1
|
Tanaka A, Ueda R, Udagawa C, Omi T, Kihara Y, Hayama SI. Individual identification of sika deer (Cervus nippon) using short tandem repeat analysis for investigating illegal carcass disposal in Japan. PLoS One 2025; 20:e0321305. [PMID: 40245032 PMCID: PMC12005556 DOI: 10.1371/journal.pone.0321305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
The population of Japanese sika deer (Cervus nippon) are controlled by hunting to prevent damage to various crops in many areas in Japan. Hunters are subsidized by submitting the tail to the local government; animal carcasses must be properly disposed of after the hunt, and abandonment of hunted deer in the field is prohibited by law. However, there have been many carcasses of sika deer being abandoned without proper disposal. In such cases, individual identification by DNA analysis is required to match the abandoned deer and submitted tail and identify the suspect. When identifying individual wildlife by DNA analysis, it is crucial to select appropriate markers that consider both the procedure of the analysis and the animal species. To evaluate availability of Short Tandem Repeat (STR) analysis for the identification of sika deer, this study aimed to construct an STR database for sika deer in Japan and to evaluate the discrimination power of STR markers, using an identification kit for a closely related species of cattle and STR markers of the sika deer. The results showed polymorphism at six STR loci from the Bovine Genotypes Panel 3.1 Kit and two STR markers for sika deer, suggesting that these loci may be useful for sika deer identification. The coincidence rate for the three STR loci (CSSM019, TGLA53, ETH10) was 7.63 × 10-⁴, which was considered sufficient for identification of the sika deer population. This study was the first to evaluate the availability of sika deer STR analysis for individual identification in Japan and was expected to have applications in crime scene and wildlife forensics.
Collapse
Affiliation(s)
- Aki Tanaka
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Reina Ueda
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Chihiro Udagawa
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Toshinori Omi
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuko Kihara
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shin-ichi Hayama
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
2
|
Yugovich O, Bunce M, Harbison SA. Point-of-need species identification using non-PCR DNA-based approaches to combat wildlife crime. Forensic Sci Int Genet 2025; 78:103278. [PMID: 40250151 DOI: 10.1016/j.fsigen.2025.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/20/2025]
Abstract
Wildlife crime, defined as any unlawful exploitation and trade of wildlife, is a lucrative illegal global industry, along with narcotics and weapons trafficking. It encompasses the harvest, transport, exchange, and end use of wildlife or wildlife-derived products. Regulated internationally by the Convention on the International Trade in Endangered Species of Flora and Fauna (CITES, 1973), wildlife crime is primarily detected using morphological or DNA sequencing methods. However, there is a growing demand for rapid, portable, and cost-effective screening tools to bypass time-consuming workflows and specialist laboratory equipment. Point-of-need testing, particularly at wildlife hotspots like international borders, offers a promising solution for the swift detection of illegal activities. Isothermal amplification methods such as loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), and recombinase polymerase amplification (RPA), are favoured for their low resource needs compared to traditional PCR. These methods can be combined with target detection methods such as clustered regularly interspaced short palindromic repeats (CRISPR) and aptamers to enhance sensitivity. Integrating these methods with others, such as lateral flow assays (LFA) and microfluidic devices, simplifies sample preparation and visualisation. Already established in disease diagnosis and food safety, these innovations in genetic testing provide rapid, on-site detection. When applied to wildlife crime, they can serve as tools to complement traditional PCR and sequencing methods. This review explores how non-PCR based approaches could offer faster, simpler, and more cost-effective solutions to combat wildlife crime.
Collapse
Affiliation(s)
- O Yugovich
- Forensic Science Programme, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - M Bunce
- Minderoo Foundation, Perth, Australia
| | - S A Harbison
- Forensic Science Programme, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand.
