of different phage strategies and their response to environmental variability is poorly understood. In our study, we developed a microbial trophic network model using ordinary differential equations (ODEs) and performed 'in silico' experiments. To model the switch from the lysogenic to the lytic cycle, we modified the lysis rate of infected bacteria and their growth was turned on or off using a density-dependent switching point. We addressed whether and how the different phage strategies facilitate bacteria coexistence competing for limiting resources. We also studied the impact of a fluctuating resource inflow to evaluate the response of the different phage strategies to environmental variability. Our results show that the viral shunt (i.e. nutrient release after bacterial lysis) leads to an enrichment of the system. This enrichment enables bacterial coexistence at lower resource concentrations. We were able to show that an established, purely lytic model leads to stable bacterial coexistence despite fluctuating resources. Both temperate phage models differ in their coexistence patterns. The model of PtW yields stable bacterial coexistence at a limited range of resource supply and is most sensitive to resource fluctuations. Interestingly, the purely lytic phage strategy and PtW both result in stable bacteria coexistence at oligotrophic conditions. The PtL model facilitates stable bacterial coexistence over a large range of stable and fluctuating resource inflow. An increase in bacterial growth rate results in a higher resilience to resource variability for the PtL and the lytic infection model. We propose that both temperate phage strategies represent different mechanisms of phages coping with environmental variability. Our study demonstrates how phage strategies can maintain bacterial coexistence in constant and fluctuating environments.
Collapse
Affiliation(s)
- Esther Voigt
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Björn C Rall
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Plewniak F, Crognale S, Bruneel O, Sismeiro O, Coppée JY, Rossetti S, Bertin P. Metatranscriptomic outlook on green and brown food webs in acid mine drainage. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:606-615. [PMID: 33973709 DOI: 10.1111/1758-2229.12958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainages (AMDs), metal-rich acidic effluents generated by mining activities, are colonized by prokaryotic and eukaryotic microorganisms widely distributed among different phyla. We compared metatranscriptomic data from two sampling stations in the Carnoulès AMD and from a third station in the nearby Amous River, focussing on processes involved in primary production and litter decomposition. A synergistic relationship between the green and brown food webs was favoured in the AMD sediments by the low carbon content and the availability of mineral nutrients: primary production of organic matter would benefit C-limited decomposers whose activity of organic matter mineralization would in turn profit primary producers. This balance could be locally disturbed by heterogeneous factors such as an input of plant debris from the riparian vegetation, strongly boosting the growth of Tremellales which would then outcompete primary producers. In the unpolluted Amous River on the contrary, the competition for limited mineral nutrients was dominated by the green food web, fish and bacterivorous protists having a positive effect on phytoplankton. These results suggest that in addition to direct effects of low pH and metal contamination, trophic conditions like carbon or mineral nutrient limitations also have a strong impact on assembly and activities of AMDs' microbial communities.
Collapse
Affiliation(s)
- Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS - University of Strasbourg, Strasbourg, France
| | - Simona Crognale
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Odile Bruneel
- HydroSciences Montpellier, University of Montpellier - CNRS - IRD, Montpellier, France
| | - Odile Sismeiro
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
- Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Paris, France
| | - Simona Rossetti
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Philippe Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS - University of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Garlapati D, Kumar BC, Muthukumar C, Madeswaran P, Ramu K, Murthy MVR. Assessing the in situ bacterial diversity and composition at anthropogenically active sites using the environmental DNA (eDNA). MARINE POLLUTION BULLETIN 2021; 170:112593. [PMID: 34126444 DOI: 10.1016/j.marpolbul.2021.112593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, we identified the in situ bacterial groups and their community structure in coastal waters influenced by anthropogenic inputs. The use of environmental DNA (eDNA) and high throughput sequencing (HTS) were employed to derive accurate and reliable information on bacterial abundance. The V3 and V4 hypervariable regions of the 16S rRNA gene were amplified and the sequences were clustered into operational taxonomic units to analyze the site-specific variations in community composition. The percentage composition within the bacterial orders varied significantly among nearshore anthropogenic hotspots and offshore (5 km) samples. The microbial network constructed taking the bacterial abundance as nodes displayed strong positive and negative correlations within the bacterial families. Overall, the use of eDNA coupled with HTS is an incredible means for monitoring and assessing the abundance of bacterial communities and also serves as a biomonitoring tool to understand the degree of anthropogenic contamination in coastal waters.
