1
|
Zhu Y, Su Y, Hu L, Li Z, Xie T, Zhang Y, Qiao G, Lu F. pH-responsive zein/chitosan composite film containing cinnamon essential oil-loaded Pickering emulsion and black wolfberry anthocyanin: Physicochemical properties, and application in packing salmon. Food Chem 2025; 479:143815. [PMID: 40088652 DOI: 10.1016/j.foodchem.2025.143815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
With the rapid development of smart packaging, traditional systems that only extend shelf life or monitor freshness no longer meet consumer demands. This study developed a pH-responsive zein/chitosan composite film incorporating cinnamon essential oil-loaded Pickering emulsion (CEOP) and black wolfberry anthocyanins (BWAN) to extend salmon shelf life and monitor freshness. The composite films' structure, physical properties, pH sensitivity, antioxidant, and antimicrobial characteristics were evaluated. Incorporating 1 % CEOP enhanced the film's mechanical strength (from 11.44 MPa to 25.49 MPa), antioxidant capacity (from 61.9 % to 85.6 %), and antimicrobial effects. FTIR, XRD, and SEM confirmed strong molecular interactions between CEOP, BWAN, and the film matrix, improving stability. The composite film extended salmon's shelf life by 6 days and exhibited dynamic color changes, providing real-time freshness monitoring. This multifunctional film offers an innovative solution for food preservation with intuitive indicators of food quality.
Collapse
Affiliation(s)
- Yiqun Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yuhan Su
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Liangyan Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Tiemin Xie
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Guohua Qiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China.
| |
Collapse
|
2
|
Salah M, Gong W, Tu T, Sobhy R, Dabbour M, Fang Y, Walayat N, Wang Y. Enhancing the antifungal efficiency of chitosan nanoparticle via interacting with didymin/flavonoid and its bio-based approaches for postharvest preservation in pear fruit models. Int J Biol Macromol 2025; 304:140889. [PMID: 39947569 DOI: 10.1016/j.ijbiomac.2025.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/09/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
In this study, chitosan nanoparticles are used to encapsulate didymin and flavonoids separately using ionic gelation with phytic acid as a cross-linker. Their structural, antioxidant, and antifungal properties were evaluated. Flavonoid (Fs) was extracted from orange peels, while didymin (Did) was qualified in the pure extract using ultra-performance liquid chromatography (UPLC). UV-vis spectroscopy and FTIR confirmed the interaction of the obtained nanoparticles, which aligned with Surflex-dock findings. These nanoparticles showed a more compact structure and excellent thermal stability. The encapsulation efficiency (EE%) of Did-Cn and Fs-Cn nanoparticles was 55.33 ± 3.51 and 47.40 ± 0.56 %, respectively. The antioxidant assay showed that these nanoparticles highly reduced FRAP, DPPH, and ABTS radicals. The growth inhibition of Penicillium expansum was 37.39 ± 1.07 %, that of Aspergillus westerdijkiae was 44.26 ± 1.05 %, and that of Alternaria alternata was completely inhibited, which fits with clicks of the confocal microscope. These results suggest that food packaging or coatings could incorporate these nanoparticles to prevent fungal spoilage, thereby improving food safety. Meanwhile, using such nanoparticles offers a natural, safe, and effective solution for the pharmaceuticals and/or food industries to extend the freshness and shelf life of fruits and perishable items, reducing reliance on synthetic preservatives.