| |
Collapse
|
3
|
Pienaar M, Dadour IR. Post-mortem interval determinations using insects collected from illegally hunted and dehorned rhinoceros in the Republic of South Africa from 2014 to 2021. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:58-68. [PMID: 39380536 PMCID: PMC11793131 DOI: 10.1111/mve.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/12/2024] [Indexed: 10/10/2024]
Abstract
Wildlife forensic science is a growing research field globally with application in criminal cases of illegal hunting requiring an estimate of time of death based on insect fauna. The techniques and procedures of forensic entomology acquired over the last 40 years, used in legal cases relating to human remains, can be adapted to decomposing wildlife. Research on carrion utilising the rate of development of insect immatures provides a biological clock from which a minimum post-mortem interval (minPMI) can be derived. The following study concerns 19 rhinoceros that were illegally killed and dehorned in the Republic of South Africa between 2014 and 2021. The paper details 74 samples of insect evidence collected from these rhinoceros remains from which an accurate estimate of their PMI was calculated. The specimens comprised 18 species from 12 families belonging to three insect orders. Many Dipteran and Coleopteran species were found on and around each carcass. The species of fly larvae (family Calliphoridae) used in each case to estimate the PMI are as follows: Chrysomya marginalis (Wiedemann) (13 cases), Chrysomya chloropyga (Wiedemann) (2 cases), Chrysomya albiceps (Wiedemann) (1 case) and Chrysomya megacephala (Fabricius) (1 case). Two species of Coleoptera from the family Dermestidae and Silphidae involved Dermestes maculatus (DeGeer) and Thanatophilus micans (Fabricius), respectively, also were involved in one PMI estimation each. The paper highlights opportunities for improving our global understanding of gaps in procedures and training related to wildlife criminal cases.
Collapse
Affiliation(s)
- Melanie Pienaar
- Forensic Science LaboratoryVictim Identification CenterPretoriaSouth Africa
| | - Ian R. Dadour
- Source Certain InternationalWangaraWestern AustraliaAustralia
- Discipline of Medical, Molecular & Forensic SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
4
|
Baxter JR, Kotze A, de Bruyn M, Matlou K, Labuschagne K, Mwale M. DNA barcoding of southern African mammal species and construction of a reference library for forensic application. Genome 2024; 67:378-391. [PMID: 38996389 DOI: 10.1139/gen-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Combating wildlife crimes in South Africa requires accurate identification of traded species and their products. Diagnostic morphological characteristics needed to identify species are often lost when specimens are processed and customs officials lack the expertise to identify species. As a potential solution, DNA barcoding can be used to identify morphologically indistinguishable specimens in forensic cases. However, barcoding is hindered by the reliance on comprehensive, validated DNA barcode reference databases, which are currently limited. To overcome this limitation, we constructed a barcode library of cytochrome c oxidase subunit 1 and cytochrome b sequences for threatened and protected mammals exploited in southern Africa. Additionally, we included closely related or morphologically similar species and assessed the database's ability to identify species accurately. Published southern African sequences were incorporated to estimate intraspecific and interspecific variation. Neighbor-joining trees successfully discriminated 94%-95% of the taxa. However, some widespread species exhibited high intraspecific distances (>2%), suggesting geographic sub-structuring or cryptic speciation. Lack of reliable published data prevented the unambiguous discrimination of certain species. This study highlights the efficacy of DNA barcoding in species identification, particularly for forensic applications. It also highlights the need for a taxonomic re-evaluation of certain widespread species and challenging genera.
Collapse
Affiliation(s)
- J R Baxter
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - A Kotze
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - M de Bruyn
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - K Matlou
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - K Labuschagne
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| | - M Mwale
- South African National Biodiversity Institute, PO BOX 754, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Yeo D, Chan AHJ, Hiong KC, Ong J, Ng JY, Lim JM, Zhang W, Lim SR, Fernandez CJ, Wong AMS, Lee BPYH, Khoo MDY, Cheng TXW, Lim BTM, Yeo HHT, Tan MMQ, Sng WBG, Adam SS, Ang WF, How CB, Xie R, Wasser SK, Finch KN, Loo AHB, Yap HH, Leong CC, Er KBH. Uncovering the magnitude of African pangolin poaching with extensive nanopore DNA genotyping of seized scales. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14162. [PMID: 37551767 DOI: 10.1111/cobi.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Trade in pangolins is illegal, and yet tons of their scales and products are seized at various ports. These large seizures are challenging to process and comprehensively genotype for upstream provenance tracing and species identification for prosecution. We implemented a scalable DNA barcoding pipeline in which rapid DNA extraction and MinION sequencing were used to genotype a substantial proportion of pangolin scales subsampled from 2 record shipments seized in Singapore in 2019 (37.5 t). We used reference sequences to match the scales to phylogeographical regions of origin. In total, we identified 2346 cytochrome b (cytb) barcodes of white-bellied (Phataginus tricuspis) (from 1091 scales), black-bellied (Phataginus tetradactyla) (227 scales), and giant (Smutsia gigantea) (1028 scales) pangolins. Haplotype diversity was higher for P. tricuspis scales (121 haplotypes, 66 novel) than that for P. tetradactyla (22 haplotypes, 15 novel) and S. gigantea (25 haplotypes, 21 novel) scales. Of the novel haplotypes, 74.2% were likely from western and west-central Africa, suggesting potential resurgence of poaching and newly exploited populations in these regions. Our results illustrate the utility of extensively subsampling large seizures and outline an efficient molecular approach for rapid genetic screening that should be accessible to most forensic laboratories and enforcement agencies.