Collapse
Affiliation(s)
- Deviram Garlapati
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India.
| | - B Charan Kumar
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - C Muthukumar
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - P Madeswaran
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - K Ramu
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| |
Collapse
|
18
|
Haubrock PJ, Balzani P, Matsuzaki SIS, Tarkan AS, Kourantidou M, Haase P. Spatio-temporal niche plasticity of a freshwater invader as a harbinger of impact variability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145947. [PMID: 33676206 DOI: 10.1016/j.scitotenv.2021.145947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 05/25/2023]
Abstract
Invasive alien fishes have detrimental ecological effects on aquatic ecosystems and the services they provide. Impacts from an invasion in a single ecosystem may differ across space and time due to variability in prey availability and environmental conditions. We hypothesize that such variability can be profound, even within a single ecosystem. Stable isotopes analysis (SIA) is commonly used to quantitatively describe the trophic niche of a species. However, spatial and temporal variability in occupied niches are often not incorporated into management strategies and policy options. Here, we used long-term monitoring data to investigate the invasion stage as well as SIA to analyse the trophic niche of the invasive channel catfish Ictalurus punctatus in Lake Kasumigaura (Japan), a long-term ecological research site (LTER), across distant sampling sites and years. We found a significant spatio-temporal variability in relative growth and isotopic niche occupation. Moreover, we defined a new index, the Isotopic Plasticity Index (IPI), which is the ratio between core and total home range of an occupied isotopic niche, to be used as a proxy for the trophic niche stretch or density. We found that this IPI varied considerably, confirming the spatio-temporal variability in trophic niches, suggesting the IPI to be an adequate new isotopic metric. Our results further provide evidence for the existence of variation across invaded landscapes, implying heterogeneous impacts on recipient native communities. Therefore, our work emphasizes the importance of exploring trophic plasticity in feeding ecology and growth as such information enables a better understanding of impacts and can inform the design and implementation of effective management responses.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Paride Balzani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Shin-Ichiro S Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Ali Serhan Tarkan
- Muğla Sıtkı Koçman University, Faculty of Fisheries, Muğla, Turkey; University of Łódź, Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, Łódź, Poland
| | - Melina Kourantidou
- Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, USA; Hellenic Center for Marine Research, Institute of Marine Biological Resources and Inland Waters, Athens 164 52, Greece; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, 6705 Esbjerg Ø, Denmark
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg Essen, Faculty of Biology, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
19
|
Keller A, McFrederick QS, Dharampal P, Steffan S, Danforth BN, Leonhardt SD. (More than) Hitchhikers through the network: the shared microbiome of bees and flowers. CURRENT OPINION IN INSECT SCIENCE 2021; 44:8-15. [PMID: 32992041 DOI: 10.1016/j.cois.2020.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
Growing evidence reveals strong overlap between microbiomes of flowers and bees, suggesting that flowers are hubs of microbial transmission. Whether floral transmission is the main driver of bee microbiome assembly, and whether functional importance of florally sourced microbes shapes bee foraging decisions are intriguing questions that remain unanswered. We suggest that interaction network properties, such as nestedness, connectedness, and modularity, as well as specialization patterns can predict potential transmission routes of microbes between hosts. Yet microbial filtering by plant and bee hosts determines realized microbial niches. Functionally, shared floral microbes can provide benefits for bees by enhancing nutritional quality, detoxification, and disintegration of pollen. Flower microbes can also alter the attractiveness of floral resources. Together, these mechanisms may affect the structure of the flower-bee interaction network.
Collapse
Affiliation(s)
- Alexander Keller
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Center for Computational and Theoretical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany.
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, CA 92501, USA
| | - Prarthana Dharampal
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shawn Steffan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; USDA-ARS, Vegetable Crops Research Unit, Madison, Wisconsin, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Sara D Leonhardt
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
20
|
A primer of host-plant specialization in bees. Emerg Top Life Sci 2020; 4:7-17. [PMID: 32558903 DOI: 10.1042/etls20190118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022]
Abstract
The bee-flower biological association is one of the most famous examples of insect-plant interactions, and it is axiomatic that these are of critical importance for sustaining thriving terrestrial ecosystems. Yet, the most familiar associations are often artificially managed agricultural ecosystems, reflecting an exceptionally narrow range of bee species (often only one) and a concomitantly restricted range of associated behaviors, morphologies, and mechanisms tied to pollination. Here we provide a brief account of the range of bee-floral associations encompassing floral specialization in terms of diet, behavior, and morphology. These natural associations not only promote healthy ecosystems, but also can be integrated in sustainable ways for more efficient pollination of crops by targeting bee species whose diets, behaviors, and pollen-gathering structures evolved precisely to visit such floral species rather than less efficient, and often non-native, generalists that are otherwise exploited for such purposes.
Collapse
|
21
|
Pollierer MM, Scheu S, Tiunov AV. Isotope analyses of amino acids in fungi and fungal feeding Diptera larvae allow differentiating ectomycorrhizal and saprotrophic fungi‐based food chains. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
| |
Collapse
|
22
|
Salamon J, Wissuwa J, Frank T, Scheu S, Potapov AM. Trophic level and basal resource use of soil animals are hardly affected by local plant associations in abandoned arable land. Ecol Evol 2020; 10:8279-8288. [PMID: 32788978 PMCID: PMC7417231 DOI: 10.1002/ece3.6535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 12/05/2022] Open
Abstract
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon-dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso- and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14-16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food-web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co-occurring plants, which was particularly evident for Lasius, an aphid-associated ant genus. Trophic levels and trophic-chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso- and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.
