1
|
Chen X, Xu H, Lin Y, Zhu B. Forensic stability evaluation of selected miRNA and circRNA markers in human bloodstained samples exposed to different environmental conditions. Forensic Sci Int 2024; 362:112148. [PMID: 39094222 DOI: 10.1016/j.forsciint.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Recently, RNA markers have been used to identify tissue origins of different kinds of body fluids. Herein, circRNA and miRNA markers were carried out to examine the presence or absence of peripheral blood (PB) in bloodstained samples exposed to different external environmental conditions, which mimicked PB samples left at the crime scenes. PB samples were placed on sterile swabs and then exposed to different high temperatures (37°C, 55°C and 95°C) and ultraviolet light irradiation for 0 d, 0.5 d, 1 d, 3 d, and 7 d, ultra-low and low temperatures (-80°C, -20°C, and 4°C) for 30 d, 180 d and 365 d and different kinds of disinfectants. Total RNA was extracted from bloodstained samples under the above different conditions, and the expressions of target RNAs (including miR16-5p, miR451a, circ0000095, and two reference genes RNU6b and 18 S rRNA) were detected by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. Results showed that these selected RNA markers could be successfully measured at all observation points with their unique degradation rates, which exhibited relative stability in degraded bloodstained samples exposed to different environmental conditions. This study provides insights into the applications of these studied miRNA and circRNA markers in forensic science.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yifeng Lin
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Hamza M, Sankhyan D, Shukla S, Pandey P. Advances in body fluid identification: MiRNA markers as powerful tool. Int J Legal Med 2024; 138:1223-1232. [PMID: 38467753 DOI: 10.1007/s00414-024-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.
Collapse
Affiliation(s)
- Mohd Hamza
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deeksha Sankhyan
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preeti Pandey
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
3
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Timo Risch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Department of Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
4
|
Zhang J, Liu K, Wang R, Chang J, Xu X, Du M, Ye J, Yang X. Transcriptomic changes and prediction of time since deposition of blood stains. Forensic Sci Int 2024; 355:111930. [PMID: 38271828 DOI: 10.1016/j.forsciint.2024.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
In forensics, it is important to determine the time since deposition (TSD) of bloodstains, one of the most common types of biological evidence in criminal cases. However, no effective TSD inference methods have been established despite extensive attempts in forensic science. Our study investigated the changes in the blood transcriptome over time, and we found that degradation could be divided into four stages (days 0-2, 4-14, 21-56, and 84-168) at 4 °C. A random forest prediction model based on these transcriptional changes was trained on experimental samples and tested in separate test samples. This model was able to successfully predict TSD (area under the curve [AUC] = 0.995, precision = 1, and recall = 1). Thus, this proof-of-concept pilot study has practical significance for assessing physical evidence. Meanwhile, 11 upregulated and 13 downregulated transcripts were identified as potential time-marker transcripts, laying a foundation for further development of TSD analysis methods in forensic science and crime scene investigation.
