1
|
Garofalo F, Santovito G, Amelio D. Morpho-functional effects of heat stress on the gills of Antarctic T. bernacchii and C. hamatus. MARINE POLLUTION BULLETIN 2019; 141:194-204. [PMID: 30955726 DOI: 10.1016/j.marpolbul.2019.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The effect of increasing ocean water temperature on morpho-functional traits of Antarctic marine species is under intense attention. In this work, we evaluated the effects of acute heat stress on the gills of the Antarctic haemoglobinless Chionodraco hamatus and the red blooded Trematomus bernacchii in terms of morphology, heat shock response, antioxidant defense and NOS/NO system. We showed in both species that the exposure to high temperature (4 °C) induced structural alterations, such as epithelial lifting and oedema of secondary lamellae. By immunolocalization we also observed that HSP-90, HSP-70, Xantine Oxidase, Heme Oxigenase and NOS are expressed in both species under control conditions. After heat stress the signals increase in C. hamatus being absent/or reduced in T. bernacchii. Our preliminary results suggest a specie-specific morpho-functional response of the gills of the two Antarctic teleosts to heat stress.
Collapse
Affiliation(s)
- Filippo Garofalo
- Department of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende, CS, Italy
| | | | - Daniela Amelio
- Department of Biology, Ecology and Earth Sciences (B.E.S.T.), University of Calabria, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
2
|
Suchyta DJ, Schoenfisch MH. Encapsulation of N-Diazeniumdiolates within Liposomes for Enhanced Nitric Oxide Donor Stability and Delivery. Mol Pharm 2015; 12:3569-74. [PMID: 26287799 DOI: 10.1021/acs.molpharmaceut.5b00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rapid decomposition of nitric oxide (NO) donors in aqueous environments remains a limitation for applications requiring extended NO release. Herein, we report the synthesis of dipalmitoylphosphatidylcholine-based liposomes capable of extended NO release using low molecular weight NO donors and a reverse-phase evaporation technique. The encapsulation of the NO donors within the liposomes enabled both prolonged NO release and enhanced storage compared to free NO donors alone. The NO-releasing liposomes also demonstrated enhanced efficacy against human pancreatic cancer cells. These NO-release vehicles represent attractive anticancer therapeutics due to their potential to store the majority of their NO payload until reaching cancerous tissue at which time the lower pH inherent to such environments will trigger an avalanche of NO.
Collapse
Affiliation(s)
- Dakota J Suchyta
- Department of Chemistry, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Li FJ, Duggal RN, Oliva OM, Karki S, Surolia R, Wang Z, Watson RD, Thannickal VJ, Powell M, Watts S, Kulkarni T, Batra H, Bolisetty S, Agarwal A, Antony VB. Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species. PLoS One 2015; 10:e0122275. [PMID: 25835394 PMCID: PMC4383564 DOI: 10.1371/journal.pone.0122275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/13/2015] [Indexed: 11/18/2022] Open
Abstract
The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its reaction products protect against oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryan N. Duggal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Octavio M. Oliva
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Suman Karki
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - R. Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Victor J. Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Mickie Powell
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hitesh Batra
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Veena B. Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
4
|
Astort F, Mercau M, Giordanino E, Degese MS, Caldareri L, Coso O, Cymeryng CB. Nitric oxide sets off an antioxidant response in adrenal cells: involvement of sGC and Nrf2 in HO-1 induction. Nitric Oxide 2013; 37:1-10. [PMID: 24361900 DOI: 10.1016/j.niox.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/04/2013] [Accepted: 12/06/2013] [Indexed: 12/26/2022]
Abstract
Induction of microsomal heme oxygenase 1 (HO-1) activity is considered a cytoprotective mechanism in different cell types. In adrenal cells, HO-1 induction by ACTH exerts a modulatory effect on steroid production as well. As nitric oxide (NO) has been also regarded as an autocrine/paracrine modulator of adrenal steroidogenesis we sought to study the effects of NO on the induction of HO-1 and the mechanism involved. We hereby analyzed the time and dose-dependent effect of a NO-donor (DETA/NO) on HO-1 induction in a murine adrenocortical cell line. We showed that this effect is mainly exerted at a transcriptional level as it is inhibited by actinomycin D and HO-1 mRNA degradation rates were not affected by DETA/NO treatment. HO-1 induction by NO does not appear to involve the generation of oxidative stress as it was not affected by antioxidant treatment. We also demonstrated that NO-treatment results in the nuclear translocation of the nuclear factor-erythroid 2-related factor (Nrf2), an effect that is attenuated by transfecting the cells with a dominant negative isoform of Nrf2. We finally show that the effects of the NO-donor are reproduced by a permeable analog of cGMP and that a soluble guanylate cyclase specific inhibitor blocked both the induction of HO-1 by NO and the nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- F Astort
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Argentina.