Collapse
Affiliation(s)
- Mahmoud Salah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Remah Sobhy
- Department of Biochemistry, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, Rinaldi M, Cordero-Bueso GA, Chaves-López C. Enhancing postharvest food safety: the essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front Microbiol 2025; 16:1543716. [PMID: 40135060 PMCID: PMC11934074 DOI: 10.3389/fmicb.2025.1543716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins. To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non-thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia
| | | | - Gustavo Adolfo Cordero-Bueso
- Laboratorio de Microbiología, CASEM, Dpto. Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Shahedi Y, Zandi M, Bimakr M. Effect of Balangu seed mucilage/gelatin coating containing dill essential oil and ZnO nanoparticles on sweet cherry quality during cold storage. Heliyon 2024; 10:e41057. [PMID: 39720076 PMCID: PMC11667608 DOI: 10.1016/j.heliyon.2024.e41057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
The current research focused on examining the effect of a coating made from Balangu seed mucilage (TSM-BM) and gelatin (Ge), with varying concentrations of dill essential oil (DEO) (0 %, 1 %, and 2 %) and zinc oxide nanoparticles (ZnO-np) (0 % and 0.5 %), on the quality characteristics of cherries stored at 4 °C over intervals of 0, 4, 7, 11, 18, and 25 days. The study noted that the application of this coating, particularly when combined with DEO and ZnO-np, significantly reduced the rate of changes in several parameters, including weight loss, firmness, titratable acidity, pH, total soluble solids, ascorbic acid, total anthocyanin content, total phenolic content, and antioxidant activity (p˂0.05). During the storage period, the skin color of all treated fruits darkened. Significant reductions were also observed in the values of L∗, Chroma, and hue angle, with the coating slowing these changes (p˂0.05). The BM-Ge coating's gas barrier properties contributed to a lower respiration rate in coated fruits than in uncoated controls, thereby delaying spoilage. The coating effectively prevented moisture loss from the stem and reduced browning over time. The incorporation of DEO into the BM-Ge coating enhanced its moisture barrier capabilities due to DEO's hydrophobic properties. BM-Ge coating containing 2 % DEO and 0.5 % ZnO-np was able to reduce changes of weight loss, firmness, titratable acidity, ascorbic acid, total soluble solids, total anthocyanin content, total phenolic content, and antioxidant activity by 71.23 %, 88.84 %, 60 %, 48.39 %, 30.05 %, 82.65 %, 50.77 %, and 55.46 % respectively. A significant correlation was also observed between the treated fruits' physical, chemical, and visual qualities.
Collapse
Affiliation(s)
- Yashar Shahedi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mohsen Zandi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mandana Bimakr
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
5
|
Wrońska N, Felczak A, Niedziałkowska K, Kędzierska M, Bryszewska M, Benzaouia MA, El Kadib A, Miłowska K, Lisowska K. Antifungal Chitosan Nanocomposites-A New Perspective for Extending Food Storage. Int J Mol Sci 2024; 25:13186. [PMID: 39684896 DOI: 10.3390/ijms252313186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Chitosan, a biopolymer derived from chitin, exhibits significant antifungal properties, making it a valuable compound for various applications in agriculture food preservation, and biomedicine. The present study aimed to assess the antifungal properties of chitosan-modified films using sol-gel derivatives (CS:ZnO) or graphene-filled chitosan, (CS:GO and CS:rGO) against two strains of fungi that are the most common cause of food spoilage: Aspergillus flavus ATCC 9643 and Penicillium expansum DSM 1282. The results indicate important differences in the antifungal activity of native chitosan films and zinc oxide-modified chitosan films. CS:ZnO nanocomposites (2:1 and 5:1) completely inhibited spore germination of the two tested fungal strains. Furthermore, a decrease in spore viability was observed after exposure to CS:Zn films. Significant differences in the permeability of cell envelopes were observed in the A. flavus. Moreover, the genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. Our studies showed that the tested nanocomposites did not exhibit genotoxicity towards human skin fibroblasts, and significant damage in the DNA of keratinocytes treated with CS:ZnO composites. Nanocomposites based on chitosan may help reduce synthetic fungicides and contribute to sustainable food production and food preservation practices.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| | - Katarzyna Niedziałkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Mohamed Amine Benzaouia