Collapse
Affiliation(s)
- Darren Yeo
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Amy H J Chan
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Kum Chew Hiong
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Jasmine Ong
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Jun Yuan Ng
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Jie Min Lim
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Wendy Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sara R Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Anna M-S Wong
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Max D Y Khoo
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Bryan T M Lim
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Maxine M Q Tan
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Wendy B G Sng
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Shaun S Adam
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Wee Foong Ang
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Choon Beng How
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Renhui Xie
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Samuel K Wasser
- Department of Biology, Center for Environmental Forensic Science, University of Washington, Seattle, Washington, USA
| | - Kristen N Finch
- Department of Biology, Center for Environmental Forensic Science, University of Washington, Seattle, Washington, USA
| | - Adrian H B Loo
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Him Hoo Yap
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Kenneth B H Er
- Centre for Wildlife Forensics, National Parks Board, Singapore
| |
Collapse
|
6
|
Kanthaswamy S. Review: Wildlife forensic genetics-Biological evidence, DNA markers, analytical approaches, and challenges. Anim Genet 2024; 55:177-192. [PMID: 38123142 DOI: 10.1111/age.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Wildlife-related crimes are the second most prevalent lawbreaking offense globally. This illicit trade encompasses hunting, breeding and trafficking. Besides diminishing many species and their habitats and ecosystems, hindering the economic development of local communities that depend on them, undermining the rule of law and financing terrorism, various cross-species transmissions (zoonoses) of pathogens, including COVID-19, can be attributed to wildlife crimes. Wildlife forensics applies interdisciplinary scientific analyses to support law enforcement in investigating wildlife crimes. Its main objectives are to identify the taxonomic species in question, determine if a crime has been committed, link a suspect to the crime and support the conviction and prosecution of the perpetrator. This article reviews wildlife crime and its implications, wildlife forensic science investigation, common forms of wildlife biological evidence, including DNA, wildlife DNA techniques and challenges in wildlife forensic genetics. The article also reviews the contributions of genetic markers such as short tandem repeat (STR) and mitochondrial DNA (mtDNA) markers, which provide the probative genetic data representing the bulk of DNA evidence for solving wildlife crime. This review provides an overview of wildlife DNA databases, which are critical for searching and matching forensic DNA profiles and sequences and establishing how frequent forensic DNA profiles and sequences are in a particular population or geographic region. As such, this review will contain an in-depth analysis of the current status of wildlife forensic genetics, and it will be of general interest to wildlife and conservation biologists, law enforcement officers, and academics interested in combating crimes against wildlife using animal forensic DNA methods.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- School of Interdisciplinary Forensics, Arizona State University, Tempe, Arizona, USA
- California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
7
|
Hebenstreitova K, Salaba O, Trubac J, Kufnerova J, Vanek D. The Influence of Tanning Chemical Agents on DNA Degradation: A Robust Procedure for the Analysis of Tanned Animal Hide-A Pilot Study. Life (Basel) 2024; 14:147. [PMID: 38276276 PMCID: PMC10817434 DOI: 10.3390/life14010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Illegal wildlife trade is currently on the rise, and it is becoming one of the most lucrative crime sectors. The rarer the species, the higher the demand. Wildlife trade falls under international regulations, such as the CITES convention. Proving that this convention has been violated is a complex process and can be very difficult to do. DNA analysis methods remain (in many cases) the only way to determine whether a certain specimen originated from a protected animal species, a specific individual, or a species in which it is legal to trade. Tanned animal hides are a specific type of specimen. With this type of biological material, obtaining amplifiable DNA is often difficult. This pilot study aimed to map the effect of the chemicals used in the tanning process on the degradation of the DNA yielded from such samples. The DNA was quantified using two different approaches: qPCR and Qubit fluorometry. The degree of DNA fragmentation was assessed by determining the degradation index. The results indicate that reagents containing chromium have the greatest influence on DNA degradation. However, by using the presented protocol, enough amplifiable DNA can be obtained from hides treated with aluminum-based reagents.