| | - M Mercau
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Argentina
| | - E Giordanino
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Argentina
| | - M S Degese
- LFBM-DFBMC, Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - L Caldareri
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Argentina
| | - O Coso
- LFBM-DFBMC, Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - C B Cymeryng
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Argentina
| |
Collapse
|
5
|
Farina F, Sancini G, Battaglia C, Tinaglia V, Mantecca P, Camatini M, Palestini P. Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice. PLoS One 2013; 8:e56636. [PMID: 23451061 PMCID: PMC3581503 DOI: 10.1371/journal.pone.0056636] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/11/2013] [Indexed: 12/31/2022] Open
Abstract
Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO). Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum and could facilitate shedding light on mechanisms underlying the development of urban air pollution related diseases.
Collapse
Affiliation(s)
- Francesca Farina
- Department of Health Science, POLARIS Research Center, University of Milano-Bicocca, Monza, Italy
| | - Giulio Sancini
- Department of Health Science, POLARIS Research Center, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| | - Cristina Battaglia
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), PhD School of Molecular Medicine, University of Milano, Segrate, Italy
| | - Valentina Tinaglia
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), PhD School of Molecular Medicine, University of Milano, Segrate, Italy
| | - Paride Mantecca
- Department of Environmental Science, POLARIS Research Center, University of Milano-Bicocca, Milano, Italy
| | - Marina Camatini
- Department of Environmental Science, POLARIS Research Center, University of Milano-Bicocca, Milano, Italy
| | - Paola Palestini
- Department of Health Science, POLARIS Research Center, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Milan PM1 induces adverse effects on mice lungs and cardiovascular system. BIOMED RESEARCH INTERNATIONAL 2012; 2013:583513. [PMID: 23509745 PMCID: PMC3591224 DOI: 10.1155/2013/583513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 01/25/2023]
Abstract
Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.
Collapse
|
7
|
Castilho ÁF, Aveleira CA, Leal EC, Simões NF, Fernandes CR, Meirinhos RI, Baptista FI, Ambrósio AF. Heme oxygenase-1 protects retinal endothelial cells against high glucose- and oxidative/nitrosative stress-induced toxicity. PLoS One 2012; 7:e42428. [PMID: 22879979 PMCID: PMC3411771 DOI: 10.1371/journal.pone.0042428] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 07/09/2012] [Indexed: 01/18/2023] Open
Abstract
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.
Collapse
Affiliation(s)
- Áurea F. Castilho
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Célia A. Aveleira
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C. Leal
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Núria F. Simões
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina R. Fernandes
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rita I. Meirinhos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Filipa I. Baptista
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
8
|
Wei YY, Zheng Q, Liu ZP, Yang ZM. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide. PLANT & CELL PHYSIOLOGY 2011; 52:1665-1675. [PMID: 21813461 DOI: 10.1093/pcp/pcr102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Investigation of heavy metal tolerance genes in green algae is of great importance because heavy metals have become one of the major contaminants in the aquatic ecosystem. In plants, accumulation of heavy metals modifies many aspects of cellular functions. However, the mechanism by which heavy metals exert detrimental effects is poorly understood. In this study, we identified a role for HO-1 (encoding heme oxygenase-1) in regulating the response of Chlamydomonas reinhardtii, a unicellular green alga, to mercury (Hg). Transgenic algae overexpressing HO-1 showed high tolerance to Hg exposure, with a 48.2% increase in cell number over the wild type, but accumulated less Hg. Physiological analysis revealed that expression of HO-1 suppressed the Hg-induced generation of reactive oxygen species. We further identified the effect of carbon monoxide (CO), a product of HO-1-mediated heme degradation, on growth and physiological parameters. Interestingly, administration of exogenous CO at non-toxic levels also conferred the tolerance of algae to Hg exposure. The CO-mediated alleviation of Hg toxicity was closely related to the lower accumulation of Hg and free radical species. These results indicate that functional identification of HO-1 is useful for molecular breeding designed to improve plant tolerance to heavy metals and reduce heavy metal accumulation in plant cells.