- Engineering Division, Euromed Research Center, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco
| | - Abdelkrim El Kadib
- Engineering Division, Euromed Research Center, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Mohammadi L, Wardana AA, Tanaka F, Tanaka F. The physicochemical, mechanical, and antifungal properties of sodium alginate film containing Japanese rice vinegar and peppermint (Mentha piperita) oil as bio-composite packaging. Int J Biol Macromol 2024; 281:136511. [PMID: 39401641 DOI: 10.1016/j.ijbiomac.2024.136511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024]
Abstract
Sodium Alginate has a high demand and is favored for food packaging; however, this film typically exhibits poor antimicrobial activity. In this study, sodium alginate film containing peppermint essential oil, Japanese rice vinegar, or a combination of both, is used to analyze antimicrobial, mechanical, structural, and optical properties. The scanning electron microscopy (SEM) technique is utilized to observe the film's surface and cross-section homogeneity. The addition of peppermint essential oil and Japanese rice vinegar to the alginate film solution improves fungal growth and spore germination prevention. Unlike the film containing vinegar, the film with peppermint essential oil shows the lowest transparency. It also has the lowest tensile strength and exhibits the highest elongation at break and water vapor permeability. Conclusively, the film containing a combination of vinegar and essential oil indicates moderate values. According to AFM topography, the film with a mix of essential oil and vinegar has a smoother, more homogeneous surface than other films. Our results prove that combining vinegar and oil with sodium alginate film is an ideal choice. This combination significantly improves the performance of food packaging.
Collapse
Affiliation(s)
- Leila Mohammadi
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ata Aditya Wardana
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Fumina Tanaka
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiko Tanaka
- Laboratory of Postharvest Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Shahedi Y, Zandi M, Bimakr M. A computer vision system and machine learning algorithms for prediction of physicochemical changes and classification of coated sweet cherry. Heliyon 2024; 10:e39484. [PMID: 39498035 PMCID: PMC11532850 DOI: 10.1016/j.heliyon.2024.e39484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
The current research utilized visual characteristics obtained from RGB images and qualitative characteristics to investigate changes in surface defects, predict physical and chemical characteristics, and classify sweet cherries during storage. It was achieved with the help of ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System) models. The ANN used in this study was a Multilayer Perceptron (MLP) with SigmoidAxon and TanhAxon threshold functions, trained with the Momentum training function. Additionally, ANFIS with a Mamdani system and Triangle, Gauss, and Trapezoidal membership functions, was employed to predict sweet cherries' physical and chemical properties and their quality classification. Both models incorporate four algorithms. Additionally, the algorithms use color statistical features and color texture features combined with physical and chemical properties, including weight loss, firmness, titratable acidity, and total anthocyanin content. The image color and texture characteristics were used by ANN and ANFIS models to predict physical and chemical properties with high accuracy. ANN and ANFIS models accurately estimate sweet cherry quality grades in all four algorithms with over 90 % accuracy. According to the findings, the ANN and ANFIS models have demonstrated satisfactory performance in the qualitative classification and prediction of sweet cherries' physical and chemical properties.