Collapse
Affiliation(s)
- Jin Zhang
- People's Public Security University of China, Beijing 100038, China; National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Kaihui Liu
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Ruijian Wang
- Forestry College of Beihua University, Jilin 132013, China
| | - Jingjing Chang
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Xiaoyu Xu
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Meng Du
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Jian Ye
- People's Public Security University of China, Beijing 100038, China; National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Xueying Yang
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
5
|
Suo L, Cheng J, Yuan H, Jiang Z, Tash D, Wang L, Cheng H, Zhang Z, Zhang F, Zhang M, Cao Z, Zhao R, Guan D. miR-26a/30d/152 are reliable reference genes for miRNA quantification in skin wound age estimation. Forensic Sci Res 2023; 8:230-240. [PMID: 38221964 PMCID: PMC10785593 DOI: 10.1093/fsr/owad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/23/2023] [Indexed: 01/16/2024] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are a class of small non-coding RNAs that exert their biological functions as negative regulators of gene expression. They are involved in the skin wound healing process with a dynamic expression pattern and can therefore potentially serve as biomarkers for skin wound age estimation. However, no reports have described any miRNAs as suitable reference genes (RGs) for miRNA quantification in wounded skin or samples with post-mortem changes. Here, we aimed to identify specific miRNAs as RGs for miRNA quantification to support further studies of skin wound age estimation. Overall, nine miRNAs stably expressed in mouse skin at certain posttraumatic intervals (PTIs) were preselected by next-generation sequencing as candidate RGs. These nine miRNAs and the commonly used reference genes (comRGs: U6, GAPDH, ACTB, 18S, 5S, LC-Ogdh) were quantitatively examined using quantitative real-time reverse-transcription polymerase chain reaction at different PTIs during skin wound healing in mice. The stabilities of these genes were evaluated using four independent algorithms: GeNorm, NormFinder, BestKeeper, and comparative Delta Ct. Stability was further evaluated in mice with different post-mortem intervals (PMIs). Overall, mmu-miR-26a-5p, mmu-miR-30d-5p, and mmu-miR-152-3p were identified as the most stable genes at both different PTIs and PMIs. These three miRNA RGs were additionally validated and compared with the comRGs in human samples. After assessing using one, two, or three miRNAs in combination for stability at different PTIs, PMIs, or in human samples, the set of miR-26a/30d/152 was approved as the best normalizer. In conclusion, our data suggest that the combination of miR-26a/30d/152 is recommended as the normalization strategy for miRNA qRT-PCR quantification in skin wound age estimation. KEY POINTS The small size of miRNAs makes them less susceptible to post-mortem autolysis or putrefaction, leading to their potential use in wound age estimation.Studying miRNAs as biological indicators of skin wound age estimation requires the selection and validation of stable reference genes because commonly used reference genes, such as U6, ACTB, GAPDH, 5S, 18S, and LC-Ogdh, are not stable.miR-26a/30d/152 are stable and reliable as reference genes and their use in combination is a recommended normalization strategy for miRNA quantitative analysis in wounded skin.
Collapse
Affiliation(s)
- Longlong Suo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jian Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Haomiao Yuan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhenfei Jiang
- Department of Road Traffic Accident Investigation, Academy of Forensic Science, Shanghai, China
| | - Dilichati Tash
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Autonomous Prefecture Public Security Bureau, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhongduo Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhipeng Cao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| |
Collapse
|
6
|
Hänggi NV, Bleka Ø, Haas C, Fonneløp AE. Quantitative PCR analysis of bloodstains of different ages. Forensic Sci Int 2023; 350:111785. [PMID: 37527614 DOI: 10.1016/j.forsciint.2023.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Abstract
An accurate method to estimate the age of a stain or the time since deposition (TsD) would represent an important tool in police investigations for evaluating the true relevance of a stain. In this study, two laboratories reproduced an mRNA-based method for TsD estimation published by another group. The qPCR-based assay includes four transcripts (B2M, LGALS2, CLC, and S100A12) and showed preferential degradation of the 5' end over the 3' end. In this study, the blood-specific marker ALAS2 was added to examine whether it would show the same degradation pattern. Based on our qPCR data several elastic net models with different penalty combinations were created, using training data from the two laboratories separately and combined. Each model was then used to estimate the age of bloodstains from two independent test sets each laboratory had prepared. The elastic net model built on both datasets with training samples up to 320 days old displayed the best prediction performance across all test samples (MAD=18.9 days). There was a substantial difference in the prediction performance for the two laboratories: Restricting TsD to up to 100 days for test data, one laboratory obtained an MAD of 2.0 days when trained on its own data, whereas the other laboratory obtained an MAD of 15 days.