Collapse
Affiliation(s)
- Kristyna Hebenstreitova
- Institute for Environmental Sciences, Charles University, Benátská 2, 128 00 Prague, Czech Republic
| | - Ondrej Salaba
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Jakub Trubac
- Institute for Environmental Sciences, Charles University, Benátská 2, 128 00 Prague, Czech Republic
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Jitka Kufnerova
- Institute for Environmental Sciences, Charles University, Benátská 2, 128 00 Prague, Czech Republic
- CRL Radiocarbon Laboratory, Department of Radiation Dosimetry, Nuclear Physic Institute of the Czech Academy of Sciences, Na Truhlářce 38, 180 86 Prague, Czech Republic
| | - Daniel Vanek
- Institute for Environmental Sciences, Charles University, Benátská 2, 128 00 Prague, Czech Republic
- Forensic DNA Service, Budínova 2, 180 81 Prague, Czech Republic
- Bulovka University Hospital, Budínova 2, 180 81 Prague, Czech Republic
- 2nd Faculty of Medicine, Charles University, V Úvalu 84, 150 00 Prague, Czech Republic
| |
Collapse
|
8
|
Urban L, Perlas A, Francino O, Martí‐Carreras J, Muga BA, Mwangi JW, Boykin Okalebo L, Stanton JL, Black A, Waipara N, Fontsere C, Eccles D, Urel H, Reska T, Morales HE, Palmada‐Flores M, Marques‐Bonet T, Watsa M, Libke Z, Erkenswick G, van Oosterhout C. Real-time genomics for One Health. Mol Syst Biol 2023; 19:e11686. [PMID: 37325891 PMCID: PMC10407731 DOI: 10.15252/msb.202311686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Collapse
Affiliation(s)
- Lara Urban
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Albert Perlas
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
| | - Olga Francino
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Martí‐Carreras
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Brenda A Muga
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | | | - Claudia Fontsere
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
| | - David Eccles
- Hugh Green Cytometry CentreMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Harika Urel
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Tim Reska
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Hernán E Morales
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
- Department of Biology, Ecology BuildingLund UniversityLundSweden
| | - Marc Palmada‐Flores
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
| | - Tomas Marques‐Bonet
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAGCentre of Genomic AnalysisBarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Zane Libke
- Instituto Nacional de BiodiversidadQuitoEcuador
- Fundación Sumak Kawsay In SituCantón MeraEcuador
| | | | | |
Collapse
|
9
|
Cardinali I, Tancredi D, Lancioni H. The Revolution of Animal Genomics in Forensic Sciences. Int J Mol Sci 2023; 24:ijms24108821. [PMID: 37240167 DOI: 10.3390/ijms24108821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, the coexistence between humans and domestic animals (especially dogs and cats) has become a common scenario of daily life. Consequently, during a forensic investigation in civil or criminal cases, the biological material from a domestic animal could be considered "evidence" by law enforcement agencies. Animal genomics offers an important contribution in attacks and episodes of property destruction or in a crime scene where the non-human biological material is linked to the victim or perpetrator. However, only a few animal genetics laboratories in the world are able to carry out a valid forensic analysis, adhering to standards and guidelines that ensure the admissibility of data before a court of law. Today, forensic sciences focus on animal genetics considering all domestic species through the analysis of STRs (short tandem repeats) and autosomal and mitochondrial DNA SNPs (single nucleotide polymorphisms). However, the application of these molecular markers to wildlife seems to have gradually gained a strong relevance, aiming to tackle illegal traffic, avoid the loss of biodiversity, and protect endangered species. The development of third-generation sequencing technologies has glimmered new possibilities by bringing "the laboratory into the field", with a reduction of both the enormous cost management of samples and the degradation of the biological material.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
10
|
A forensically validated genetic toolkit for the species and lineage identification of the highly trafficked shingleback lizard (Tiliqua rugosa). Forensic Sci Int Genet 2023; 62:102784. [PMID: 36265334 DOI: 10.1016/j.fsigen.2022.102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/15/2023]
Abstract