Collapse
Affiliation(s)
- Yashar Shahedi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mohsen Zandi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mandana Bimakr
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
8
|
Yang Z, Li M, Li Y, Huang X, Li Z, Zhai X, Shi J, Zou X, Xiao J, Sun Y, Povey M, Gong Y, Holmes M. Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chem 2024; 437:137891. [PMID: 37922795 DOI: 10.1016/j.foodchem.2023.137891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The poor biological, mechanical and water-resistance properties of sodium alginate/guar gum film (SG) limit its application in food preservation. To overcome this disadvantage, we added β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion (BOPE) to enhance the mechanical and water resistance properties of SG film, and added green synthesized silver nanoparticles (AgNPS) and Lycium ruthenicum extract (LA) to improve the biological properties of the film. The properties of BOPE was optimized using Box-Behnken design (BBD). Scanning electron microscope and Fourier transform infrared results revealed the change of structure and molecular interaction in the SG film after the addition of AgNPS, LA, and optimized BOPE. The 2.0%BOPE-loaded film containing AgNPS/LA with the enhanced mechanical, barrier, BO retention, and biological properties not only improved the preservation effect on mushroom (A. bisporus), but also maintained structural stability. Thus, the 2.0%BOPE-loaded SG/LA/AgNPS film has considerable potential in active packaging applications.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
9
|
Lou S, Ni X, Xiao W, Li Y, Gao Z. Physical stability, microstructure and antimicrobial properties of konjac glucomannan coatings enriched with Litsea cubeba essential oil nanoemulsion and its effect on citruses preservation. Int J Biol Macromol 2024; 256:128306. [PMID: 37995787 DOI: 10.1016/j.ijbiomac.2023.128306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
This study purposed to develop konjac glucomannan (KGM) based antimicrobial coatings containing Litsea cubeba essential oil nanoemulsion (LNE) for citruses preservation. Physical stability, rheological, structural and antimicrobial properties of the coating solutions were investigated, along with the release characteristics of Litsea cubeba essential oil (LCO). Results showed that the coating solutions displayed shear thinning behavior. The oil droplets were distributed homogeneously in KGM phase with good stability. The coating structure became loose with increasing LNE content due to LNE interfering with molecular interactions and entanglement of KGM. The coating solutions showed stronger antibacterial activity against Escherichia coli than against Staphylococcus aureus and were effective in inhibiting the growth of Penicillium italicum on citrus surfaces. KGM-LNE 10 negatively affected citruses due to phytotoxicity caused by high levels of LCO. LCO was released slowly and continuously from the coatings, and its release was faster in deionized water than in an ethanol-water solution. KGM-LNE 2.5 coated citruses had the least weight loss, the greatest hardness, and kept the minimum changes in total soluble solids, total acid and vitamin C content, implying that KGM-LNE 2.5 best maintained the quality of citruses. The findings suggest that KGM-based coatings containing LNE have high potential for citruses preservation.
Collapse
Affiliation(s)
- Shangrong Lou
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xuewen Ni
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China.
| | - Weilu Xiao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
10
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
11
|
Popyrina TN, Demina TS, Akopova TA. Polysaccharide-based films: from packaging materials to functional food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2736-2747. [PMID: 37711569 PMCID: PMC10497487 DOI: 10.1007/s13197-022-05595-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 09/16/2023]
Abstract
A wider application of naturally derived polysaccharides is of great interest as materials for food packaging industry. Biocompatibility and biodegradability of polysaccharide-based films and coatings ally with a shift from application of non-biodegradable petrochemical polymers to the more environmentally friendly ones. Due to a range of inherent features in chemical structure and bioactivity, the polysaccharide materials could bring additional functionality to food packaging. The chelating ability of the polysaccharides provides also their application as carriers of additional active components, such as nanoparticles, essential oils and polyphenols. The improved physicochemical, antibacterial and antioxidant properties of the filled films allows to consider the edible polysaccharide-based films as functional food products. This review is aimed at analysis of evolution of polysaccharide-based food packaging materials from inert one starting from cellophane to recent research works on development of multicomponent polysaccharide-based functional food films and coatings.
Collapse
Affiliation(s)
- Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow, Russia 119991
- Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, Russia 125993
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| |
Collapse
|
12
|
Caleb OJ, Belay ZA. Role of biotechnology in the advancement of biodegradable polymers and functionalized additives for food packaging systems. Curr Opin Biotechnol 2023; 83:102972. [PMID: 37487401 DOI: 10.1016/j.copbio.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Biodegradable polymers have shown enormous potential for application in food packaging systems and offer solutions to mitigate the challenges of single-use plastics. Over the past decade, advances in fermentation technology, metabolic engineering of microorganisms, and synthetic biology have enabled the optimization and functionalization of biodegradable polymers for food packaging application. This article provides an overview of the biotechnological approaches/methods used in advancing the production of biopolymers and summarizes the recent developments in the application of functionalized biopolymers for decision-making and quality control. It discusses the current applications and future perspectives of extracellular biopolymers in food systems. Finally, this review highlights the complexities of public acceptance, safety, and government regulations and legislations.