Collapse
Affiliation(s)
- Yuan Yuan Wei
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | | | | | | |
Collapse
|
9
|
Zeis T, Probst A, Steck AJ, Stadelmann C, Brück W, Schaeren‐Wiemers N. Molecular changes in white matter adjacent to an active demyelinating lesion in early multiple sclerosis. Brain Pathol 2009; 19:459-66. [PMID: 19016740 PMCID: PMC8094783 DOI: 10.1111/j.1750-3639.2008.00231.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/10/2008] [Indexed: 11/27/2022] Open
Abstract
A stereotactic biopsy of a 17-year-old woman revealed an active inflammatory demyelinating lesion compatible with pattern III multiple sclerosis (MS) according to Lucchinetti et al. The biopsy included a white matter region distant from the active inflammatory demyelinating lesion with abnormal MRI signal, lacking histopathological signs of demyelination and/or oligodendrocyte apoptosis. Expression analysis of this area revealed a strong up-regulation of neuronal nitric oxide synthase (nNOS). Furthermore, detection of nitrotyrosine provided evidence for reactive nitrogen species (RNS)-mediated damage to oligodendrocytes. Concomitantly, genes involved in neuroprotection against oxidative stress such as heme oxygenase 1 were up-regulated. Even though a single case report, this study shows earliest molecular changes in white matter surrounding an actively demyelinating lesion during the first manifestation of MS, pointing toward a more widespread pathological process. Therapeutic targeting of the identified mechanisms of tissue injury might be crucial to prevent further lesion formation or secondary tissue damage.
Collapse
Affiliation(s)
- Thomas Zeis
- Neurobiology, Department of Biomedicine and Neurology, University Hospital Basel, Pharmacenter, Basel, Switzerland
| | - Alfonse Probst
- Institute of Neuropathology, University Hospital Basel, Basel, Switzerland
| | - Andreas Johann Steck
- Neurobiology, Department of Biomedicine and Neurology, University Hospital Basel, Pharmacenter, Basel, Switzerland
| | - Christine Stadelmann
- Institute of Neuropathology, Georg‐August‐University Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, Georg‐August‐University Göttingen, Göttingen, Germany
| | - Nicole Schaeren‐Wiemers
- Neurobiology, Department of Biomedicine and Neurology, University Hospital Basel, Pharmacenter, Basel, Switzerland
| |
Collapse
|
10
|
Shyong MP, Lee FL, Hen WH, Kuo PC, Wu AC, Cheng HC, Chen SL, Tung TH, Tsao YP. Viral delivery of heme oxygenase-1 attenuates photoreceptor apoptosis in an experimental model of retinal detachment. Vision Res 2008; 48:2394-2402. [PMID: 18713643 DOI: 10.1016/j.visres.2008.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 01/09/2023]
Abstract
This study was designed to evaluate the efficacy of subretinal injection of recombinant adeno-associated virus vector expressing heme oxygenase-1 (rAAV-HO-1) in attenuating photoreceptor apoptosis induced by experimental retinal detachment (RD) in Sprague-Dawley rats. Our results disclosed that subretinal rAAV-HO-1 delivery achieved localized high HO-1 gene expression in retinal outer nuclear layer (ONL) compared with rAAV-lacZ-injected eyes and eyes with RD left untreated both at 2 (p=0.003) and 28 (p=0.007) days of RD. The ONL thickness (p=0.018) and mean photoreceptor nuclei count (p=0.009) in eyes receiving rAAV-HO-1 injection was significantly higher than in rAAV-lacZ-injected or eyes with RD left untreated at 28 days of RD. There were fewer apoptotic photoreceptor nuclei at 2 (p=0.008) and 5 (p=0.018) days of RD and less activated caspase-3 expression (p=0.008) at 2 days of RD in rAAV-HO-1 treated eyes than in control eyes. These data supported that gene transfer approach might attenuate photoreceptor apoptosis caused by RD with a resultant better ONL preservation.