Collapse
Affiliation(s)
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| | - Ane Elida Fonneløp
- Department of Forensic Sciences, Oslo University Hospital, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
7
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Guardado-Estrada M, Cárdenas-Monroy CA, Martínez-Rivera V, Cortez F, Pedraza-Lara C, Millan-Catalan O, Pérez-Plasencia C. A miRNome analysis at the early postmortem interval. PeerJ 2023; 11:e15409. [PMID: 37304870 PMCID: PMC10257396 DOI: 10.7717/peerj.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2023] [Indexed: 06/13/2023] Open
Abstract
The postmortem interval (PMI) is the time elapsing since the death of an individual until the body is examined. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI as they can better support degradation. In the present work, we analyzed the miRNome at early PMI in rats' skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 microarrays. We found 156 dysregulated miRNAs in rats' skeletal muscle at 24 h of PMI, out of which 84 were downregulated, and 72 upregulated. The miRNA most significantly downregulated was miR-139-5p (FC = -160, p = 9.97 × 10-11), while the most upregulated was rno-miR-92b-5p (FC = 241.18, p = 2.39 × 10-6). Regarding the targets of these dysregulated miRNAs, the rno-miR-125b-5p and rno-miR-138-5p were the miRNAs with more mRNA targets. The mRNA targets that we found in the present study participate in several biological processes such as interleukin secretion regulation, translation regulation, cell growth, or low oxygen response. In addition, we found a downregulation of SIRT1 mRNA and an upregulation of TGFBR2 mRNA at 24 h of PMI. These results suggest there is an active participation of miRNAs at early PMI which could be further explored to identify potential biomarkers for PMI estimation.
Collapse
Affiliation(s)
- Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christian A. Cárdenas-Monroy
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vanessa Martínez-Rivera
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Cortez
- Computational Genomics Division, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carlos Pedraza-Lara
- Laboratorio de Entomología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oliver Millan-Catalan
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Lee YR, Lee S, Kwon S, Lee J, Kang HG. Effect of environmental conditions on bloodstain metabolite analysis. ENVIRONMENTAL RESEARCH 2023; 216:114743. [PMID: 36356665 DOI: 10.1016/j.envres.2022.114743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Establishing a correlation between environmental variables and chemical change can significantly improve the quality of research in multiple fields. Among various environmental variables, temperature and humidity are closely related to the rate of chemical reactions. This study aimed to confirm changes in metabolite markers that were previously discovered in other temperature and humidity environment conditions and to confirm the possibility that they could act as markers. After blood collection from the subjects and bloodstain preparation, the quantitative values of the bloodstain metabolites were confirmed (when the age of the bloodstain was within a month) under eight environmental conditions (4 °C/30%, 4 °C/60%, 25 °C/30%, 25 °C/60%, 25 °C/90%, 40 °C/30%, 40 °C/60%, and 40 °C/90%). Age-of-bloodstain estimation models were constructed to confirm the applicability of bloodstain metabolites as markers for bloodstain age in various environments. The average concentration of metabolite markers exhibited a decreasing trend with the age of the bloodstain, which transformed into an increasing trend from day 7 onwards. In terms of temperature and humidity, 25 °C and 90%, respectively, showed the most dissimilar metabolite change pattern compared to other conditions. The age-of-bloodstain estimation models developed here have an R-square value of up to 0.92 for each condition and an R-square value of 0.71 when all environmental conditions were combined. The findings herein highlight the immense potential of blood metabolites for field application, confirming the possibility of predicting metabolite changes from the rates of their chemical reactions and validating the importance of metabolites as age-of-bloodstain markers under various environmental conditions.
Collapse
Affiliation(s)
- You-Rim Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Seungyeon Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Sohyen Kwon
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea
| | - Jiyeong Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea; Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu, 11759, Republic of Korea.