Collapse
Affiliation(s)
- Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| |
Collapse
|
13
|
Yan X, Wardana AA, Wigati LP, Meng F, Leonard S, Nkede FN, Tanaka F, Tanaka F. Characterization and bio-functional performance of chitosan/poly (vinyl alcohol)/trans-cinnamaldehyde ternary biopolymeric films. Int J Biol Macromol 2023; 246:125680. [PMID: 37406895 DOI: 10.1016/j.ijbiomac.2023.125680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Bioactive films of chitosan (CS)/polyvinyl alcohol (PVA)/trans-cinnamaldehyde (CIN) were prepared by co-blending, and the impact of varying concentrations (0.5, 1.0 and 1.5 %) of CIN on the physicochemical properties of the ternary films was investigated. The ATR/FT-IR analysis revealed that the bioactive film is modulated by Schiff base (C=N) and hydrogen-bond interactions of CS, PVA, and CIN. Inclusion of CIN into the film improved mechanical properties with tensile strength increased from 0.5 % (68.52 MPa) to 1.5 % (76.95 MPa). The presence of CIN within the CS/PVA film also remarkably affected oxygen permeability and improved light transmittance. Additionally, the water barrier and contact angle properties were improved with increasing CIN content. The morphology of the CIN-containing films appeared non-stratified and dense when observed by SEM and AFM. Moreover, spore germination and in vitro assays confirmed strong antifungal activity of the CIN-containing film against P. italicum (~90 %) and B. cinerea (~85 %). The ternary films also exhibited excellent antioxidant activity, as evidenced by DPPH radical scavenging activity (31.43 %) and ferric reducing power (OD700 nm = 0.172) at the highest CIN concentration tested. Thus, this bioactive CIN films are proposed as a versatile packaging material for the food industry.
Collapse
Affiliation(s)
- Xirui Yan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Ata Aditya Wardana
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Laras Putri Wigati
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fanze Meng
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Sergio Leonard
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Francis Ngwane Nkede
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fumina Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
| | - Fumihiko Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Wardana AA, Wigati LP, Tanaka F, Tanaka F. Incorporation of co-stabilizer cellulose nanofibers/chitosan nanoparticles into cajuput oil-emulsified chitosan coating film for fruit application. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Binmad S, Kaewtatip K, Kantachote D, Sukhoom A, Nookongbut P. Exopolymeric substance from Bacillus velezensis P1 as an antifungal additive in chitosan coating to prolong the shelf life of mangoes. Int J Biol Macromol 2022; 219:1155-1162. [DOI: 10.1016/j.ijbiomac.2022.08.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
16
|
Wardana AA, Wigati LP, Tanaka F, Tanaka F. Functional enhancement of hydroxypropyl cellulose‐based bionanocomposite films incorporating chitosan nanoparticles. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ata Aditya Wardana
- Food Technology Department, Faculty of Engineering Bina Nusantara University 11480 Jakarta Indonesia
| | - Laras Putri Wigati
- Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University, 744, Motooka, Nishi‐ku, Fukuoka‐shi, Fukuoka, 819‐0395 Japan
- Department of Agricultural Product Technology, Indonesian Agricultural Engineering Polytechnic 15338 Tangerang Indonesia
| | - Fumina Tanaka
- Laboratory of Postharvest Science, Faculty of Agriculture Kyushu University W5‐873,744, Motooka, Nishi‐ku, Fukuoka‐shi 819‐0395 Fukuoka Japan
| | - Fumihiko Tanaka
- Laboratory of Postharvest Science, Faculty of Agriculture Kyushu University W5‐873,744, Motooka, Nishi‐ku, Fukuoka‐shi 819‐0395 Fukuoka Japan
| |
Collapse
|