Collapse
Affiliation(s)
- Mong-Ping Shyong
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu L, Pi J, Wachi S, Andersen ME, Wu R, Chen Y. Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling. Am J Physiol Lung Cell Mol Physiol 2007; 294:L469-77. [PMID: 18156441 DOI: 10.1152/ajplung.00310.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In inflammatory diseases of the airway, a high level (estimated to be as high as 8 mM) of HOCl can be generated through a reaction catalyzed by the leukocyte granule enzyme myeloperoxidase (MPO). HOCl, a potent oxidative agent, causes extensive tissue injury through its reaction with various cellular substances, including thiols, nucleotides, and amines. In addition to its physiological source, HOCl can also be generated by chlorine gas inhalation from an accident or a potential terrorist attack. Despite the important role of HOCl-induced airway epithelial injury, the underlying molecular mechanism is largely unknown. In the present study, we found that HOCl induced dose-dependent toxicity in airway epithelial cells. By transcription profiling using GeneChip, we identified a battery of HOCl-inducible antioxidant genes, all of which have been reported previously to be regulated by nuclear factor erythroid-related factor 2 (Nrf2), a transcription factor that is critical to the lung antioxidant response. Consistent with this finding, Nrf2 was found to be activated time and dose dependently by HOCl. Although the epidermal growth factor receptor-MAPK pathway was also highly activated by HOCl, it was not involved in Nrf2 activation and Nrf2-dependent gene expression. Instead, HOCl-induced cellular oxidative stress appeared to lead directly to Nrf2 activation. To further understand the functional significance of Nrf2 activation, small interference RNA was used to knock down Nrf2 level by targeting Nrf2 or enhance nuclear accumulation of Nrf2 by targeting its endogenous inhibitor Keap1. By both methods, we conclude that Nrf2 directly protects airway epithelial cells from HOCl-induced toxicity.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Division of Translational Biology, The Hamner Institutes for Health Sciences, 6 Davis Dr., Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
12
|
Liu XM, Peyton KJ, Ensenat D, Wang H, Hannink M, Alam J, Durante W. Nitric oxide stimulates heme oxygenase-1 gene transcription via the Nrf2/ARE complex to promote vascular smooth muscle cell survival. Cardiovasc Res 2007; 75:381-9. [PMID: 17408602 PMCID: PMC1994113 DOI: 10.1016/j.cardiores.2007.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Previous studies from our laboratory and others found that NO is a potent inducer of heme oxygenase-1 (HO-1) gene transcription in vascular smooth muscle cells (SMC), however, the mechanism responsible for the induction of HO-1 gene expression has not been elucidated. In the present study, we determined the signaling pathway responsible for the induction of HO-1 and its biological significance. METHODS Cultured rat aortic SMC were exposed to nitrosative stress by treating cells with various NO donors or with inflammatory cytokines. RESULTS Nitrosative stress stimulated an increase in HO-1 mRNA expression and promoter activity in vascular SMC. However, mutation of the antioxidant response element (ARE) in the HO-1 promoter or overexpression of a dominant-negative mutant of NF-E2-related factor-2 (Nrf2) abrogated the activation by NO. Electromobility shift assays using an ARE probe detected a complex that was significantly increased in intensity by NO. In addition, the migration of this complex was retarded by using an antibody directed against Nrf2. NO also increased Nrf2 mRNA expression, total and nuclear Nrf2 levels, and the binding of Nrf2 to the HO-1 promoter. Finally, treatment of SMC with NO stimulated apoptosis that was increased by HO-1 inhibition. CONCLUSIONS These results demonstrate that nitrosative stress induces HO-1 gene transcription through the activation of the Nrf2/ARE complex to counteract NO-induced apoptosis of vascular SMC. The capacity of nitrosative stress to activate Nrf2 and stimulate HO-1 gene transcription may represent a critical adaptive response to maintain cell viability at sites of vascular inflammation and atherosclerosis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Cell Survival
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Electrophoretic Mobility Shift Assay
- Gene Expression
- Heme Oxygenase-1/genetics
- Muscle, Smooth, Vascular
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/immunology
- NF-E2-Related Factor 2/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitrosation
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Rats
- Response Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiao-ming Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Kelly J. Peyton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Diana Ensenat
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
| | - Hong Wang
- Department of Pharmacology, Temple University, Philadelphia, PA 19140
| | - Mark Hannink
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212
| | - Jawed Alam
- Department of Molecular Genetics, Ochsner Clinic Foundation, New Orleans, LA 70121
| | - William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Aguilar-Santelises M, Mozart M, Scuderi R, Celsing F. Altered expression of key cellular gene products accompanies development of resistance to nitric oxide. Nitric Oxide 2006; 15:328-36. [PMID: 16675276 DOI: 10.1016/j.niox.2006.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/14/2006] [Accepted: 03/19/2006] [Indexed: 11/22/2022]
Abstract
NALM-6 is a pre-B leukemia cell line sensitive to exogenous nitric oxide (NO), which enters into apoptosis during 24 h of exposure to low doses of the NO donors SNAP (100 microM) or DETA-NO (250 microM). By culturing NALM-6 with repeated and increasing concentrations of SNAP, we obtained a variant (NALM-6R) that retains >95% viability and does not enter into apoptosis during 24 h culture in the presence of up to 500 microM SNAP or 750 microM DETA-NO. A power blot screen performed with 277 antibodies on cell lysates from NALM-6 and NALM-6R cultured without NO donors served to determine the altered constitutive expression of 19 proteins in NALM-6R. Proteins affected in the less sensitive cell line NALM6-R are involved in the regulation of apoptosis, the cell cycle, cell interactions, signal transduction, cell morphology, and cell motility. This model shows that repeated exposure of tumor cells to NO may either select NO-resistant cells or contribute to NO-sensitive conversion into NO-resistant cells. The identification of the proteins that are affected during this transition may help us to define the mechanisms that are involved in cell resistance to NO-cytotoxicity which often accompany clinical progression.