Shingleback lizards (Tiliqua rugosa) are among the most trafficked native fauna from Australia in the illegal pet trade. There are four morphologically recognised subspecies of shinglebacks, all with differing overseas market values. Shinglebacks from different geographic locales are often trafficked and housed together, which may complicate identifying the State jurisdiction where the poaching event occurred. Additionally, shinglebacks can be housed and trafficked with other species within the same genus, which may complicate DNA analysis, especially in scenarios where indirect evidence (e.g. swabs, faeces) is taken for analysis. In this study, a forensic genetic toolkit was designed and validated to target shingleback DNA for species identification and geographic origin. To do this, field sampling across Australia was conducted to expand the phylogeographic sampling of shinglebacks across their species range and include populations suspected to be poaching hotspots. A commonly used universal reptile primer set (ND4/LEU) was then validated for use in forensic casework related to the genus Tiliqua. Two additional ND4 primer sets were designed and validated. The first primer set was designed and demonstrated to preferentially amplify an ∼510 bp region of the genus Tiliqua over other reptiles and builds on existing data to expand the available phylogeographic database. The second primer set was designed and demonstrated to solely amplify an ∼220 bp region of T. rugosa ND4 over any other reptile species. Through the validation process, all primers were demonstrated to amplify T. rugosa DNA from a variety of sample types (e.g. degraded, low quality and mixed). Two of the primer sets were able to distinguish the genetic lineage of T. rugosa from the phylogeographic database. This work provides the first forensically validated toolkit and phylogeographic genetic database for Squatmate lizards.
Collapse
|
11
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
12
|
Kerry RG, Montalbo FJP, Das R, Patra S, Mahapatra GP, Maurya GK, Nayak V, Jena AB, Ukhurebor KE, Jena RC, Gouda S, Majhi S, Rout JR. An overview of remote monitoring methods in biodiversity conservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80179-80221. [PMID: 36197618 PMCID: PMC9534007 DOI: 10.1007/s11356-022-23242-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | | | - Rajeswari Das
- Department of Soil Science and Agricultural Chemistry, School of Agriculture, GIET University, Gunupur, Rayagada, Odisha 765022 India
| | - Sushmita Patra
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005 India
| | - Vinayak Nayak
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Ram Chandra Jena
- Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Sushanto Gouda
- Department of Zoology, Mizoram University, Aizawl, 796009 India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Jyoti Ranjan Rout
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha 752101 India
| |
Collapse
|
13
|
Mukantayev K, Kanayev D, Zhumabekova S, Shevtsov A, Tursunov K, Mukanov K, Ramankulov Y. Optimization of polymerase chain reaction for the identification of Roe deer, Saiga, and Siberian stag living in Kazakhstan. Vet World 2022; 15:2067-2071. [PMID: 36313838 PMCID: PMC9615498 DOI: 10.14202/vetworld.2022.2067-2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: One of the reasons for the decline in the number of wild species of artiodactyls is poaching and the illegal trading of animal products. Molecular genetic identification of animals from a biological sample effectively proves poaching cases and illegal trade of animal products. This study aimed to develop a polymerase chain reaction (PCR) test that allows for species identification of artiodactyl animals that are most often subject to poaching. Materials and Methods: Genomic DNA was extracted from meat and blood samples of animals killed by poachers using commercial kits. Three pairs of primers were designed and used to amplify the cytochrome b gene fragment of Roe deer, Saiga antelope, and Siberian stag. Results: The proposed protocol allows amplification of specific PCR products of 542 bp with Roe deer DNA, 587 bp with Saiga DNA, and 525 bp with Siberian stag DNA. Specificity analysis showed no cross activity with DNA from other animal species. The detection limit of PCR ranged from 15.6 pg to 1.9 pg of DNA in 25 mL of the reaction mixture. Conclusion: Sequencing the amplified products and subsequent comparison with the corresponding reference sequence showed a similarity ranging from 99.99% to 100%. The PCR based on the developed primers demonstrated high sensitivity and specificity when using DNA from homogeneous and heterogeneous animals.
Collapse
Affiliation(s)
- Kanatbek Mukantayev
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Darkhan Kanayev
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Sholpan Zhumabekova
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Alexander Shevtsov
- Laboratory of Applied Genetics, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Kanat Tursunov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Kasim Mukanov
- Laboratory of Applied Genetics, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Yerlan Ramankulov
- Laboratory of Applied Genetics, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| |
Collapse
|
14
|
Population dynamics and genetic connectivity in recent chimpanzee history. CELL GENOMICS 2022; 2:None. [PMID: 35711737 PMCID: PMC9188271 DOI: 10.1016/j.xgen.2022.100133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/29/2021] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.