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu, 11759, Republic of Korea; Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, 13135, Republic of Korea.
| |
Collapse
|
10
|
Wang J, Zhang H, Wang C, Fu L, Wang Q, Li S, Cong B. Forensic age estimation from human blood using age-related microRNAs and circular RNAs markers. Front Genet 2022; 13:1031806. [PMID: 36506317 PMCID: PMC9732945 DOI: 10.3389/fgene.2022.1031806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aging is a complicated process characterized by progressive and extensive changes in physiological homeostasis at the organismal, tissue, and cellular levels. In modern society, age estimation is essential in a large variety of legal rights and duties. Accumulating evidence suggests roles for microRNAs (miRNAs) and circular RNAs (circRNAs) in regulating numerous processes during aging. Here, we performed circRNA sequencing in two age groups and analyzed microarray data of 171 healthy subjects (17-104 years old) downloaded from Gene Expression Omnibus (GEO) and ArrayExpress databases with integrated bioinformatics methods. A total of 1,403 circular RNAs were differentially expressed between young and old groups, and 141 circular RNAs were expressed exclusively in elderly samples while 10 circular RNAs were expressed only in young subjects. Based on their expression pattern in these two groups, the circular RNAs were categorized into three classes: age-related expression between young and old, age-limited expression-young only, and age-limited expression-old only. Top five expressed circular RNAs among three classes and a total of 18 differentially expressed microRNAs screened from online databases were selected to validate using RT-qPCR tests. An independent set of 200 blood samples (20-80 years old) was used to develop age prediction models based on 15 age-related noncoding RNAs (11 microRNAs and 4 circular RNAs). Different machine learning algorithms for age prediction were applied, including regression tree, bagging, support vector regression (SVR), random forest regression (RFR), and XGBoost. Among them, random forest regression model performed best in both training set (mean absolute error = 3.68 years, r = 0.96) and testing set (MAE = 6.840 years, r = 0.77). Models using one single type of predictors, circular RNAs-only or microRNAs-only, result in bigger errors. Smaller prediction errors were shown in males than females when constructing models according to different-sex separately. Putative microRNA targets (430 genes) were enriched in the cellular senescence pathway and cell homeostasis and cell differentiation regulation, indirectly indicating that the microRNAs screened in our study were correlated with development and aging. This study demonstrates that the noncoding RNA aging clock has potential in predicting chronological age and will be an available biological marker in routine forensic investigation to predict the age of biological samples.
Collapse
Affiliation(s)
- Junyan Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Haixia Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Wang
- Physical Examination Center of Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China,*Correspondence: Bin Cong, ; Shujin Li,
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China,*Correspondence: Bin Cong, ; Shujin Li,
| |
Collapse
|
11
|
A Comprehensive Characterization of Small RNA Profiles by Massively Parallel Sequencing in Six Forensic Body Fluids/Tissue. Genes (Basel) 2022; 13:genes13091530. [PMID: 36140698 PMCID: PMC9498867 DOI: 10.3390/genes13091530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Body fluids/tissue identification (BFID) is an essential procedure in forensic practice, and RNA profiling has become one of the most important methods. Small non-coding RNAs, being expressed in high copy numbers and resistant to degradation, have great potential in BFID but have not been comprehensively characterized in common forensic stains. In this study, the miRNA, piRNA, snoRNA, and snRNA were sequenced in 30 forensic relevant samples (menstrual blood, saliva, semen, skin, venous blood, and vaginal secretion) using the BGI platform. Based on small RNA profiles, relative specific markers (RSM) and absolute specific markers (ASM) were defined, which can be used to identify a specific body fluid/tissue out of two or six, respectively. A total of 5204 small RNAs were discovered including 1394 miRNAs (including 236 novel miRNA), 3157 piRNAs, 636 snoRNAs, and 17 snRNAs. RSMs for 15 pairwise body fluid/tissue groups were discovered by differential RNA analysis. In addition, 90 ASMs that were specifically expressed in a certain type of body fluid/tissue were screened, among them, snoRNAs were reported first in forensic genetics. In brief, our study deepened the understanding of small RNA profiles in forensic stains and offered potential BFID markers that can be applied in different forensic scenarios.
Collapse
|
12
|
STABILITY OF SELECTED MICRORNAs IN HUMAN BLOOD, SEMEN AND SALIVA SAMPLES EXPOSED TO DIFFERENT ENVIRONMENTAL CONDITIONS. Forensic Sci Int 2022; 336:111338. [DOI: 10.1016/j.forsciint.2022.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
|
13
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
14
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|