Collapse
Affiliation(s)
- Jörg‐Alfred Salamon
- Institute of Ecology and Evolution & Field Station SchapenUniversity of Veterinary Medicine HannoverHannoverGermany
- Department für Integrative Biologie und BiodiversitätsforschungInstitut für ZoologieUniversität für Bodenkultur WienWienAustria
| | - Janet Wissuwa
- Department für Integrative Biologie und BiodiversitätsforschungInstitut für ZoologieUniversität für Bodenkultur WienWienAustria
| | - Thomas Frank
- Department für Integrative Biologie und BiodiversitätsforschungInstitut für ZoologieUniversität für Bodenkultur WienWienAustria
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GoettingenGoettingenGermany
- Centre of Biodiversity and Sustainable Land UseGöttingenGermany
| | - Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GoettingenGoettingenGermany
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
| |
Collapse
|
23
|
Steffan SA, Dharampal PS, Danforth BN, Gaines-Day HR, Takizawa Y, Chikaraishi Y. Omnivory in Bees: Elevated Trophic Positions among All Major Bee Families. Am Nat 2019; 194:414-421. [DOI: 10.1086/704281] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Abstract
D. melanogaster ingests microorganisms growing within its rotting vegetation diet. Some of these microbes form associations with flies, while others pass through the gut with meals. Fly-microbe-diet interactions are dynamic, and changes to the fly culture medium can influence microbial growth in the overall environment. In turn, these alterations in microbial growth may not only impact the nutritional value of fly meals but also modulate behavior and health, at least in part due to direct contributions to fly nutrition. The interactive ecology between flies, microbes, and their environment can cause a specific microbe to be either beneficial or detrimental to fly life span, indicating that the environment should be considered a key influential factor in host-microbe interactions. Microbes can extend Drosophila melanogaster life span by contributing to the nutritional value of malnourishing fly culture medium. The beneficial effect of microbes during malnutrition is dependent on their individual ability to proliferate in the fly environment and is mimicked by lifelong supplementation of equivalent levels of heat-killed microbes or dietary protein, suggesting that microbes can serve directly as a protein-rich food source. Here, we use nutritionally rich fly culture medium to demonstrate how changes in dietary composition influence monocolonized fly life span; microbes that extend fly life span on malnourishing diets can shorten life on rich diets. The mechanisms employed by microbes to affect host health likely differ on low- or high-nutrient diets. Our results demonstrate how Drosophila-associated microbes can positively or negatively influence fly life span depending on the nutritional environment. Although controlled laboratory environments allow focused investigations on the interaction between fly microbiota and nutrition, the relevance of these studies is not straightforward, because it is difficult to mimic the nutritional ecology of natural Drosophila-microbe interactions. As such, caution is needed in designing and interpreting fly-microbe experiments and before categorizing microbes into specific symbiotic roles based on results obtained from experiments testing limited conditions.
Collapse
|
25
|
Dharampal PS, Carlson C, Currie CR, Steffan SA. Pollen-borne microbes shape bee fitness. Proc Biol Sci 2019; 286:20182894. [PMID: 31185869 PMCID: PMC6571465 DOI: 10.1098/rspb.2018.2894] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 01/15/2023] Open
Abstract
Teeming within pollen provisions are diverse communities of symbiotic microbes, which provide a variety of benefits to bees. Microbes themselves may represent a major dietary resource for developing bee larvae. Despite their apparent importance in sustaining bee health, evidence linking pollen-borne microbes to larval health is currently lacking. We examined the effects of microbe-deficient diets on the fitness of larval mason bees. In a series of diet manipulations, microbe-rich maternally collected pollen provisions were replaced with increasing fractions of sterilized, microbe-deficient pollen provisions before being fed to developing larvae. Convergent findings from amino acid and fatty acid trophic biomarker analyses revealed that larvae derived a substantial amount of nutrition from microbial prey and occupied a significantly higher trophic position than that of strict herbivores. Larvae feeding on increasingly sterile diets experienced significant adverse effects on growth rates, biomass and survivorship. When completely deprived of pollen-borne microbes, larvae consistently exhibited marked decline in fitness. We conclude that microbes associated with aged pollen provisions are central to bee health, not only as nutritional mutualists, but also as a major dietary component. In an era of global bee decline, the conservation of such bee-microbe interactions may represent an important facet of pollinator protection strategies.
Collapse
Affiliation(s)
| | - Caitlin Carlson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin, Madison, WI, USA
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, USA
| |
Collapse
|