Collapse
|
15
|
Zenke P, Zorkóczy OK, Lehotzky P, Ózsvári L, Pádár Z. Molecular Sexing and Species Detection of Antlered European Hunting Game for Forensic Purposes. Animals (Basel) 2022; 12:ani12030246. [PMID: 35158570 PMCID: PMC8833381 DOI: 10.3390/ani12030246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The reasons behind illegal hunting can be widely different. There are also tricky methods that hunters use in the attempt to legalize their illegally-acquired trophies, specifically, introducing them in later seasons, and registering the eviscerated corpses as hinds. During certain periods of the year, hunters are only able to acquire a license for the shooting of female deer exclusively, with the male-hunting season beginning later. The eviscerated and decapitated carcass of the animal delivered to the wild game processing house cold store can be falsely registered as a female based on phenotype. If the hunting association suspects that the animal’s sex has been falsely reported, a forensic genetic investigation can be proposed. In other criminal events, there are no carcasses at all. When several biological remains left on the crime scene need to be tested, a fast and cost-effective detection of a given species or species-group might be substantial before subsequent analysis. Therefore, sex and species detection can provide an early-stage credibility to the resolution of illegal activities related to trophy animals, and additionally may disclose potential poaching disputes. Abstract Molecular sexing techniques are widely applied in conservation biology, although the range of forensically validated methods is fairly limited. The primary aim of this work was to develop forensically validated assays, using two PCR panels for sex and species assignment for the abundant antlered European game species: red deer (Cervus elaphus), roe deer (Capreolus capreolus) and fallow deer (Dama dama). Segments of the SRY and Amelogenin X/Y genes for sex determination, additionally species-specific cytochrome b regions for species detection were targeted and separately amplified in two multiplex reactions. These assays can reliably analyze trace amounts of DNA. The results of both can easily be visualized and interpreted practically, either on agarose gel or by capillary electrophoresis. These simple, fast molecular assays are able to affect the early-stage resolution of disputed or unsolved poaching cases, without the need of individualization or sequencing of forensic samples.
Collapse
Affiliation(s)
- Petra Zenke
- Department of Animal Breeding and Genetics, University of Veterinary Medicine Budapest, István u. 2., H-1078 Budapest, Hungary;
- Correspondence:
| | - Orsolya Krisztina Zorkóczy
- Department of Animal Breeding and Genetics, University of Veterinary Medicine Budapest, István u. 2., H-1078 Budapest, Hungary;
| | - Pál Lehotzky
- Hungarian Hunters’ National Chamber, Medve u. 34-40., H-1027 Budapest, Hungary;
| | - László Ózsvári
- Department of Veterinary Forensics and Economics, University of Veterinary Medicine Budapest, István u. 2., H-1078 Budapest, Hungary;
| | - Zsolt Pádár
- Department of Forensic Medicine, Medical School, University of Pécs, Szigeti út 12., H-7624 Pecs, Hungary;
| |
Collapse
|
16
|
Combination of Multiple Microsatellite Analysis and Genome-Wide SNP Genotyping Helps to Solve Wildlife Crime: A Case Study of Poaching of a Caucasian tur ( Capra caucasica) in Russian Mountain National Park. Animals (Basel) 2021; 11:ani11123416. [PMID: 34944192 PMCID: PMC8697997 DOI: 10.3390/ani11123416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary DNA molecular techniques, including multiple microsatellite analysis and genome-wide SNP-genotyping, were used to unlock and prove the poaching of wild goats (Capra caucasica) in an area of the Caucasian mountains in Russia. Abstract Poaching is one of the major types of wildlife crime in Russia. Remnants of goats (presumably the wild endemic species, the Caucasian tur) were found in an area of the Caucasian mountains. The case study involves a suspected poacher whose vehicle was found to have two duffel bags containing pieces of a carcass, which he claimed was that of a goat from his flock. The aim of the forensic genetic analysis for this case was to (i) establish individual identity and (ii) perform species identification. DNA typing based on fourteen microsatellites revealed that STR-genotypes generated from pieces of evidence found at crime scene fully matched those obtained from the evidence seized from the suspect. The results of genome-wide SNP-genotyping, using Illumina Goat SNP50 BeadChip, provided evidence that the poached animal was a wild Caucasian tur (Capra caucasica). Thus, based on comprehensive molecular genetic analysis, evidence of poaching was obtained and sent to local authorities. To our knowledge, this case study is the first to attempt to use DNA chips in wildlife forensics of ungulates.