Collapse
|
14
|
Kruger AL, Peterson SJ, Schwartzman ML, Fusco H, McClung JA, Weiss M, Shenouda S, Goodman AI, Goligorsky MS, Kappas A, Abraham NG. Up-regulation of heme oxygenase provides vascular protection in an animal model of diabetes through its antioxidant and antiapoptotic effects. J Pharmacol Exp Ther 2006; 319:1144-52. [PMID: 16959961 DOI: 10.1124/jpet.106.107482] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heme oxygenase (HO) plays a critical role in the regulation of cellular oxidative stress. The effects of the reactive oxygen species scavenger ebselen and the HO inducers cobalt protoporphyrin and stannous chloride (SnCl(2)) on HO protein levels and activity, indices of oxidative stress, and the progression of diabetes were examined in the Zucker rat model of type 2 diabetes. The onset of diabetes coincided with an increase in HO-1 protein levels and a paradoxical decrease in HO activity, which was restored by administration of ebselen. Up-regulation of HO-1 expressed in the early development of diabetes produced a decrease in oxidative/nitrosative stress as manifested by decreased levels of 3-nitrotyrosine, superoxide, and cellular heme content. This was accompanied by a decrease in endothelial cell sloughing and reduced blood pressure. Increased HO activity was also associated with a significant increase in the antiapoptotic signaling molecules Bcl-xl and phosphorylation of p38-mitogen-activated protein kinase but no significant increases in Bcl-2 or BAD proteins. In conclusion, 3-nitrotyrosine, cellular heme, and superoxide, promoters of vascular damage, are reduced by HO-1 induction, thereby preserving vascular integrity and protecting cardiac function involving an increase in antiapoptotic proteins.
Collapse
Affiliation(s)
- Adam L Kruger
- Division of Cardiology, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reiter TA, Pang B, Dedon P, Demple B. Resistance to nitric oxide-induced necrosis in heme oxygenase-1 overexpressing pulmonary epithelial cells associated with decreased lipid peroxidation. J Biol Chem 2006; 281:36603-12. [PMID: 17020887 DOI: 10.1074/jbc.m602634200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased expression of heme oxygenase-1 (HO-1) increases NO resistance in several cell types, although the biochemical mechanism for this protection is unknown. To address this issue, we have measured different molecular markers of nitrosative stress in three stably transfected cell lines derived from the human lung epithelial line A549: two lines that overexpress rat HO-1 (L1 and A4), and a control line with the empty vector (Neo). Compared with the control Neo cells, L1 and A4 cells had, respectively, 5.8- and 3.8-fold greater HO activity accompanied by increased resistance to NO-induced necrosis. Compared with the Neo control, the HO-1-overexpressing cells also showed significantly less lipid peroxide formation and decreased perturbation of transition metal oxidation and coordination states following a cytotoxic NO exposure. These effects were blocked by the HO-1 inhibitors Zn- and Sn-protoporphyrin IX. In contrast, HO-1 overexpression did not significantly affect total reactive oxygen or nitrogen species, the levels of the nucleobase deamination products in DNA (xanthine, inosine, and uracil) following NO exposure, or NO-induced protein nitration. While increased HO-1 activity prevented NO-induced fluctuations in transition metal homeostasis, addition of an iron chelator decreased NO toxicity only slightly. Our results indicate that lipid peroxidation is a significant cause of NO-induced necrosis in human lung epithelial cells, and that the increased NO survival of L1 cells is due at least in part to decreased lipid peroxidation mediated by HO-1-generated biliverdin or bilirubin.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|