Collapse
|
17
|
Cruz CEF, Funkler GR, Zani ALS, Wagner PGC, Andretta I, Segura LN, Fagundes NJR. A Preliminary Assessment of the Potential Health and Genetic Impacts of Releasing Confiscated Passerines Into the Wild: A Reduced-Risk Approach. Front Vet Sci 2021; 8:679049. [PMID: 34708099 PMCID: PMC8542797 DOI: 10.3389/fvets.2021.679049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The illegal capture and trade of wild birds have long been threats to biodiversity. The rehabilitation and release of confiscated animals may be a useful conservation tool in species management. However, differences between populations regarding health (e.g., different pathogens) and adaptation (e.g., local adaptation) must be taken into account, since both can negatively impact the recipient population. In this pilot study, we used two of the most illegally trafficked Brazilian wild passerine species, namely the red-crested cardinal (Paroaria coronata) and green-winged saltator (Saltator similis) as case studies and assessed some of the health threats that the release of confiscated passerines may pose to free-living birds. We also investigated the level of difference in mitochondrial genetic structure among populations living in different ecoregions. Blood, feces, and oropharyngeal swabs from confiscated (n = 115) and free-living (n = 120) passerines from the release sites were tested for the Newcastle disease virus, Salmonella spp., and Mycoplasma gallisepticum. These are considered major avian diseases by the Brazilian National Avian Health Program. We analyzed mtDNA to study the difference in genetic structure between populations using samples from 127 free-living passerines. We found no evidence of the Newcastle disease virus or Salmonella spp. in confiscated or free-living passerines from either species. However, the levels of infection with M. galissepticum detected in our study for red-crested cardinals and green-winged saltators calls for a high degree of caution in captive release programs. The difference in genetic structure between populations occurring in different regions was low, and was not significant between those from the Pampa/Subtropical Grasslands region. These results suggest that it may be possible to establish a cost-effective and sensitive protocol for releasing confiscated songbirds, provided that further genome-wide studies indicate that the functional genetic diversity among (at least some of the) populations is also low.
Collapse
Affiliation(s)
- Cláudio E F Cruz
- Centro de Estudos em Manejo de Aves Silvestres, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo R Funkler
- Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório Porto Belo, Porto Alegre, Brazil
| | - André L S Zani
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo G C Wagner
- Centro de Triagem de Animais Silvestres, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Porto Alegre, Brazil
| | - Inês Andretta
- Laboratório de Ensino Zootécnico, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano N Segura
- Museo de La Plata, Sección Ornitología, Universidad Nacional de La Plata, La Plata, Argentina
| | - Nelson J R Fagundes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
18
|
Smart U, Cihlar JC, Budowle B. International Wildlife Trafficking: A perspective on the challenges and potential forensic genetics solutions. Forensic Sci Int Genet 2021; 54:102551. [PMID: 34134047 DOI: 10.1016/j.fsigen.2021.102551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
International wildlife trafficking (IWT) is a thriving and pervasive illegal enterprise that adversely affects modern societies. Yet, despite being globally recognized as a threat to biodiversity, national security, economy, and biosecurity, IWT remains largely unabated and is proliferating at an alarming rate. The increase in IWT is generally attributed to a lack of prioritization to curb wildlife crime through legal and scientific infrastructure. This review: (1) lays out the damaging scope and influence of IWT; (2) discusses the potential of DNA marker systems, barcodes, and emerging molecular technologies, such as long-read portable sequencing, to facilitate rapid, in situ identification of species and individuals; and (3) encourages initiatives that promote quality and innovation. Interdisciplinary collaboration promises to be one of the most effective ways forward to surmounting the complex scientific and legal challenges posed by IWT.
Collapse
Affiliation(s)
- Utpal Smart
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp, Bowie Blvd., Fort Worth, TX 76107, USA.
| | - Jennifer Churchill Cihlar
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp, Bowie Blvd., Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp, Bowie Blvd., Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| |
Collapse
|